Institut für Angewandte Mathematik Wintersemester 2022/23 Andreas Eberle, Stefan Oberdörster

"Markov Processes", Problem Sheet 13

Please hand in your solutions before 12:15 noon on Monday, January 23.

1. (Ergodicity and decay of correlations). Suppose that $(X_t)_{t \in [0,\infty)}$ on (Ω, \mathcal{A}, P) is a canonical stationary stochastic process.

- a) Prove that the following properties are equivalent:
 - (i) P is ergodic.
 - (ii) $\operatorname{Var}\left(\frac{1}{t}\int_{0}^{t}F\circ\theta_{s}\,ds\right)\to 0 \text{ as } t\uparrow\infty \text{ for any } F\in\mathcal{L}^{2}(\Omega,\mathcal{A},P).$
 - (iii) $\frac{1}{t} \int_0^t \operatorname{Cov} \left(F \circ \theta_s, G \right) \, ds \to 0 \text{ as } t \uparrow \infty \text{ for any } F, G \in \mathcal{L}^2(\Omega, \mathcal{A}, P).$
 - (iv) $\frac{1}{t} \int_0^t \operatorname{Cov} \left(F \circ \theta_s, F \right) \, ds \to 0 \text{ as } t \uparrow \infty \text{ for any } F \in \mathcal{L}^2(\Omega, \mathcal{A}, P).$
- b) The process (X_t) is said to be **mixing** iff

$$\lim_{t \to \infty} \operatorname{Cov} (F \circ \theta_t, G) = 0 \quad \text{for any } F, G \in \mathcal{L}^2(\Omega, \mathcal{A}, P)$$

Prove that:

- (i) If $(X_t)_{t\geq 0}$ is mixing then it is ergodic.
- (ii) If the tail σ -algebra $\mathcal{T} = \bigcap_{t \ge 0} \sigma(X_s : s \ge t)$ is trivial in the sense that $P[A] \in \{0, 1\}$ for any $A \in \mathcal{T}$, then $(X_t)_{t \ge 0}$ is mixing (and hence ergodic).

2. (Ergodicity and irreducibility for Markov processes in continuous time). We consider a canonical Markov process $((X_t)_{t\geq 0}, (P_x)_{x\in S})$ with state space (S, \mathcal{B}) and transition semigroup $(p_t)_{t\geq 0}$.

- a) Show that for $\mu \in \mathcal{P}(S)$, the following three conditions are equivalent:
 - (i) $P_{\mu} \circ \theta_t^{-1} = P_{\mu}$ for any $t \ge 0$.
 - (ii) $((X_t)_{t>0}, P_{\mu})$ is a stationary process.
 - (iii) μ is invariant with respect to p_t for all $t \ge 0$.
- b) From now on we assume that the process is stationary. Show that for every shiftinvariant event A, there exists a set $B \in \mathcal{B}$ such that $p_t 1_B = 1_B \mu$ -almost surely for any $t \ge 0$, and

$$1_A = 1_{\bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} \{X_m \in B\}} = 1_{\{X_0 \in B\}} \quad P_\mu\text{-almost surely.}$$

- c) Show that the following four conditions are equivalent:
 - (i) P_{μ} is ergodic.
 - (ii) The kernel of the $L^2(\mu)$ generator $L^{(2)}$ contains only equivalence classes of constant functions.
 - (iii) Every function $h \in \mathcal{L}^2(\mu)$ such that $p_t h = h \mu$ -a.s. $\forall t \ge 0$ is almost surely constant.
 - (iv) Every set $B \in \mathcal{B}$ such that $p_t 1_B = 1_B \mu$ -a.s. for any $t \ge 0$ satisfies $\mu(B) \in \{0, 1\}$.