Institut für Angewandte Mathematik Wintersemester 2022/23 Andreas Eberle, Stefan Oberdörster

"Markov Processes", Problem Sheet 12

Please hand in your solutions before 12:15 noon on Monday, January 16.

1. (Ergodicity for stationary processes). Let $(X_n)_{n \in \mathbb{Z}_+}$ on $(\Omega, \mathcal{A}, \mathbb{P})$ be a canonical stationary process with state space S, and let $\mathcal{J} = \{A \in \mathcal{A} : A = \Theta^{-1}(A)\}.$

a) Show that \mathbb{P} is not ergodic if and only if there exists a decomposition $\Omega = A \cup A^c$ into disjoint sets $A, A^c \in \mathcal{A}$ such that $\mathbb{P}[A] > 0$, $\mathbb{P}[A^c] > 0$,

 $\Theta(A) \subseteq A$ and $\Theta(A^c) \subseteq A^c$.

- b) Prove that for $F: \Omega \to \mathbb{R}$ the following two properties are equivalent:
 - (i) F is \mathcal{J} -measurable.
 - (ii) $F = F \circ \Theta$.
- c) Conclude that \mathbb{P} is ergodic if and only if every shift-invariant function $F: \Omega \to \mathbb{R}$ is \mathbb{P} -almost surely constant.

2. (Ergodicity for stationary Markov chains). Let $((X_n)_{n \in \mathbb{Z}_+}, (\mathbb{P}_x)_{x \in S})$ be a canonical time-homogeneous Markov chain, and let μ be an invariant probability measure for the transition kernel π .

- a) Show that the following properties are all equivalent:
 - (i) \mathbb{P}_{μ} is ergodic.
 - (ii) $\frac{1}{n} \sum_{i=0}^{n-1} F \circ \Theta^i \to E_{\mu}[F] \quad \mathbb{P}_{\mu}$ -almost surely for any $F \in \mathcal{L}^1(\mathbb{P}_{\mu})$.
 - (iii) $\frac{1}{n} \sum_{i=0}^{n-1} f(X_i) \to \int f \, d\mu \quad \mathbb{P}_{\mu}$ -almost surely for any $f \in \mathcal{L}^1(\mu)$.
 - (iv) For any $B \in \mathcal{B}$,

$$\frac{1}{n} \sum_{i=0}^{n-1} \pi^i(x, B) \to \mu(B) \quad \text{for μ-almost every x.}$$

(v) For any $B \in \mathcal{B}$ such that $\mu(B) > 0$,

$$\mathbb{P}_x[T_B < \infty] > 0$$
 for μ -almost every x

(vi) Any set $B \in \mathcal{B}$ satisfying $\pi(x, B) = 1_B(x)$ for μ -a.e. x has measure $\mu(B) \in \{0, 1\}$.

- b) Prove that \mathbb{P}_{μ} is ergodic if the support of μ is connected, and the transition kernel π has the strong Feller property (i.e., πf is continuous for every $f \in \mathcal{F}_b(S)$).
- c) Now suppose that the state space is \mathbb{R}^d , and

$$\pi(x,B) = \int_B \pi(x,y) \lambda^d(dy), \qquad B \in \mathcal{B}(\mathbb{R}^d),$$

where the transition density $\pi(x, y)$ is a continuous and strictly positive function such that for every $r \in (0, \infty)$, $\int \sup_{|x| \le r} \pi(x, y) \lambda^d(dy) < \infty$. Show that \mathbb{P}_{μ} is ergodic.