

"Markov Processes", Problem Sheet 3.

Hand in solutions before Monday 7.11, 2 pm (post-box opposite to maths library)

1. (Strong Markov property and Harris recurrence). Let (X_n, P_x) be a time homogeneous Markov chain on the state space (S, \mathcal{B}) with transition kernel $\pi(x, dy)$.

- a) Show that if T is a finite (\mathcal{F}_n^X) stopping time, then conditionally given \mathcal{F}_T^X , the process $\hat{X}_n := X_{T+n}$ is a Markov chain with transition kernel π starting in X_T .
- b) Conclude that a set $A \in \mathcal{B}$ is Harris recurrent, i.e.,

 $P_x(X_n \in A \text{ for some } n \ge 1) = 1 \text{ for any } x \in A,$

if and only if

 $P_x(X_n \in A \text{ infinitely often}) = 1 \text{ for any } x \in A.$

2. (Passage times of the simple random walk). Let $S_n = \sum_{i=1}^n Z_i$ where $(Z_n)_{n\geq 1}$ are independent random variables with $P(Z_n = 1) = P(Z_n = -1) = 1/2$. Let *a* be a strictly positive integer, and let $T_a = \inf\{n \geq 0 : S_n = a\}$ be the first passage time to *a*.

- a) Show that S_n and $S_n^2 n$ are martingales. For b < 0 < a compute $P[T_a < T_b]$ and $E[T_{\mathbb{Z}\setminus (a,b)}]$. Conclude that $E[T_a] = \infty$.
- b) Show that for any $\theta \in \mathbb{R}$,

$$X_n^{\theta} = e^{\theta S_n} / (\cosh \theta)^n$$

is a martingale, and that for $\theta \geq 0$, $(X_{n \wedge T_a}^{\theta})_{n \geq 0}$ is a bounded martingale that converges almost surely and in L^2 to the random variable

$$W^{\theta} = (\cosh \theta)^{-T_a} e^{\theta a} \mathbf{1}_{\{T_a < \infty\}}.$$

Conclude that $P(T_a < \infty) = 1$ and $E((\cosh \theta)^{-T_a}) = e^{-\theta a}$.

c) Explain how the results derived above can also be deduced from Theorem 1.2.

3. (Random walks on \mathbb{Z}). Let $((X_n)_{n\geq 0}, (P_x)_{x\in\mathbb{Z}})$ be the canonical Markov chain on \mathbb{Z} with transition matrix Q given by

$$Q(x, x + 1) = p, \ Q(x, x) = r, \ Q(x, x - 1) = q$$

where p + q + r = 1, p > 0, q > 0 and $r \ge 0$. Fix $a, b \in \mathbb{Z}$ with a < b - 1 and let $T = \inf\{n \ge 0 : X_n \notin (a, b)\}.$

a) Prove that for any function $g: \{a+1, a+2, \ldots, b-1\} \to \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}$, the system

$$(Q - I)u(x) = -g(x), \quad a < x < b,$$

$$u(a) = \alpha, \quad u(b) = \beta,$$
(1)

has a unique solution.

- b) Conclude that $E_x(T) < \infty$ for any x. How can the mean exit time be computed explicitly ?
- c) Assume for the moment that for every s > 0 and $x \in (a, b)$, $u_s(x) := E_x(T^s) < \infty$. Prove that u_2 is a solution of (1) for some α, β, g to be determined as functions of u_1 .
- d) Prove that there exists $\epsilon > 0$ such that $E_x[\exp(\lambda T)] < \infty$ for any $\lambda < \epsilon$. Hence conclude that $E_x(T^s) < \infty$ for every s > 0.

4. (Feynman-Kac formula). This exercise gives a direct proof of the uniqueness part in the Feynman-Kac formula. Let $((X_n)_{n\geq 0}, P_x)$ be a canonical time-homogeneous Markov chain with generator \mathcal{L} on the state space S. Let $w : S \to \mathbb{R}_+$ be a nonnegative function.

a) For which functions v is

$$M_n = e^{-\sum_{k=0}^{n-1} w(X_i)} v(X_n)$$

a martingale?

b) Let $D \subset S$ be a measurable subset such that $T = \inf\{n > 0 : X_n \in D^c\} < \infty P_x$ -a.s. for any x, and let v be a bounded solution to the boundary value problem

$$(\mathcal{L}v)(x) = (e^{w(x)} - 1)u(x) \quad \forall x \in D,$$

$$v(x) = f(x) \quad \forall x \in D^c.$$
(2)

Show by using a) that

$$v(x) = E_x \left(e^{-\sum_{k=0}^{T-1} w(X_k)} f(X_T) \right).$$