

"Markov Processes", Problem Sheet 7.

Asymptotic stationarity for Markov processes

Hand in solutions before Monday 5.12., 2 pm

1. (Equivalent characterizations of ergodicity for Markov processes). We consider a canonical right-continuous Markov process $((X_t)_{t\geq 0}, (P_x)_{x\in S})$ with Polish state space (S, \mathcal{B}) and transition semigroup $(p_t)_{t\geq 0}$. Let μ be a probability measure on (S, \mathcal{B}) .

- a) Show that P_{μ} is stationary if and only if μ is an invariant measure for (p_t) .
- b) From now on we assume that μ is an invariant probability measure for (p_t) . Prove that the following nine conditions are all equivalent:
 - (i) P_{μ} is ergodic.
 - (ii) $\frac{1}{t} \int_0^t f(X_s) ds \to \int f d\mu \ P_\mu$ -a.s. and in $L^2(P_\mu)$, for any $f \in \mathcal{L}^2(\mu)$.
 - (iii) $\operatorname{Var}_{P_{\mu}}\left[\frac{1}{t}\int_{0}^{t}f(X_{s})\,ds\right]\to 0 \text{ as } t\uparrow\infty \text{ for any } f\in\mathcal{L}^{2}(\mu).$
 - (iv) $\frac{1}{t} \int_0^t \operatorname{Cov}_{P_\mu} \left[f(X_0), g(X_s) \right] ds \to 0$ as $t \uparrow \infty$ for any $f \in \mathcal{L}^2(\mu)$.
 - (v) $\frac{1}{t} \int_0^t P_\mu[X_0 \in B, X_s \in C] ds \to \mu(B)\mu(C)$ for any $B, C \in \mathcal{B}$.
 - (vi) $\frac{1}{t} \int_0^t p_s(x, B) ds \to \mu(B) \ \mu$ -a.e. for any $B \in \mathcal{B}$.
 - (vii) $P_x[T_B < \infty] > 0$ μ -a.e. for any $B \in \mathcal{B}$ such that $\mu(B) > 0$.
 - (viii) Every set $B \in \mathcal{B}$ such that $p_t \mathbf{1}_B = \mathbf{1}_B \mu$ -a.e. for any $t \ge 0$ satisfies $\mu(B) \in \{0, 1\}$.
 - (ix) Every function $h \in \mathcal{L}^2(\mu)$ such that $p_t h = h \mu$ -a.e. $\forall t \ge 0$ is almost surely constant.
- c) A function $h: S \to \mathbb{R}$ is called *harmonic* w.r.t. (p_t) iff $p_t h = h$ for any $t \ge 0$. Show that the following statements are all equivalent:
 - (i) For any $x \in S$ and $B \in \mathcal{B}$ with $\mu(B) > 0$,

$$P_x \left[\forall s > 0 \ \exists t \ge s : \ X_t \in B \right] = 1.$$

- (ii) The constants are the only bounded harmonic functions for (p_t) .
- (iii) For any bounded measurable function $F: \Omega \to \mathbb{R}$ and any $x \in S$,

$$\frac{1}{t} \int_0^t F \circ \Theta_s \, ds \ \to \ E_\mu[F] \quad P_x\text{-almost surely.}$$

2. (Brownian motion on \mathbb{R}/\mathbb{Z}). A Brownian motion (X_t) on the circle \mathbb{R}/\mathbb{Z} can be obtained by considering a Brownian motion (B_t) on \mathbb{R} modulo the integers, i.e.,

$$X_t = B_t - \lfloor B_t \rfloor \in [0, 1) \cong \mathbb{R}/\mathbb{Z}.$$

Prove the following statements:

a) Brownian motion on \mathbb{R}/\mathbb{Z} is a Markov process with transition density w.r.t. the uniform distribution given by

$$p_t(x,y) = \frac{1}{\sqrt{2\pi t}} \sum_{n \in \mathbb{Z}} e^{-\frac{|x-y-n|^2}{2t}}$$
 for any $t > 0$ and $x, y \in [0,1)$.

- b) For any initial condition, (X_t) solves the martingale problem for the operator $\mathcal{L}f = f''/2$ defined on $C^{\infty}(\mathbb{R}/\mathbb{Z})$. (Note that there is a one-to-one correspondence of smooth functions on \mathbb{R}/\mathbb{Z} and periodic smooth functions on \mathbb{R} with period 1).
- c) The uniform distribution μ is an invariant probability measure for (p_t) , and the process with initial distribution μ is stationary and ergodic.
- d) The generator \mathcal{L} has smooth real-valued eigenfunctions $e_n, n \in \mathbb{Z}$, with corresponding eigenvalues $\lambda_n = 2\pi^2 n^2$. Moreover, $p_t e_n = \exp(-\lambda_n t)e_n$ for any $t \ge 0$.
- e) For any $f \in \mathcal{L}^2(\mu)$,

$$\left\| p_t f - \int f \, d\mu \right\|_{L^2(\mu)} \leq e^{-2\pi^2 t} \operatorname{Var}_{\mu}(f).$$

f) Conclude that for the process with initial distribution μ ,

$$E\left[\left(\frac{1}{t}\int_0^t f(X_s)\,ds\,-\int f\,d\mu\right)^2\right] \leq \frac{1}{\pi^2 t}\,\operatorname{Var}_\mu(f) \quad \text{for any } t\geq 0 \text{ and } f\in\mathcal{L}^2(\mu).$$

3. (Metropolis-Hastings method). Let $\mu(dx) = \mu(x) dx$ be a probability measure on \mathbb{R}^d with strictly positive density, and let q(x, dy) = q(x, y) dy be a probability kernel on \mathbb{R}^d with strictly positive density. The Metropolis-Hastings acceptance probability is given by

$$\alpha(x,y) = \min\left(1, \frac{\mu(y)q(y,x)}{\mu(x)q(x,y)}\right), \qquad x, y \in \mathbb{R}^d$$

Metropolis-Hastings algorithm

1.) Set n := 0 and choose some arbitrary point $X_0 \in \mathbb{R}^d$.

- 2.) Sample $Y_{n+1} \sim q(X_n, \cdot)$ and $U_{n+1} \sim \text{Unif}(0, 1)$ independently.
- 3.) If $U_{n+1} < \alpha(X_n, Y_{n+1})$ then set $X_{n+1} := Y_{n+1}$, else set $X_{n+1} := X_n$.
- 4.) Set n := n + 1 and go to Step 2.

Show that for any bounded measurable function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\frac{1}{n}\sum_{i=0}^{n-1}f(X_i) \to \int f \,d\mu \qquad \text{almost surely.}$$