Institut für Angewandte Mathematik Winter semester 2025/26

Andreas Eberle, Francis Lörler

"Markov Processes", Problem Sheet 10

Please hand in your solutions by Friday, January 9, 13.00.

We wish you a merry Christmas and a happy new year!

- 1. (Brownian motion with absorption at 0). Brownian motion with absorption at 0 is the Markov process with state space $S = [0, \infty)$ defined by $X_t = B_{t \wedge T_0}$, where (B_t, \mathbb{P}_x) is a Brownian motion on \mathbb{R} starting at $x \in [0, \infty)$.
 - a) Show that this process solves the martingale problem for the operator $\mathcal{L} = \frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$ with domain $\mathcal{A} = \{ f \in C_0^2([0,\infty)) : f''(0) = 0 \}$.
 - b) On which Banach space(s) does this process induce a C^0 contraction semigroup?
 - c) Identify the corresponding generator(s) (L, Dom(L)).
 - d) Show that $\int_0^\infty \mathcal{L}f \, dx = 0$ for any $f \in C_0^\infty(0, \infty)$.
 - e) Determine all invariant probability measures.
- **2.** (Adjoint processes). Let $(p_t)_{t\geq 0}$ be the transition semigroup of a time-homogeneous Markov process with generator \mathcal{L} on a *finite* state space S. Let μ be a probability measure with full support on S.
 - a) Write down explicitly the adjoint \mathcal{L}^* of \mathcal{L} as an operator in $L^2(S, \mu)$. Prove that \mathcal{L}^* is the generator of a Markov process if and only if μ is invariant w.r.t. $(p_t)_{t>0}$.
 - b) Show that in this case, the transition semigroup of the Markov process generated by \mathcal{L}^* is $(p_t^*)_{t\geq 0}$.
 - c) Give a probabilistic interpretation of this process when μ is the initial distribution.
- **3.** (Differential operators as generators). Suppose that the generator of a Feller semigroup on \mathbb{R} satisfies

$$(Lf)(x) = \sum_{n=0}^{m} a_n(x) \frac{\mathrm{d}^n f}{\mathrm{d}x^n}(x) \quad \text{for all } f \in C_0^{\infty}(\mathbb{R})$$
 (1)

for some $m \in \mathbb{N}$ and coefficients $a_n \in C(\mathbb{R})$. Show that for every $x \in \mathbb{R}$,

$$a_0(x) \le 0$$
, $a_2(x) \ge 0$, and $a_n(x) = 0$ for all $n > 2$.

- **4.** (Semigroups generated by self-adjoint operators on Hilbert spaces). Suppose that E is a Hilbert space with norm $||f|| = (f, f)^{1/2}$, and L is a densely defined linear operator on E.
 - a) Define the adjoint operator $(L^*, Dom(L^*))$. What does it mean that L is self-adjoint?
 - b) Show that if L is *self-adjoint* then it generates a C^0 contraction semigroup on E if and only if L is *negative definite*, i.e.

$$(f, Lf) \le 0$$
 for all $f \in \text{Dom}(L)$.

Remark. In this case, the C^0 semigroup generated by L is given by $P_t = e^{tL}$, where the exponential is defined by spectral theory, see e.g. Reed & Simon: Methods of modern mathematical physics, Vol. I and II.

- 5. (Approximation of semigroups by resolvents). Suppose that $(P_t)_{t\geq 0}$ is a strongly continuous contraction semigroup on a closed subspace $E\subseteq \mathcal{F}_b(S)$ with resolvent $(G_\alpha)_{\alpha>0}$.
 - a) Prove that for any $g \in E$, t > 0, $n \in \mathbb{N}$ and $x \in S$,

$$\left(\left(\frac{n}{t}G_{\frac{n}{t}}\right)^ng\right)(x) \ = \ \mathbb{E}\left[\left(P_{\frac{E_1+\dots+E_n}{n}t}g\right)(x)\right]$$

where $(E_k)_{k\in\mathbb{N}}$ is a sequence of independent exponentially distributed random variables with parameter 1.

b) Hence conclude that

$$\left(\frac{n}{t}G_{\frac{n}{t}}\right)^n g \to P_t g$$
 uniformly as $n \to \infty$. (2)

- c) How could you derive (2) more directly if the state space is finite?
- d) Complete the proof of Step 4 in Theorem 4.21 in the lecture notes. Hint: You may assume without proof that the probability measures on \mathbb{R}_+ with density proportional to $r^{n-1}e^{-nr}$ converge weakly to the Dirac measure δ_1 as $n \to \infty$. (Why?)
- 6. (Infinitesimal characterisation of invariant measures A counterexample). Consider the minimal time-homogeneous Markov jump process (X_t, \mathbb{P}_x) with state space \mathbb{Z} and generator $\mathcal{L} = \lambda (\pi I)$, where

$$\lambda(x) = 1 + x^2$$
 and $\pi(x, \cdot) = \delta_{x+1}$ for all $x \in \mathbb{Z}$.

- a) Give an explicit construction of this process.
- b) Does the process explode in finite time?
- c) Show that the probability measure μ with weights $\mu(x) \propto 1/(1+x^2)$ is infinitesimally invariant, i.e.

$$(\mu \mathcal{L})(y) = 0$$
 for all $y \in \mathbb{Z}$.

d) Show that nevertheless, μ is not an invariant measure for the transition semigroup (p_t) of the process.