Institute for Applied Mathematics Winter term 2016/17 Andreas Eberle, Raphael Zimmer

"Markov Processes", Problem Sheet 10.

Hand in solutions before Monday 9.1., 2 pm

We wish you a merry Christmas and a happy new year!

1. (Gibbs sampler for the Ising model). Consider a finite graph (V, E) with *n* vertices of maximal degree Δ . The Ising model with inverse temperature $\beta \geq 0$ is the probability measure μ_{β} on $\{-1, 1\}^V$ with mass function

$$\mu_{\beta}(\eta) = \frac{1}{Z(\beta)} \exp\left(\beta \sum_{\{x,y\} \in E} \eta(x)\eta(y)\right),$$

where $Z(\beta)$ is a normalization constant.

- a) Show that given $\eta(y)$ for $y \neq x$, $\eta(x) = \pm 1$ with probability $(1 \pm \tanh(\beta m(x,\eta))/2)$, where $m(x,\eta) := \sum_{y \sim x} \eta(y)$ is the local magnetization in the neighbourhood of x. Hence determine the transition kernel π for the Gibbs sampler with equilibrium μ_{β} .
- b) Prove that for any $t \in \mathbb{N}$,

$$\mathcal{W}^{1}(\nu \pi^{t}, \mu_{\beta}) \leq \alpha(n, \beta, \Delta)^{t} \mathcal{W}^{1}(\nu, \mu_{\beta}) \leq \exp\left(-\frac{t}{n} \left(1 - \Delta \tanh(\beta)\right)\right) \mathcal{W}^{1}(\nu, \mu_{\beta}),$$

where $\alpha(n, \beta, \Delta) = 1 - (1 - \Delta \tanh(\beta))/n$, and \mathcal{W}^1 is the transportation metric based on the Hamming distance on $\{-1, 1\}^V$. Conclude that for $\Delta \tanh\beta < 1$, the Gibbs sampler is geometrically ergodic with a rate of order $\Omega(1/n)$. *Hint: You may use the inequality*

$$|\tanh(y+\beta) - \tanh(y-\beta)| \leq 2 \tanh(\beta)$$
 for any $\beta \geq 0$ and $y \in \mathbb{R}$.

c) The mean-field Ising model with parameter $\alpha \ge 0$ is the Ising model on the complete graph over $V = \{1, \ldots, n\}$ with inverse temperature $\beta = \alpha/n$. Show that for $\alpha < 1$, the ϵ -mixing time for the Gibbs sampler on the mean field Ising model is of order $O(n \log n)$ for any $\epsilon \in (0, 1)$. 2. (Successful couplings and TV-convergence to equilibrium). Consider a timehomogeneous Markov process with transition function (p_t) and invariant probability measure μ . A coupling (X_t, Y_t) of versions of the process with initial distributions ν and μ , respectively, is called *successful* if the coupling time

$$T = \inf \{t \ge 0 : X_s = Y_s \text{ for any } s \ge t\}$$

is almost surely finite. Show that a successful coupling exists if and only if $||\nu p_t - \mu||_{TV} \to 0$ as $t \to \infty$.

3. (Bounds for ergodic averages in the non-stationary case). Let (X_n, P_x) be a Markov chain with transition kernel π and invariant probability measure μ , and let

$$A_{b,n}f = \frac{1}{n} \sum_{i=b}^{b+n-1} f(X_i).$$

Assume that there are a distance d on the state space S, and constants $\alpha \in (0,1)$ and $\bar{\sigma} \in \mathbb{R}_+$ such that

(A1) $\mathcal{W}_d^1(\nu\pi, \widetilde{\nu}\pi) \leq \alpha \, \mathcal{W}_d^1(\nu, \widetilde{\nu}) \ \forall \nu, \widetilde{\nu} \in \mathcal{P}(S), \text{ and}$

(A2) $\operatorname{Var}_{\pi(x,\cdot)}(f) \leq \bar{\sigma}^2 \|f\|_{Lip(d)}^2 \quad \forall x \in S, f: S \to \mathbb{R}$ Lipschitz.

Prove that under these assumptions the following bounds hold for any $b, n, k \ge 0, x \in S$, and for any Lipschitz continuous function $f: S \to \mathbb{R}$:

a) $\operatorname{Var}_{x}[f(X_{n})] \leq \sum_{k=0}^{n-1} \alpha^{2k} \bar{\sigma}^{2} \|f\|_{Lip(d)}^{2}$.

b)
$$|\operatorname{Cov}_x[f(X_n), f(X_{n+k})]| = |\operatorname{Cov}_x[f(X_n), (\pi^k f)(X_n)]| \le \frac{\alpha^k}{1-\alpha^2}\bar{\sigma}^2||f||^2_{Lip(d)}.$$

c)
$$\operatorname{Var}_{x}[A_{b,n}f] \leq \frac{1}{n} \frac{\bar{\sigma}^{2}}{(1-\alpha)^{2}} \|f\|_{Lip(d)}^{2}$$
.

d)
$$|E_x[A_{b,n}f] - \mu(f)| \leq \frac{1}{n} \frac{\alpha^b}{1-\alpha} \int d(x,y) \, \mu(dy) \, ||f||_{Lip(d)}.$$

e)
$$E_x \left[|A_{b,n}f - \mu(f)|^2 \right] \leq \frac{1}{n} \frac{1}{(1-\alpha)^2} \left(\bar{\sigma}^2 + \frac{1}{n} \alpha^{2b} (\int d(x,y) \, \mu(dy))^2 \right) \|f\|_{Lip(d)}^2$$

4. (Equivalent descriptions for weighted total variation norms). Let $V : S \to (0, \infty)$ be a measurable function, and let $d_V(x, y) := (V(x) + V(y)) \mathbb{1}_{x \neq y}$. Show that the following identities hold for probability measures μ, ν on (S, \mathcal{B}) :

$$\begin{aligned} \|\mu - \nu\|_{V} &= \left\| \frac{d\mu}{d\lambda} - \frac{d\nu}{d\lambda} \right\|_{L^{1}(V \cdot \lambda)} \\ &= \sup \left\{ |\mu(f) - \nu(f)| : f \in \mathcal{F}(S) \text{ s.t. } |f| \leq V \right\} \\ &= \sup \left\{ |\mu(f) - \nu(f)| : f \in \mathcal{F}(S) \text{ s.t. } |f(x) - f(y)| \leq d_{V}(x, y) \ \forall x, y \right\} \\ &= \inf \left\{ E[d_{V}(X, Y)] : X \sim \mu, Y \sim \nu \right\} \end{aligned}$$