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Asymptotic stationarity for Markov processes

Hand in solutions before Monday 5.12., 2 pm

1. (Equivalent characterizations of ergodicity for Markov processes). We consi-
der a canonical right-continuous Markov process ((Xt)t>o0, (Pr)zes) with Polish state space
(S, B) and transition semigroup (p:):>o. Let pu be a probability measure on (S, B).

a) Show that P, is stationary if and only if p is an invariant measure for (p;).

b) From now on we assume that g is an invariant probability measure for (p;). Prove
that the following nine conditions are all equivalent:

(i) P, is ergodic.
(i) L[ f(X,)ds — [ fdu P,-as. and in L3(B,), for any f € L£2(u).
(iii) Varp [ fo ds} — 0 ast oo forany f € L*(u).
(iv) L [T Covp, [f(Xo),g(X,)] ds — 0 ast 1 oo for any f € L2(u).
(v) [T P.[Xo € B, X, € Clds — u(B)u(C) for any B,C € B.
i) %f ps(z, B)ds — u(B) p—a.e. for any B € B.
i) P.[Ts < oo] > 0 p-a.e. for any B € B such that u(B) > 0.
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very set B € B such that p;,1p = 1 p-a.e. for any ¢t > 0 satisfies u(B) € {0, 1}.

Every function h € L£2(u) such that psh = h p-a.e. ¥Vt > 0 is almost surely
constant.

c) A function h : S — R is called harmonic w.r.t. (p) iff p;h = h for any ¢ > 0. Show
that the following statements are all equivalent:

(i) For any x € S and B € B with u(B) > 0,
P Vs>03t>s: X,€B] = 1.

(ii) The constants are the only bounded harmonic functions for (p;).

(iii) For any bounded measurable function F : ) — R and any z € 5,

1 t
;/ Fo®©,ds — E,F] P,-almost surely.
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2. (Brownian motion on R/Z). A Brownian motion (X;) on the circle R/Z can be
obtained by considering a Brownian motion (B;) on R modulo the integers, i.e.,

Xy = B,—|B] € [0,1) = R/Z.
Prove the following statements:

a) Brownian motion on R/Z is a Markov process with transition density w.r.t. the
uniform distribution given by
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p(z,y) = Ze_‘ 5 for any ¢t > 0 and z,y € [0,1).
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b) For any initial condition, (X;) solves the martingale problem for the operator Lf =
f"/2 defined on C>*(R/Z). (Note that there is a one-to-one correspondence of smooth
functions on R/Z and periodic smooth functions on R with period 1).
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¢) The uniform distribution g is an invariant probability measure for (p;), and the
process with initial distribution p is stationary and ergodic.

d) The generator £ has smooth real-valued eigenfunctions e,, n € Z, with corresponding
eigenvalues \,, = 2m2n%. Moreover, pse,, = exp(—t)e, for any ¢ > 0.

e) For any f € £L?(u),

< e~ 2t Var,(f).
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f) Conclude that for the process with initial distribution g,
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(%/0 f(Xs)ds —/fdu> ] < %Varu(f) for any t > 0 and f € L£*(u).

3. (Metropolis-Hastings method). Let u(dx) = p(z) dx be a probability measure on
R? with strictly positive density, and let ¢(z, dy) = q(x,y) dy be a probability kernel on R?
with strictly positive density. The Metropolis-Hastings acceptance probability is given by
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oley) = (1’ u(w)Q(%y)) ’ v e R

Metropolis-Hastings algorithm

1.) Set n := 0 and choose some arbitrary point X, € R

2.) Sample Y11 ~ q(X,, ) and U,+1 ~ Unif(0, 1) independently.

3) If Upy1 < a(X,, Yi1) then set X, 1q := Y44, else set X1 := X,,.
4.) Set n:=n+ 1 and go to Step 2.

Show that for any bounded measurable function f : R? — R,

n—1
1
—E f(Xi) — /fdu almost surely.
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