

“Markov Processes”, Problem Sheet 12

Please hand in your solutions by Friday, January 23, 13.00.

1. (Interacting particle systems on finite graphs).

- a) Show that for the voter model on a finite graph (V, E) , the processes

$$N_i(\eta_t) = \sum_{x \in V} 1_i(\eta_t(x))$$

are martingales. Conclude that for all i and all initial configurations ξ ,

$$\mathbb{P}_\xi [\eta_t \equiv i \text{ eventually}] = \frac{N_i(\xi)}{|V|}.$$

- b) Prove for the contact process on a finite graph that for all $\xi \in \{0, 1\}^V$,

$$\mathbb{P}_\xi [\eta_t \equiv 0 \text{ eventually}] = 1.$$

2. (Independent particle process). Suppose that $(X_t^k)_{t \geq 0}$ ($k \in \mathbb{N}$) are independent continuous time simple random walks on \mathbb{Z}^d , and let

$$\eta_t(x) = |\{k \in \mathbb{N} : X_t^k = x\}|.$$

- a) Assuming that $\eta_t(x)$ is finite for all $x \in \mathbb{Z}^d$ and $t \geq 0$, show that $(\eta_t)_{t \geq 0}$ is a Markov process with state space $\{0, 1, 2, \dots\}^{\mathbb{Z}^d}$.
- b) On which Banach space does the process generate a strongly continuous contraction semigroup?
- c) Identify the generator on cylinder functions.