

"Markov Processes", Problem Sheet 11.

Hand in solutions before Monday 16.1., 2 pm

1. (Infinitesimal characterization of invariant measures). Consider a timehomogeneous continuous time Markov chain $X_t = Y_{N_t}$ where (N_t) is a Poisson process with constant intensity $\lambda > 0$, and (Y_n) is an independent Markov chain with transition matrix π on a finite state space S.

a) Show that the transition function is given by

$$p_t(x,y) = P_x[X_t = y] = \exp(t\mathcal{L})(x,y),$$

where $\mathcal{L} = \lambda(\pi - I)$ and $\exp(t\mathcal{L})$ is the matrix exponential. Hence conclude that $(p_t)_{t\geq 0}$ satisfies the forward and backward equation

$$\frac{d}{dt}p_t = p_t \mathcal{L} = \mathcal{L}p_t \quad \text{for } t \ge 0.$$

b) Prove that a probability measure μ on S is invariant for (p_t) if and only if

$$\sum_{x \in S} \mu(x) \mathcal{L}(x, y) = 0 \quad \text{for any } y \in S.$$

c) Show that the transition matrices are self-adjoint in $L^2(\mu)$, i.e.,

$$\sum_{x \in S} f(x) (p_t g)(x) \mu(x) = \sum_{x \in S} (p_t f)(x) g(x) \mu(x) \quad \text{for any } t \ge 0, \ f, g: S \to \mathbb{R},$$

if and only if the generator \mathcal{L} satisfies the detailed balance condition w.r.t. μ . What does this mean for the process ?

2. (Simple exclusion process). Let $\mathbb{Z}_n^d = \mathbb{Z}^d/(n\mathbb{Z})^d$ denote a discrete *d*-dimensional torus. The simple exclusion process on $S = \{0, 1\}^{\mathbb{Z}_n^d}$ is the Markov process with generator

$$(\mathcal{L}f)(\eta) = \frac{1}{2d} \sum_{x \in \mathbb{Z}_n^d} \sum_{y: |y-x|=1} 1_{\{\eta(x)=1, \eta(y)=0\}} \cdot (f(\eta^{x,y}) - f(\eta)),$$

where $\eta^{x,y}$ is the configuration obtained from η by exchanging the values at x and y. Show that any Bernoulli measure of type

$$\mu_p = \bigotimes_{x \in \mathbb{Z}_n^d} \nu_p, \qquad \nu_p(1) = p, \ \nu_p(0) = 1 - p,$$

 $p \in [0, 1]$, is invariant. Why does this not contradict the fact that any irreducible Markov process on a finite state space has a unique stationary distribution ? (You may assume the statements of Exercise 1).

3. (Immigration-death process). Particles in a population die independently with rate $\mu > 0$. In addition, immigrants arrive with rate $\lambda > 0$. Assume that the population consists initially of one particle.

- a) Explain why the population size X_t can be modeled by a birth-death process with rates $b(n) = \lambda$ and $d(n) = n\mu$.
- b) Show that the generating function $G(s,t) = \mathbb{E}(s^{X_t})$ is given by

$$G(s,t) = \left\{1 + (s-1)e^{-\mu t}\right\} \exp\left\{\frac{\lambda}{\mu}(s-1)(1-e^{-\mu t})\right\}$$

c) Deduce the limiting distribution of X_t as $t \to \infty$.

4. (*A non-explosion criterion for jump processes). Suppose that $q_t(x, B) = \lambda_t(x)\pi_t(x, B)$ where π_t is a probability kernel on (S, \mathcal{B}) and $\lambda_t : S \to [0, \infty)$ is a measurable function. We consider the minimal jump process $((X_t), P_{t_0, x_0})$ with jump times J_n and positions Y_n defined by the following algorithm:

- 1) Set $J_0 := t_0$ and $Y_0 := x_0$.
- 2) For n := 1, 2, ... do
 - (i) Sample $E_n \sim \text{Exp}(1)$ independently of $Y_0, \ldots, Y_{n-1}, E_0, \ldots, E_{n-1}$.
 - (ii) Set $J_n := \inf \left\{ t \ge 0 : \int_{J_{n-1}}^t \lambda_s(Y_{n-1}) ds \ge E_n \right\}.$
 - (iii) Sample $Y_n|(Y_0, \dots, Y_{n-1}, E_0, \dots, E_n) \sim \pi_{J_n}(Y_{n-1}, \cdot).$
- a) Explain why the construction coincides with the one in the lecture.
- b) Show that if $\bar{\lambda} := \sup_{t \ge 0} \sup_{x \in S} \lambda_t(x) < \infty$, then the explosion time $\zeta = \sup J_n$ is almost surely infinite.
- c) In the time-homogeneous case, given $\sigma(Y_k : k \in \mathbb{Z}_+)$,

$$J_n = \sum_{k=1}^n \frac{E_k}{\lambda(Y_{n-1})}$$

is a sum of conditionally independent exponentially distributed random variables. Conclude that the events

$$\{\zeta < \infty\}$$
 and $\left\{\sum_{k=0}^{\infty} \frac{1}{\lambda(Y_k)} < \infty\right\}$

coincide almost surely (apply Kolmogorov's 3-series Theorem).