Institut für Angewandte Mathematik Winter semester 2025/26 Andreas Eberle, Francis Lörler

"Markov Processes", Problem Sheet 2

Please hand in your solutions until Friday, October 24, 13.00.

1. (Interacting particle systems). Suppose that (V, E) is a finite graph, and let

$$S = \{0,1\}^V = \{\eta = (\eta_i)_{i \in V} : \eta_i \in \{0,1\} \text{ for all } i \in V\}.$$

We consider the following discrete time stochastic processes with state space S:

- (i) Voter model: In each step, a vertex $i \in V$ and a neighbouring vertex $j \in V$ are chosen uniformly at random, and the value of η_i is changed to that of η_j . All other components of η stay unchanged.
- (ii) Contact process: In each step, a vertex $i \in V$ and a neighbouring vertex $j \in V$ are chosen uniformly at random. If $\eta_i = 1$ then η_i is updated to 0 with probability p and to 1 with probability 1 p, where $p \in (0, 1)$ is fixed. If $\eta_i = 0$ then η_i is updated to the value of η_i . All other components of η stay unchanged.
- (iii) Exclusion process: In each step, a vertex $i \in V$ and a neighbouring vertex $j \in V$ are chosen uniformly at random. If $\eta_i = 1$ and $\eta_j = 0$ then the two values are exchanged (i.e., the particle moves from i to j). Otherwise nothing happens.
 - a) Describe the corresponding stochastic processes as random dynamical systems on an adequate probability space.
 - b) Show that the processes are Markov chains and identify the transition kernels.
 - c) Compute the generators $\mathcal{L}f$ for arbitrary functions $f: S \to \mathbb{R}$.
 - d) Determine invariant probability measures for the three processes. Are these unique?
- **2.** (Markov properties). Let $I = \mathbb{R}_+$ or $I = \mathbb{Z}_+$, and suppose that $(X_t)_{t \in I}$ is a stochastic process with state space $(S_{\Delta}, \mathcal{B}_{\Delta})$ defined on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$. Show that the following statements are equivalent:
 - (i) (X_t, \mathbb{P}) is a Markov process with initial distribution ν and transition function $(p_{s,t})$.
 - (ii) For any $n \in \mathbb{Z}_+$ and $0 = t_0 \le t_1 \le \ldots \le t_n$,

$$(X_{t_0}, X_{t_1}, \dots, X_{t_n}) \sim \nu \otimes p_{t_0, t_1} \otimes p_{t_1, t_2} \otimes \dots \otimes p_{t_{n-1}, t_n}$$
 w.r.t. \mathbb{P} .

(iii) $(X_t)_{t\in I} \sim \mathbb{P}_{\nu}$.

(iv) For any $s \in I$, $\mathbb{P}_{X_s}^{(s)}$ is a version of the conditional distribution of $(X_t)_{t \geq s}$ given \mathcal{F}_s^X , i.e., for any product measurable function $F: S_{\Delta}^I \to \mathbb{R}_+$,

$$\mathbb{E}[F((X_t)_{t\geq s})|\mathcal{F}_s^X] = \mathbb{E}_{X_s}^{(s)}[F] \quad \mathbb{P}\text{-a.s.}$$

Here \mathbb{P}_{ν} and $\mathbb{P}_{x}^{(s)}$ denote the canonical measures on S_{Δ}^{I} that correspond to the initial distributions ν, δ_{x} and the transition functions $(p_{r,t})_{0 \leq r \leq t}$, $(p_{s+r,s+t})_{0 \leq r \leq t}$, respectively.