Institut für Angewandte Mathematik Wintersemester 2022/23 Andreas Eberle, Stefan Oberdörster

"Markov Processes", Problem Sheet 8

Please hand in your solutions before 12:15 noon on Monday, December 5.

1. (Brownian motion on \mathbb{R}/\mathbb{Z}). A Brownian motion (X_t) on the circle \mathbb{R}/\mathbb{Z} can be obtained by considering a Brownian motion (B_t) on \mathbb{R} modulo the integers, i.e.,

$$X_t = B_t - \lfloor B_t \rfloor \in [0, 1) \cong \mathbb{R}/\mathbb{Z}.$$

Prove the following statements:

a) Brownian motion on \mathbb{R}/\mathbb{Z} is a Markov process with transition density w.r.t. the uniform distribution given by

$$p_t(x,y) = \frac{1}{\sqrt{2\pi t}} \sum_{n \in \mathbb{Z}} e^{-\frac{|x-y-n|^2}{2t}}$$
 for any $t > 0$ and $x, y \in [0,1)$.

- b) For any initial condition, (X_t) solves the martingale problem for the operator $\mathcal{L}f = f''/2$ defined on $C^{\infty}(\mathbb{R}/\mathbb{Z})$. (Note that there is a one-to-one correspondence of smooth functions on \mathbb{R}/\mathbb{Z} and periodic smooth functions on \mathbb{R} with period 1).
- c) The uniform distribution μ is an invariant probability measure for (p_t) .
- d) The generator $-\mathcal{L}$ has smooth real-valued eigenfunctions e_n , $n \in \mathbb{Z}$, with corresponding eigenvalues $\lambda_n = 2\pi^2 n^2$. Moreover, $p_t e_n = \exp(-\lambda_n t) e_n$ for any $t \ge 0$.
- e) For any $f \in \mathcal{L}^2(\mu)$,

$$\left\| p_t f - \int f \, d\mu \right\|_{L^2(\mu)} \leq e^{-2\pi^2 t} \sqrt{\operatorname{Var}_{\mu}(f)}.$$

f) Conclude that for the process with initial distribution μ ,

$$E\left[\left(\frac{1}{t}\int_0^t f(X_s)\,ds\,-\int f\,d\mu\right)^2\right] \leq \frac{1}{\pi^2 t}\operatorname{Var}_\mu(f) \quad \text{for any } t\geq 0 \text{ and } f\in \mathcal{L}^2(\mu).$$

2. (Brownian motion with absorption at 0). Brownian motion with absorption at 0 is the Markov process with state space $S = [0, \infty)$ defined by $X_t = B_{t \wedge T_0}$, where (B_t, \mathbb{P}_x) is a Brownian motion on \mathbb{R} .

- a) Show that this process solves the martingale problem for the operator $\mathcal{L} = \frac{1}{2} \frac{d^2}{dx^2}$ with domain $\mathcal{A} = \{ f \in C_0^2([0,\infty)) : f''(0) = 0 \}.$
- b) On which Banach space(s) does this process induce a C^0 contraction semigroup?
- c) Identify the corresponding generator (L, Dom(L)).
- d) Show that $\int_0^\infty \mathcal{L}f \, dx = 0$ for any $f \in C_0^\infty(0,\infty)$.
- e) Determine all invariant probability measures.

3. (Approximation of semigroups by resolvents). Suppose that $(P_t)_{t\geq 0}$ is a strongly continuous contraction semigroup on a closed subspace $E \subseteq \mathcal{F}_b(S)$ with resolvent $(G_{\alpha})_{\alpha>0}$.

a) Prove that for any $g \in E$, t > 0, $n \in \mathbb{N}$ and $x \in S$,

$$\left(\left(\frac{n}{t}G_{\frac{n}{t}}\right)^{n}g\right)(x) = \mathbb{E}\left[\left(P_{\frac{E_{1}+\dots+E_{n}}{n}t}g\right)(x)\right]$$

where $(E_k)_{k\in\mathbb{N}}$ is a sequence of independent exponentially distributed random variables with parameter 1.

b) Hence conclude that

$$\left(\frac{n}{t}G_{\frac{n}{t}}\right)^n g \to P_t g$$
 uniformly as $n \to \infty$. (1)

- c) How could you derive (1) more directly if the state space is finite?
- d) Complete the proof of Step 4 in Theorem 4.21 in the lecture notes. Hint: You may assume without proof that the probability measures on \mathbb{R}_+ with density proportional to $r^{n-1}e^{-nr}$ converge weakly to the Dirac measure δ_1 as $n \to \infty$. (Why?)