

"Markov Processes", Problem Sheet 12.

Hand in solutions before Monday 23.1., 2 pm

1. (Infinitesimal characterization of invariant measures - A counterexample). Consider the minimal time-homogeneous Markov jump process (X_t, P_x) with state space \mathbb{Z} and generator $\mathcal{L} = \lambda (\pi - I)$, where

 $\lambda(x) = 1 + x^2$ and $\pi(x, \cdot) = \delta_{x+1}$ for any $x \in \mathbb{Z}$.

a) Show that the probability measure μ with weights $\mu(x) \propto 1/(1+x^2)$ is infinitesimally invariant, i.e.,

$$(\mu \mathcal{L})(y) = 0$$
 for any $y \in \mathbb{Z}$.

b) Show that nevertheless, μ is not an invariant measure for the transition semigroup (p_t) of the process.

2. (Decay of χ^2 divergence). Consider a time homogeneous Markov process on a finite state space S with generator \mathcal{L} and invariant probability measure μ satisfying $\mu(x) > 0$ for any $x \in S$. Let ν_t denote the law at time t of the process started with an arbitrary initial law ν_0 .

a) Compute the "carré du champ" operator

$$\Gamma(f,g) := \mathcal{L}(f \cdot g) - f \mathcal{L}g - g \mathcal{L}f$$

for functions $f, g: S \to \mathbb{R}$, and verify that $\Gamma(f, f) \ge 0$.

b) Show that the χ^2 divergence

$$\chi^2(\nu_t|\mu) := \sum_{x \in S} \left(\frac{\nu_t(x)}{\mu(x)} - 1\right)^2 \mu(x)$$

is a non-increasing function of t, and express the time-derivative in terms of the carré du champ.

c) Conclude that if there is a constant $\gamma > 0$ such that the *Poincaré inequality*

$$\operatorname{Var}_{\mu}(f) \leq \frac{1}{2\gamma} \int \Gamma(f, f) \, d\mu$$

holds for all functions $f: S \to \mathbb{R}$, then $\chi^2(\nu_t | \mu)$ is decaying exponentially with rate γ .