Institut für Angewandte Mathematik Wintersemester 2022/23 Andreas Eberle, Stefan Oberdörster

"Markov Processes", Problem Sheet 2

Please hand in your solutions before 12:15 noon on Monday, October 24.

1. (Markov properties). Let $I = \mathbb{R}_+$ or $I = \mathbb{Z}_+$, and suppose that $(X_t)_{t \in I}$ is a stochastic process with state space $(S_{\Delta}, \mathcal{B}_{\Delta})$ defined on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$. Show that the following statements are equivalent:

- (i) (X_t, \mathbb{P}) is a Markov process with initial distribution ν and transition function $(p_{s,t})$.
- (ii) For any $n \in \mathbb{Z}_+$ and $0 = t_0 \leq t_1 \leq \ldots \leq t_n$,

$$(X_{t_0}, X_{t_1}, \dots, X_{t_n}) \sim \nu \otimes p_{t_0, t_1} \otimes p_{t_1, t_2} \otimes \dots \otimes p_{t_{n-1}, t_n}$$
 w.r.t. \mathbb{P} .

- (iii) $(X_t)_{t\in I} \sim \mathbb{P}_{\nu}$.
- (iv) For any $s \in I$, $\mathbb{P}_{X_s}^{(s)}$ is a version of the conditional distribution of $(X_t)_{t \geq s}$ given \mathcal{F}_s^X , i.e., for any product measurable function $F: S_{\Delta}^I \to \mathbb{R}_+$,

$$\mathbb{E}[F((X_t)_{t\geq s})|\mathcal{F}_s^X] = \mathbb{E}_{X_s}^{(s)}[F] \quad \mathbb{P}\text{-a.s.}$$

Here \mathbb{P}_{ν} and $\mathbb{P}_{x}^{(s)}$ denote the canonical measures on S_{Δ}^{I} that correspond to the initial distributions ν, δ_{x} and the transition functions $(p_{r,t})_{0 \leq r \leq t}$, $(p_{s+r,s+t})_{0 \leq r \leq t}$, respectively.

2. (Reduction to the time-homogeneous case). Suppose that $((X_t)_{t \in \mathbb{Z}_+}, \mathbb{P})$ is a Markov chain with state space (S, \mathcal{B}) and one step transition kernels $\pi_t, t \in \mathbb{N}$.

- a) Determine the transition kernel and the generator of the time-space process (t, X_t) .
- b) Conclude that for any function $f \in \mathcal{F}_b(\mathbb{Z}_+ \times S)$, the process

$$M_t^{[f]} = f(t, X_t) - \sum_{k=0}^{t-1} \mathcal{L}_k(f(k+1, \cdot))(X_k) - \sum_{k=0}^{t-1} (f(k+1, X_k) - f(k, X_k))$$

is a martingale, where (\mathcal{L}_t) are the generators of (X_t) .

c) What would be a corresponding statement in continuous time (without proof)?

3. (Brownian motion reflected at 0). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion defined on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$.

a) Show that $X_t = |B_t|$ is a Markov process with transition density

$$p_t^{\text{refl}}(x,y) = \frac{1}{\sqrt{2\pi t}} \left(\exp\left(-\frac{(y-x)^2}{2t}\right) + \exp\left(-\frac{(y+x)^2}{2t}\right) \right).$$

b) Prove that (X_t, \mathbb{P}) solves the martingale problem for the operator $\mathcal{L}f = \frac{1}{2}f''$ with domain

 $\mathcal{A} = \{ f \in C_b^2([0,\infty)) : f'(0) = 0 \}.$

Hint: Note that functions in \mathcal{A} can be extended to symmetric functions in $C_b^2(\mathbb{R})$.

c) Construct another solution to the martingale problem for \mathcal{L} with domain $C_0^{\infty}(0,\infty)$. Does it also solve the martingale problem in b)?

4. (Strong Markov property and Harris recurrence). Let (X_n, \mathbb{P}_x) be a time homogeneous (\mathcal{F}_n) Markov chain on the state space (S, \mathcal{B}) with transition kernel $\pi(x, dy)$.

- a) Show that if T is a finite (\mathcal{F}_n) stopping time, then conditionally given \mathcal{F}_T , the process $\hat{X}_n := X_{T+n}$ is a Markov chain with transition kernel π starting in X_T .
- b) Conclude that a set $A \in \mathcal{B}$ is *Harris recurrent*, i.e.,

$$\mathbb{P}_x[X_n \in A \text{ for some } n \ge 1] = 1 \text{ for any } x \in A,$$

if and only if

$$\mathbb{P}_x[X_n \in A \text{ infinitely often}] = 1 \text{ for any } x \in A.$$