

"Markov Processes", Problem Sheet 13.

Exercises to be discussed in tutorials on Wednesday 1.2.

1. (Stochastic dominance I). Let μ and ν be probability measures on \mathbb{R} . Prove that the following statements are equivalent.

- (i) $\mu \preceq \nu$.
- (ii) $F_{\mu}(c) = \mu((-\infty, c]) \ge F_{\nu}(c) \quad \forall c \in \mathbb{R}.$
- (iii) There exists a coupling realized by random variables X and Y with distributions μ and ν , respectively, such that $X \leq Y$ almost surely.

2. (Stochastic dominance II). Let μ and ν be probability measures on the configuration space $S = \{0, 1\}^{\mathbb{Z}^d}$, endowed with the product topology.

a) Prove that $\mu = \nu$ if and only if

$$\int f d\mu = \int f d\nu \quad \text{for any increasing, bounded and continuous function } f: S \to \mathbb{R}.$$

b) Conclude that if $\mu \leq \nu$ and $\nu \leq \mu$ then $\mu = \nu$.

3. (Ising model on \mathbb{Z}^d). Give a detailed proof of Theorem 4.15 in the lecture notes, i.e., show that for the Ising model, the maximal invariant probability measure $\bar{\mu}_{\beta}$ for the heat bath dynamics on \mathbb{Z}^d coincides with the Gibbs measure μ_{β}^+ with "+ boundary conditions at infinity".

4. (Adjoint processes). Let $p_t, t \ge 0$, be the transition semigroup of a time-homogeneous Markov process with generator \mathcal{L} on a *finite* state space S. Let μ be a probability measure with full support on S.

- a) Write down explicitly the adjoint \mathcal{L}^* of \mathcal{L} as an operator in $L^2(S,\mu)$. Prove that \mathcal{L}^* is the generator of a Markov process if and only if μ is invariant w.r.t. $(p_t)_{t>0}$.
- b) Show that in this case, the Markov process generated by \mathcal{L}^* has the transition semigroup (p_t^*) .
- c) Give a probabilistic interpretation of this process when μ is the initial distribution.