,,Markov Processes", Problem Sheet 0

The exercises on this sheet are optional and will be discussed in the tutorials during the first week. See also Williams: Probability with Martingales.

1. (Revision of conditional expectations 1). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mathcal{F} \subseteq \mathcal{A}$ a σ-algebra, and $X: \Omega \rightarrow \mathbb{R}_{+}$a non-negative random variable.
a) Define the conditional expectation $\mathbb{E}[X \mid \mathcal{F}]$.
b) Suppose that there exists a decomposition of Ω into disjoint sets $A_{1}, \ldots A_{n}$ such that $\mathcal{F}=\sigma\left(\left\{A_{1}, \ldots, A_{n}\right\}\right)$. Show that

$$
\mathbb{E}[X \mid \mathcal{F}]=\sum_{i: \mathbb{P}\left[A_{i}\right]>0} \mathbb{E}\left[X \mid A_{i}\right] 1_{A_{i}}
$$

is a version of the conditional expectation of X given \mathcal{F}.
2. (Revision of conditional expectations 2). Let $X, Y: \Omega \rightarrow \mathbb{R}_{+}$be non-negative random variables. Show that \mathbb{P}-almost surely, the following identities hold:
a) For $\lambda \in \mathbb{R}$, we have $\mathbb{E}[\lambda X+Y \mid \mathcal{F}]=\lambda \mathbb{E}[X \mid \mathcal{F}]+\mathbb{E}[Y \mid \mathcal{F}]$.
b) $\mathbb{E}[\mathbb{E}[X \mid \mathcal{F}]]=\mathbb{E}[X]$ and $|\mathbb{E}[X \mid \mathcal{F}]| \leq \mathbb{E}[|X| \mid \mathcal{F}]$.
c) If $\sigma(X)$ is independent of \mathcal{F}, then $\mathbb{E}[X \mid \mathcal{F}]=\mathbb{E}[X]$.
d) Let (S, \mathcal{S}) and (T, \mathcal{T}) be measurable spaces. If $Y: \Omega \rightarrow S$ is \mathcal{F}-measurable, $X: \Omega \rightarrow$ T is independent of \mathcal{F}, and $f: S \times T \rightarrow[0, \infty)$ is product-measurable, then

$$
\mathbb{E}[f(Y, X) \mid \mathcal{F}](\omega)=\mathbb{E}[f(Y(\omega), X)] \quad \text { for } \mathbb{P} \text {-almost every } \omega \in \Omega .
$$

3. (Revision of conditional expectations 3). Let X, Y, Z be random variables on a joint probability space $(\Omega, \mathcal{A}, \mathbb{P})$. We define

$$
\mathbb{E}[X \mid Y]:=\mathbb{E}[X \mid \sigma(Y)] .
$$

Show the following statements:
a) If $X, Y \in \mathcal{L}^{1}$ are independent and identically distributed, then \mathbb{P}-almost surely

$$
\mathbb{E}[X \mid X+Y]=\frac{1}{2}(X+Y)
$$

b) If Z is independent of the pair (X, Y), then \mathbb{P}-almost surely

$$
\mathbb{E}[X \mid Y, Z]=\mathbb{E}[X \mid Y] .
$$

Is this statement still true if we only assume that X and Z are independent?

