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Asymptotic stationarity for Markov processes
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1. (Equivalent characterizations of ergodicity for Markov processes). We consi-
der a canonical right-continuous Markov process ((Xt)t≥0, (Px)x∈S) with Polish state space
(S,B) and transition semigroup (pt)t≥0. Let µ be a probability measure on (S,B).

a) Show that Pµ is stationary if and only if µ is an invariant measure for (pt).

b) From now on we assume that µ is an invariant probability measure for (pt). Prove
that the following nine conditions are all equivalent:

(i) Pµ is ergodic.

(ii) 1
t

∫ t
0
f(Xs)ds→

∫
fdµ Pµ-a.s. and in L2(Pµ), for any f ∈ L2(µ).

(iii) VarPµ

[
1
t

∫ t
0
f(Xs) ds

]
→ 0 as t ↑ ∞ for any f ∈ L2(µ).

(iv) 1
t

∫ t
0

CovPµ [f(X0), g(Xs)] ds→ 0 as t ↑ ∞ for any f ∈ L2(µ).

(v) 1
t

∫ t
0
Pµ[X0 ∈ B,Xs ∈ C]ds→ µ(B)µ(C) for any B,C ∈ B.

(vi) 1
t

∫ t
0
ps(x,B)ds→ µ(B) µ−a.e. for any B ∈ B.

(vii) Px[TB <∞] > 0 µ-a.e. for any B ∈ B such that µ(B) > 0.

(viii) Every set B ∈ B such that pt1B = 1B µ-a.e. for any t ≥ 0 satisfies µ(B) ∈ {0, 1}.
(ix) Every function h ∈ L2(µ) such that pth = h µ-a.e. ∀t ≥ 0 is almost surely

constant.

c) A function h : S → R is called harmonic w.r.t. (pt) iff pth = h for any t ≥ 0. Show
that the following statements are all equivalent:

(i) For any x ∈ S and B ∈ B with µ(B) > 0,

Px [∀ s > 0 ∃ t ≥ s : Xt ∈ B] = 1.

(ii) The constants are the only bounded harmonic functions for (pt).

(iii) For any bounded measurable function F : Ω→ R and any x ∈ S,

1

t

∫ t

0

F ◦Θs ds → Eµ[F ] Px-almost surely.



2. (Brownian motion on R/Z). A Brownian motion (Xt) on the circle R/Z can be
obtained by considering a Brownian motion (Bt) on R modulo the integers, i.e.,

Xt = Bt − bBtc ∈ [0, 1) ∼= R/Z.
Prove the following statements:

a) Brownian motion on R/Z is a Markov process with transition density w.r.t. the
uniform distribution given by

pt(x, y) =
1√
2πt

∑
n∈Z

e−
|x−y−n|2

2t for any t > 0 and x, y ∈ [0, 1).

b) For any initial condition, (Xt) solves the martingale problem for the operator Lf =
f ′′/2 defined on C∞(R/Z). (Note that there is a one-to-one correspondence of smooth
functions on R/Z and periodic smooth functions on R with period 1).

c) The uniform distribution µ is an invariant probability measure for (pt), and the
process with initial distribution µ is stationary and ergodic.

d) The generator L has smooth real-valued eigenfunctions en, n ∈ Z, with corresponding
eigenvalues λn = 2π2n2. Moreover, pten = exp(−λnt)en for any t ≥ 0.

e) For any f ∈ L2(µ), ∥∥∥∥ptf − ∫ f dµ

∥∥∥∥
L2(µ)

≤ e−2π
2t Varµ(f).

f) Conclude that for the process with initial distribution µ,

E

[(
1

t

∫ t

0

f(Xs) ds −
∫
f dµ

)2
]
≤ 1

π2t
Varµ(f) for any t ≥ 0 and f ∈ L2(µ).

3. (Metropolis-Hastings method). Let µ(dx) = µ(x) dx be a probability measure on
Rd with strictly positive density, and let q(x, dy) = q(x, y) dy be a probability kernel on Rd

with strictly positive density. The Metropolis-Hastings acceptance probability is given by

α(x, y) = min

(
1,
µ(y)q(y, x)

µ(x)q(x, y)

)
, x, y ∈ Rd.

Metropolis-Hastings algorithm
1.) Set n := 0 and choose some arbitrary point X0 ∈ Rd.
2.) Sample Yn+1 ∼ q(Xn, ·) and Un+1 ∼ Unif(0, 1) independently.
3.) If Un+1 < α(Xn, Yn+1) then set Xn+1 := Yn+1, else set Xn+1 := Xn.
4.) Set n := n+ 1 and go to Step 2.

Show that for any bounded measurable function f : Rd → R,

1

n

n−1∑
i=0

f(Xi) →
∫
f dµ almost surely.


