Institut für Angewandte Mathematik Wintersemester 2022/23 Andreas Eberle, Stefan Oberdörster

"Markov Processes", Problem Sheet 9

Please hand in your solutions before 12:15 noon on Monday, December 12.

1. (Differential operators as generators). Suppose that the generator of a Feller semigroup on \mathbb{R} satisfies

$$(Lf)(x) = \sum_{n=0}^{m} a_n(x) \frac{d^n f}{dx^n}(x) \quad \text{for all } f \in C_0^{\infty}(\mathbb{R})$$
(1)

for some $m \in \mathbb{N}$ and coefficients $a_n \in C(\mathbb{R})$. Show that for every $x \in \mathbb{R}$,

 $a_0(x) \le 0$, $a_2(x) \ge 0$, and $a_n(x) = 0$ for all n > 2.

2. (Sticky Brownian motion). Consider Brownian motion on [0, 1] with sticky boundaries at both 0 and 1, with respective parameters λ_0 and λ_1 .

- a) Write down the generator on the Banach space C([0, 1]) and verify that it is indeed the generator of a Feller process.
- b) Show that there exists an invariant probability measure for the process.
- c) Determine the invariant probability measure.

3. (Infinitesimal characterization of invariant measures - A counterexample). Consider the minimal time-homogeneous Markov jump process (X_t, \mathbb{P}_x) with state space \mathbb{Z} and generator $\mathcal{L} = \lambda (\pi - I)$, where

 $\lambda(x) = 1 + x^2$ and $\pi(x, \cdot) = \delta_{x+1}$ for all $x \in \mathbb{Z}$.

- a) Give an explicit construction of this process.
- b) Does the process explode in finite time?
- c) Show that the probability measure μ with weights $\mu(x) \propto 1/(1+x^2)$ is infinitesimally invariant, i.e.

$$(\mu \mathcal{L})(y) = 0$$
 for all $y \in \mathbb{Z}$.

d) Show that nevertheless, μ is not an invariant measure for the transition semigroup (p_t) of the process.