,,Markov Processes", Problem Sheet 2

Please hand in your solutions before 12:15 noon on Monday, October 24.

1. (Markov properties). Let $I=\mathbb{R}_{+}$or $I=\mathbb{Z}_{+}$, and suppose that $\left(X_{t}\right)_{t \in I}$ is a stochastic process with state space $\left(S_{\Delta}, \mathcal{B}_{\Delta}\right)$ defined on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$. Show that the following statements are equivalent:
(i) $\left(X_{t}, \mathbb{P}\right)$ is a Markov process with initial distribution ν and transition function $\left(p_{s, t}\right)$.
(ii) For any $n \in \mathbb{Z}_{+}$and $0=t_{0} \leq t_{1} \leq \ldots \leq t_{n}$,

$$
\left(X_{t_{0}}, X_{t_{1}}, \ldots, X_{t_{n}}\right) \sim \nu \otimes p_{t_{0}, t_{1}} \otimes p_{t_{1}, t_{2}} \otimes \cdots \otimes p_{t_{n-1}, t_{n}} \quad \text { w.r.t. } \mathbb{P} .
$$

(iii) $\left(X_{t}\right)_{t \in I} \sim \mathbb{P}_{\nu}$.
(iv) For any $s \in I, \mathbb{P}_{X_{s}}^{(s)}$ is a version of the conditional distribution of $\left(X_{t}\right)_{t \geq s}$ given \mathcal{F}_{s}^{X}, i.e., for any product measurable function $F: S_{\Delta}^{I} \rightarrow \mathbb{R}_{+}$,

$$
\mathbb{E}\left[F\left(\left(X_{t}\right)_{t \geq s}\right) \mid \mathcal{F}_{s}^{X}\right]=\mathbb{E}_{X_{s}}^{(s)}[F] \quad \mathbb{P} \text {-a.s. }
$$

Here \mathbb{P}_{ν} and $\mathbb{P}_{x}^{(s)}$ denote the canonical measures on S_{Δ}^{I} that correspond to the initial distributions ν, δ_{x} and the transition functions $\left(p_{r, t}\right)_{0 \leq r \leq t},\left(p_{s+r, s+t}\right)_{0 \leq r \leq t}$, respectively.
2. (Reduction to the time-homogeneous case). Suppose that $\left(\left(X_{t}\right)_{t \in \mathbb{Z}_{+}}, \mathbb{P}\right)$ is a Markov chain with state space (S, \mathcal{B}) and one step transition kernels $\pi_{t}, t \in \mathbb{N}$.
a) Determine the transition kernel and the generator of the time-space process $\left(t, X_{t}\right)$.
b) Conclude that for any function $f \in \mathcal{F}_{b}\left(\mathbb{Z}_{+} \times S\right)$, the process

$$
M_{t}^{[f]}=f\left(t, X_{t}\right)-\sum_{k=0}^{t-1} \mathcal{L}_{k}(f(k+1, \cdot))\left(X_{k}\right)-\sum_{k=0}^{t-1}\left(f\left(k+1, X_{k}\right)-f\left(k, X_{k}\right)\right)
$$

is a martingale, where $\left(\mathcal{L}_{t}\right)$ are the generators of $\left(X_{t}\right)$.
c) What would be a corresponding statement in continuous time (without proof)?
3. (Brownian motion reflected at 0). Let $\left(B_{t}\right)_{t \geq 0}$ be a one-dimensional Brownian motion defined on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$.
a) Show that $X_{t}=\left|B_{t}\right|$ is a Markov process with transition density

$$
p_{t}^{\text {refl }}(x, y)=\frac{1}{\sqrt{2 \pi t}}\left(\exp \left(-\frac{(y-x)^{2}}{2 t}\right)+\exp \left(-\frac{(y+x)^{2}}{2 t}\right)\right) .
$$

b) Prove that $\left(X_{t}, \mathbb{P}\right)$ solves the martingale problem for the operator $\mathcal{L} f=\frac{1}{2} f^{\prime \prime}$ with domain

$$
\mathcal{A}=\left\{f \in C_{b}^{2}([0, \infty)): f^{\prime}(0)=0\right\} .
$$

Hint: Note that functions in \mathcal{A} can be extended to symmetric functions in $C_{b}^{2}(\mathbb{R})$.
c) Construct another solution to the martingale problem for \mathcal{L} with domain $C_{0}^{\infty}(0, \infty)$. Does it also solve the martingale problem in b) ?
4. (Strong Markov property and Harris recurrence). Let $\left(X_{n}, \mathbb{P}_{x}\right)$ be a time homogeneous (\mathcal{F}_{n}) Markov chain on the state space (S, \mathcal{B}) with transition kernel $\pi(x, d y)$.
a) Show that if T is a finite $\left(\mathcal{F}_{n}\right)$ stopping time, then conditionally given \mathcal{F}_{T}, the process $\hat{X}_{n}:=X_{T+n}$ is a Markov chain with transition kernel π starting in X_{T}.
b) Conclude that a set $A \in \mathcal{B}$ is Harris recurrent, i.e.,

$$
\mathbb{P}_{x}\left[X_{n} \in A \text { for some } n \geq 1\right]=1 \quad \text { for any } x \in A
$$

if and only if

$$
\mathbb{P}_{x}\left[X_{n} \in A \text { infinitely often }\right]=1 \quad \text { for any } x \in A .
$$

