Institut für Angewandte Mathematik Winter semester 2025/26

Andreas Eberle, Francis Lörler

"Markov Processes", Problem Sheet 1

Please hand in your solutions before 12 noon on Monday, October 20.

1. (Conditional Expectations).

- a) Let X, Y on $(\Omega, \mathcal{A}, \mathbb{P})$ be independent random variables that are Bernoulli distributed with parameter p. We set $Z = 1_{\{X+Y=0\}}$. Compute $\mathbb{E}[X|Z]$ and $\mathbb{E}[Y|Z]$. Are these random variables still independent?
- b) Let X, Y, Z be random variables with values in a measurable space (S, \mathcal{B}) such that the couples (X, Z) and (Y, Z) have the same law. Show that, for any measurable $f: S \to \mathbb{R}_+$,

$$\mathbb{E}[f(X)|Z] = \mathbb{E}[f(Y)|Z]$$
 almost surely.

- c) Let T_1, \ldots, T_n be i.i.d. real integrable random variables. Set $T = T_1 + \cdots + T_n$.
 - (i) Show that $\mathbb{E}[T_1|T] = T/n$.
 - (ii) Compute $\mathbb{E}[T|T_1]$.

2. (Markov properties).

a) Let $(X_t)_{t \in \mathbb{R}_+}$ be a Markov process with transition function $(p_{s,t})$ and state space S on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that for any $t_0 \in \mathbb{R}_+$, the time-space process $\hat{X}_t = (t_0 + t, X_{t_0+t})$ is a time-homogeneous Markov process with state space $\mathbb{R}_+ \times S$ and transition function

$$\hat{p}_t((s,x),\cdot) = \delta_{s+t} \otimes p_{s,s+t}(x,\cdot).$$

- b) Let $(X_t)_{t \in \mathbb{R}_+}$ be an arbitrary stochastic process on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that the *historical process* $\hat{X}_t = (X_s)_{s \in [0,t]}$ is an (\mathcal{F}_t^X) Markov process.
- c) Let (B_t) be a standard Brownian motion on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and let

$$X_t = \int_0^t B_s \, ds.$$

Show that (X_t) is not a Markov process, but the two component process (B_t, X_t) is a time-homogeneous Markov process.

*d) Determine the transition function of this Markov process.

3. (Reflected Random Walks and Metropolis algorithm). Let π be a probability kernel on a measurable space (S, \mathcal{B}) . A probability measure μ satisfies the *detailed balance* condition w.r.t. π iff for any $A, B \in \mathcal{B}$,

$$(\mu \otimes \pi)(A \times B) = (\mu \otimes \pi)(B \times A).$$

- a) Prove that a probability measure μ which satisfies detailed balance w.r.t. π is also invariant w.r.t. π , i.e., $(\mu\pi)(B) = \int_S \mu(dx) \, \pi(x,B) = \mu(B)$ for any $B \in \mathcal{B}$.
- b) Let $S \subset \mathbb{R}^d$ be a bounded measurable set. We define a Markov chain $(X_n)_{n \in \mathbb{Z}_+}$ by

$$X_0 = x_0 \in S$$
, $X_{n+1} = X_n + W_{n+1} \cdot 1_S(X_n + W_{n+1})$,

where $W_i: \Omega \to \mathbb{R}^d$ are i.i.d. random variables. Suppose that the law of W_1 is absolutely continuous with a strictly positive density satisfying f(x) = f(-x). Prove that the uniform distribution on S is invariant w.r.t. the transition kernel of the Markov chain (X_n) .

c) Let $\mu(dx) = \mu(x) dx$ be a probability measure with strictly positive density on \mathbb{R}^d . Show that the process (X_n) , defined by the following algorithm, is a time-homogeneous Markov chain, identify its transition kernel π , and show that μ is invariant for π .

Random walk Metropolis algorithm

- 1.) Set n := 0 and choose some arbitrary point $X_0 \in \mathbb{R}^d$.
- 2.) Set $Y_{n+1} := X_n + W_{n+1}$, and draw independently $U_{n+1} \sim \text{Unif}(0,1)$.
- 3.) If $U_{n+1} < \mu(Y_{n+1})/\mu(X_n)$ then set $X_{n+1} := Y_{n+1}$, else set $X_{n+1} := X_n$.
- 4.) Set n := n + 1 and go to Step 2.