Institut für Angewandte Mathematik Wintersemester 2022/23 Andreas Eberle, Stefan Oberdörster

"Markov Processes", Problem Sheet 4

Please hand in your solutions before 12:15 noon on Monday, November 7.

1. (Recurrence on discrete state spaces). Let (X_n, \mathbb{P}_x) be an irreducible timehomogeneous Markov chain with countable state space S.

a) Let $x, y \in S$. Show that if x is recurrent then

$$P_x[X_n = y \text{ infinitely often }] = 1,$$

and y is also recurrent.

Hint: Let $T^{(0)} := 0$ and let $0 < T^{(1)} < T^{(2)} < \ldots$ denote the sequence of return times to the state x. Show that under \mathbb{P}_x , the events $A_k := \{X_n = y \text{ for some } n \in (T^{(k-1)}, T^{(k)})\}, k \in \mathbb{N}$, are independent with equal probability p > 0. Hence conclude that \mathbb{P}_x -almost surely, infinitely many of these events occur.

- b) Prove that the following statements are all equivalent:
 - (i) There exists a finite recurrent set $A \subseteq S$.
 - (ii) There exists $x \in S$ such that the set $\{x\}$ is recurrent.
 - (iii) For any $x \in S$, the set $\{x\}$ is recurrent.
 - (iv) For any $x, y \in S$,

 $\mathbb{P}_x[X_n = y \text{ infinitely often }] = 1.$

c) Show using Lyapunov functions that the simple random walk on \mathbb{Z}^2 is recurrent. Hint: Consider for example the functions $V(x) = (\log(1+|x|^2))^{\alpha}$ for $\alpha > 0$.

2. (Positive recurrence, invariance and ergodicity on discrete state spaces). Let (X_n, \mathbb{P}_x) be a time-homogeneous Markov chain with countable state space S, and suppose that $x \in S$ is positive recurrent.

a) Show that the measure

$$\nu(B) = \mathbb{E}_x \left[\sum_{i=0}^{T_x^+ - 1} 1_B(X_i) \right], \qquad B \subseteq S,$$

is invariant, and $\mu(B) = \nu(B) / \mathbb{E}_x[T_x^+]$ is an invariant probability measure.

b) Let $T^{(0)} := 0$ and let $0 < T^{(1)} < T^{(2)} < \cdots$ denote the sequence of return times to the state x. Show that for every $B \subseteq S$, the random variables

$$V_k(B) := \sum_{i=T^{(k-1)}}^{T^{(k)}-1} 1_B(X_i), \qquad k \in \mathbb{N},$$

are i.i.d. under \mathbb{P}_x with $\mathbb{E}_x[V_k(B)] = \nu(B)$. Conclude that for all $k \in \mathbb{N}$,

$$\mathbb{E}_x\left[T^{(k)}\right] = k \cdot \mathbb{E}_x\left[T_x^+\right]$$

c) Prove that as $n \to \infty$,

$$\frac{1}{n}\sum_{i=0}^{n-1} 1_B(X_i) \longrightarrow \mu(B) \qquad \mathbb{P}_x\text{-almost surely for every } B \subseteq S.$$

3. (Weak convergence of probability measures). Let μ_n $(n \in \mathbb{N})$ and μ be probability measures on the Borel σ -algebra over a metric space S. Prove that the following statements are equivalent:

- (i) The sequence $(\mu_n)_{n \in \mathbb{N}}$ converges weakly to μ .
- (ii) For any bounded and Lipschitz continuous function $f: S \to \mathbb{R}$,

$$\int f d\mu_n$$
 converges to $\int f d\mu$.

(iii) For any closed set $A \subseteq S$,

 $\limsup \mu_n[A] \leq \mu[A].$

(vi) For any open set $O \subseteq S$,

$$\liminf \mu_n[O] \geq \mu[O].$$

(v) For any $B \in \mathcal{B}(S)$ such that $\mu[\partial B] = 0$,

$$\lim \mu_n[B] = \mu[B].$$