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1. (Infinitesimal characterization of invariant measures). Consider a time-
homogeneous continuous time Markov chain Xt = YNt where (Nt) is a Poisson process
with constant intensity λ > 0, and (Yn) is an independent Markov chain with transition
matrix π on a finite state space S.

a) Show that the transition function is given by

pt(x, y) = Px[Xt = y] = exp(tL) (x, y),

where L = λ(π − I) and exp(tL) is the matrix exponential. Hence conclude that
(pt)t≥0 satisfies the forward and backward equation

d

dt
pt = ptL = Lpt for t ≥ 0.

b) Prove that a probability measure µ on S is invariant for (pt) if and only if∑
x∈S

µ(x)L(x, y) = 0 for any y ∈ S.

c) Show that the transition matrices are self-adjoint in L2(µ), i.e.,∑
x∈S

f(x) (ptg)(x) µ(x) =
∑
x∈S

(ptf)(x) g(x) µ(x) for any t ≥ 0, f, g : S → R,

if and only if the generator L satisfies the detailed balance condition w.r.t. µ. What
does this mean for the process ?

2. (Simple exclusion process). Let Zdn = Zd/(nZ)d denote a discrete d-dimensional
torus. The simple exclusion process on S = {0, 1}Zd

n is the Markov process with generator

(Lf) (η) =
1

2d

∑
x∈Zd

n

∑
y:|y−x|=1

1{η(x)=1,η(y)=0} · (f(ηx,y)− f(η)) ,

where ηx,y is the configuration obtained from η by exchanging the values at x and y. Show
that any Bernoulli measure of type

µp =
⊗
x∈Zd

n

νp , νp(1) = p, νp(0) = 1− p,



p ∈ [0, 1], is invariant. Why does this not contradict the fact that any irreducible Markov
process on a finite state space has a unique stationary distribution ?

(You may assume the statements of Exercise 1).

3. (Immigration-death process). Particles in a population die independently with
rate µ > 0. In addition, immigrants arrive with rate λ > 0. Assume that the population
consists initially of one particle.

a) Explain why the population size Xt can be modeled by a birth-death process with
rates b(n) = λ and d(n) = nµ.

b) Show that the generating function G(s, t) = E(sXt) is given by

G(s, t) = {1 + (s− 1)e−µt} exp

{
λ

µ
(s− 1)(1− e−µt)

}
c) Deduce the limiting distribution of Xt as t→∞.

4. (*A non-explosion criterion for jump processes). Suppose that qt(x,B) =
λt(x)πt(x,B) where πt is a probability kernel on (S,B) and λt : S → [0,∞) is a measurable
function. We consider the minimal jump process ((Xt), Pt0,x0) with jump times Jn and
positions Yn defined by the following algorithm:

1) Set J0 := t0 and Y0 := x0.

2) For n := 1, 2, . . . do

(i) Sample En ∼ Exp(1) independently of Y0, . . . , Yn−1, E0, . . . , En−1.

(ii) Set Jn := inf
{
t ≥ 0 :

∫ t
Jn−1

λs(Yn−1)ds ≥ En

}
.

(iii) Sample Yn|(Y0, . . . , Yn−1, E0, . . . , En) ∼ πJn(Yn−1, ·).

a) Explain why the construction coincides with the one in the lecture.

b) Show that if λ̄ := sup
t≥0

sup
x∈S

λt(x) < ∞, then the explosion time ζ = sup Jn is almost

surely infinite.

c) In the time-homogeneous case, given σ(Yk : k ∈ Z+),

Jn =
n∑
k=1

Ek
λ(Yn−1)

is a sum of conditionally independent exponentially distributed random variables.
Conclude that the events

{ζ <∞} and

{
∞∑
k=0

1

λ(Yk)
<∞

}
coincide almost surely (apply Kolmogorov’s 3-series Theorem).


