Institut für Angewandte Mathematik Wintersemester 2022/23 Andreas Eberle, Stefan Oberdörster

"Markov Processes", Problem Sheet 11

Please hand in your solutions before 12:15 noon on Monday, January 9.

We wish you a merry Christmas and a happy new year!

1. (Exclusion process and independent particle process).

a) Show that for every probability measure ν on $\{0,1\}$, the product measure

$$\mu \;=\; \bigotimes_{x\in \mathbb{Z}^d} \nu$$

is invariant for the simple exclusion process on $\{0,1\}^{\mathbb{Z}^d}$. Remark: In the lecture, we have shown a more general result for the simple exclusion process on a finite graph. However, the proof does not carry over to infinite graphs.

c) Suppose that $(X_t^k)_{t\geq 0}$ $(k \in \mathbb{N})$ are independent continuous time simple random walks on \mathbb{Z}^d , and let

$$\eta_t(x) = \left| \{ k \in \mathbb{N} : X_t^k = x \} \right| \, .$$

Assuming that $\eta_t(x)$ is almost surely finite for all $x \in \mathbb{Z}^d$ and $t \ge 0$, show that $(\eta_t)_{t\ge 0}$ is a Markov process with state space $\{0, 1, 2, \ldots\}^{\mathbb{Z}^d}$, and identify the generator.

2. (Stochastic dominance I). For two probability measures μ and ν on a partially ordered space (S, \leq) , we say that μ is stochastically dominated by ν ($\mu \leq \nu$) iff

$$\int f \, \mathrm{d}\mu \leq \int f \, \mathrm{d}\nu \qquad \text{for every non-decreasing function } f \in \mathcal{F}_b(S)$$

Prove that for $S = \mathbb{R}$, the following statements are equivalent:

- (i) $\mu \leq \nu$.
- (ii) $F_{\mu}(c) = \mu((-\infty, c]) \ge F_{\nu}(c)$ for all $c \in \mathbb{R}$.
- (iii) There exist random variables X and Y defined on a joint probability space such that $X \sim \mu, Y \sim \nu$, and $X \leq Y$ almost surely.

3. (Stochastic dominance II). Let μ and ν be probability measures on the configuration space $S = \{0, 1\}^{\mathbb{Z}^d}$, endowed with the product topology.

- a) Prove that $\mu = \nu$ if and only if $\int f d\mu = \int f d\nu$ for every non-decreasing, bounded and continuous function $f: S \to \mathbb{R}$.
- b) Conclude that if $\mu \preceq \nu$ and $\nu \preceq \mu$, then $\mu = \nu$.