Institut für Angewandte Mathematik
Wintersemester 2022/23
Andreas Eberle, Stefan Oberdörster

,,Markov Processes", Problem Sheet 1

Please hand in your solutions before 12 noon on Monday, October 17.

1. (Conditional Expectations).

a) Let X, Y on $(\Omega, \mathcal{A}, \mathbb{P})$ be independent random variables that are Bernoulli distributed with parameter p. We set $Z=1_{\{X+Y=0\}}$. Compute $\mathbb{E}[X \mid Z]$ and $\mathbb{E}[Y \mid Z]$. Are these random variables still independent?
b) Let X, Y, Z be random variables with values in a measurable space (S, \mathcal{B}) such that the couples (X, Z) and (Y, Z) have the same law. Show that, for any measurable $f: S \rightarrow \mathbb{R}_{+}$,

$$
\mathbb{E}[f(X) \mid Z]=\mathbb{E}[f(Y) \mid Z] \quad \text { almost surely. }
$$

c) Let T_{1}, \ldots, T_{n} be i.i.d. real integrable random variables. Set $T=T_{1}+\cdots+T_{n}$.
(i) Show that $\mathbb{E}\left[T_{1} \mid T\right]=T / n$.
(ii) Compute $\mathbb{E}\left[T \mid T_{1}\right]$.

2. (Markov properties).

a) Let $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$be a Markov process with transition function $\left(p_{s, t}\right)$ and state space S on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that for any $t_{0} \in \mathbb{R}_{+}$, the time-space process $\hat{X}_{t}=\left(t_{0}+t, X_{t_{0}+t}\right)$ is a time-homogeneous Markov process with state space $\mathbb{R}_{+} \times S$ and transition function

$$
\hat{p}_{t}((s, x), \cdot)=\delta_{s+t} \otimes p_{s, s+t}(x, \cdot)
$$

b) Let $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$be an arbitrary stochastic process on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that the historical process $\hat{X}_{t}=\left(X_{s}\right)_{s \in[0, t]}$ is an $\left(\mathcal{F}_{t}^{X}\right)$ Markov process.
c) Let $\left(B_{t}\right)$ be a standard Brownian motion on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and let

$$
X_{t}=\int_{0}^{t} B_{s} d s
$$

Show that $\left(X_{t}\right)$ is not a Markov process, but the two component process $\left(B_{t}, X_{t}\right)$ is a time-homogeneous Markov process.
*d) Determine the transition function of this Markov process.
3. (Reflected Random Walks and Metropolis algorithm). Let π be a probability kernel on a measurable space (S, \mathcal{B}). A probability measure μ satisfies the detailed balance condition w.r.t. π iff for any $A, B \in \mathcal{B}$,

$$
(\mu \otimes \pi)(A \times B)=(\mu \otimes \pi)(B \times A) .
$$

a) Prove that a probability measure μ which satisfies detailed balance w.r.t. π is also invariant w.r.t. π, i.e., $(\mu \pi)(B)=\int_{S} \mu(d x) \pi(x, B)=\mu(B)$ for any $B \in \mathcal{B}$.
b) Let $S \subset \mathbb{R}^{d}$ be a bounded measurable set. We define a Markov chain $\left(X_{n}\right)_{n \in \mathbb{Z}_{+}}$by

$$
X_{0}=x_{0} \in S, \quad X_{n+1}=X_{n}+W_{n+1} \cdot 1_{S}\left(X_{n}+W_{n+1}\right)
$$

where $W_{i}: \Omega \rightarrow \mathbb{R}^{d}$ are i.i.d. random variables. Suppose that the law of W_{1} is absolutely continuous with a strictly positive density satisfying $f(x)=f(-x)$. Prove that the uniform distribution on S is invariant w.r.t. the transition kernel of the Markov chain $\left(X_{n}\right)$.
c) Let $\mu(d x)=\mu(x) d x$ be a probability measure with strictly positive density on \mathbb{R}^{d}. Show that the process $\left(X_{n}\right)$, defined by the following algorithm, is a timehomogeneous Markov chain, identify its transition kernel π, and show that μ is invariant for π.

Random walk Metropolis algorithm

1.) Set $n:=0$ and choose some arbitrary point $X_{0} \in \mathbb{R}^{d}$.
2.) Set $Y_{n+1}:=X_{n}+W_{n+1}$, and draw independently $U_{n+1} \sim \operatorname{Unif}(0,1)$.
3.) If $U_{n+1}<\mu\left(Y_{n+1}\right) / \mu\left(X_{n}\right)$ then set $X_{n+1}:=Y_{n+1}$, else set $X_{n+1}:=X_{n}$.
4.) Set $n:=n+1$ and go to Step 2 .

