

“Markov Processes”, Problem Sheet 13

Please hand in your solutions by Friday, January 30, 13.00.

1. (Exclusion process). Suppose that (V, E) is a regular graph. The *simple exclusion* or *interchange process* is the Markov process with state space $S = \{0, 1\}^V$ and transitions $\xi \mapsto \xi^{x,y}$ with rate 1 for every edge $\{x, y\} \in E$. Here $\xi^{x,y}$ denotes the configuration obtained from ξ by exchanging the values at x and y .

- a) Show that if V is finite then the number of particles is conserved, and every exchangeable probability measure is invariant. Here a measure μ on S is called *exchangeable* iff $\mu(\xi^{x,y}) = \mu(\xi)$ for all $\xi \in S$ and $\{x, y\} \in E$.
- b) Show that for every probability measure ν on $\{0, 1\}$, the product measure

$$\mu = \bigotimes_{x \in \mathbb{Z}^d} \nu$$

is invariant for the simple exclusion process on $\{0, 1\}^{\mathbb{Z}^d}$.

2. (Images of Markov processes). Suppose that $X_t = f(Y_t)$ where $((Y_t)_{t \geq 0}, (\mathbb{P}_x)_{x \in S})$ is a time homogeneous Markov process with measurable state space (S, \mathcal{B}) and transition function $(p_t)_{t \geq 0}$, and f is a measurable map from S to a countable state space T .

- a) Derive a necessary and sufficient condition on f ensuring that for all $x \in S$, $((X_t)_{t \geq 0}, \mathbb{P}_x)$ is again a Markov process, and identify the transition function.
- b) The *mean-field contact process* with parameters $b, d \in [0, \infty)$ is the Markov process $(\eta_t)_{t \geq 0}$ with state space $\{0, 1\}^n$ and transition rates

$$c_1(x, \eta) = b \cdot N_1(\eta)/n, \quad c_0(x, \eta) = d.$$

Show that $X_t = N_1(\eta_t)$ is a birth-death process and compute the transition rates.

- c) How are the generators of the birth-death process and the mean-field voter model related to each other?