

"Markov Processes", Problem Sheet 10

Please hand in your solutions before 12:15 noon on Monday, December 19.

1. (Interacting particle systems on finite graphs).

a) Show that for the voter model on a finite graph, the processes

$$N_i(\eta_t) = \sum_{x \in V} 1_i(\eta_t(x))$$

are martingales. Conclude that for all i and all initial configurations ξ ,

$$\mathbb{P}_{\xi} \left[\eta_t \equiv i \text{ eventually} \right] = \frac{N_i(\xi)}{|V|}$$

b) Prove for the contact process on a finite graph that for all $\xi \in \{0, 1\}^V$,

$$\mathbb{P}_{\xi} \left[\eta_t \equiv 0 \text{ eventually} \right] = 1.$$

2. (Adjoint processes). Let $(p_t)_{t\geq 0}$, be the transition semigroup of a time-homogeneous Markov process with generator \mathcal{L} on a *finite* state space S. Let μ be a probability measure with full support on S.

- a) Write down explicitly the adjoint \mathcal{L}^* of \mathcal{L} as an operator in $L^2(S,\mu)$. Prove that \mathcal{L}^* is the generator of a Markov process if and only if μ is invariant w.r.t. $(p_t)_{t\geq 0}$.
- b) Show that in this case, the transition semigroup of the Markov process generated by \mathcal{L}^* is $(p_t^*)_{t\geq 0}$.
- c) Give a probabilistic interpretation of this process when μ is the initial distribution.

3. (Semigroups generated by self-adjoint operators on Hilbert spaces). Suppose that E is a Hilbert space with norm $||f|| = (f, f)^{1/2}$, and L is a densely defined linear operator on E.

- a) Define the adjoint operator $(L^*, Dom(L^*))$. What does it mean that L is self-adjoint?
- b) Show that if L is *self-adjoint* then it generates a C^0 contraction semigroup on E if and only if L is *negative definite*, i.e.

 $(f, Lf) \le 0$ for all $f \in \text{Dom}(L)$.

Remark. In this case, the C^0 semigroup generated by L is given by $P_t = e^{tL}$, where the exponential is defined by spectral theory, see e.g. Reed & Simon: Methods of modern mathematical physics, Vol. I and II.