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1. (Infinitesimal characterization of invariant measures). Consider a time-
homogeneous continuous time Markov chain X; = Yy, where (V) is a Poisson process
with constant intensity A > 0, and (Y;,) is an independent Markov chain with transition
matrix 7 on a finite state space S.

a) Show that the transition function is given by

pt(*ruy) = Px[Xt:y] = eXp(tﬁ) (*Tuy)a

where £ = A(m — I) and exp(tL) is the matrix exponential. Hence conclude that
(pt)i>0 satisfies the forward and backward equation

d
%pt pL = Lp; for t > 0.

b) Prove that a probability measure p on S is invariant for (p;) if and only if

Zu(m) L(z,y) = 0 for any y € S.

€S

c¢) Show that the transition matrices are self-adjoint in L?(p), i.e.,
D F@) (pg) (@) plx) = (pef) (@) g(w) p(x)  forany t >0, f,g: S =R,
€S z€ S

if and only if the generator L satisfies the detailed balance condition w.r.t. . What
does this mean for the process ?

2. (Simple exclusion process). Let Z¢ = Z%/(nZ)? denote a discrete d-dimensional
torus. The simple exclusion process on S = {0, 1}271 is the Markov process with generator

(Lf)(n) = —Z > Lw=tmm=oy - (F0™) = f(0)),
x€Z4 y:ly—zx|=1

where n™¥ is the configuration obtained from 7 by exchanging the values at x and y. Show
that any Bernoulli measure of type

= ® Vp s vp(1) =p, 1,(0) =1—p,

Y/



p € [0, 1], is invariant. Why does this not contradict the fact that any irreducible Markov
process on a finite state space has a unique stationary distribution ?

(You may assume the statements of Exercise 1).

3. (Immigration-death process). Particles in a population die independently with
rate g > 0. In addition, immigrants arrive with rate A > 0. Assume that the population
consists initially of one particle.

a) Explain why the population size X; can be modeled by a birth-death process with
rates b(n) = X and d(n) = npu.

b) Show that the generating function G(s,t) = E(s**) is given by
A
G(s,t) = {1+ (s— 1)e“t}exp{p(s -1 - e“t)}

¢) Deduce the limiting distribution of X; as ¢t — oo.

4. (*A non-explosion criterion for jump processes). Suppose that ¢z, B) =
Ae(x)m(x, B) where m; is a probability kernel on (S, B) and \; : S — [0, 00) is a measurable
function. We consider the minimal jump process ((X:), Py, 2,) with jump times J, and
positions Y,, defined by the following algorithm:

1) Set Jy :=tp and Yy := xp.
2) Forn:=1,2,... do
(i) Sample E,, ~ Exp(1) independently of Yy,..., Y, 1, Eo,..., Ep_1.
(ii) Set J, :=inf {t >0: f;nil As(Yio1)ds > En}
(iii) Sample Y, |(Yo,..., Y1, Eoy.. ., Eyn) ~ 7y, (Y1, ).

a) Explain why the construction coincides with the one in the lecture.
b) Show that if A := supsup \;(x) < oo, then the explosion time ¢ = sup.J, is almost
t>0 zeS
surely infinite.

c¢) In the time-homogeneous case, given o(Y} : k € Z,.),

n Ek
Jp =
; A(Yoo1)

is a sum of conditionally independent exponentially distributed random variables.
Conclude that the events

{¢ < o0} and {Z /\&/k) < oo}

coincide almost surely (apply Kolmogorov’s 3-series Theorem).




