

"Markov Processes", Problem Sheet 2.

Hand in solutions before Monday 31.10., 2 pm. (post-box opposite to maths library)

- 1. (Reduction to the time-homogeneous case). Let $I = \mathbb{R}_+$ or $I = \mathbb{Z}_+$.
 - a) Let $(X_t)_{t \in I}$ be a Markov process with transition function $(p_{s,t})$ and state space S. Show that for any $t_0 \in I$ the time-space process $\hat{X}_t = (t_0 + t, X_{t_0+t})$ is a timehomogeneous Markov process with state space $\mathbb{R}_+ \times S$ and transition function

$$\hat{p}_t\left((s,x),\cdot\right) = \delta_{s+t} \otimes p_{s,s+t}(x,\cdot).$$

b) Now suppose that $(X_t)_{t \in \mathbb{Z}_+}$ is a Markov chain with one step transition kernels π_t , $t \in \mathbb{N}$. Determine the one step transition kernel and the generator of the time-space process (t, X_t) . Conclude that for any function $f \in \mathcal{F}_b(\mathbb{Z}_+ \times S)$, the process

$$M_t^{[f]} = f(t, X_t) - \sum_{k=0}^{t-1} (\mathcal{L}_k f(k+1, \cdot))(X_k) - \sum_{k=0}^{t-1} (f(k+1, X_k) - f(k, X_k)))$$

is a martingale, where (\mathcal{L}_t) are the generators of (X_t) . What would be a corresponding statement in continuous time (without proof) ?

2. (Reflected Random Walks and Metropolis algorithm). Let π be a probability kernel on a measurable space (S, \mathcal{B}) . A probability measure μ satisfies the *detailed balance* condition w.r.t. π iff for any $A, B \in \mathcal{B}$,

$$(\mu \otimes \pi)(A \times B) = (\mu \otimes \pi)(B \times A).$$

- a) Prove that a probability measure μ which satisfies detailed balance w.r.t. π is also invariant w.r.t. π , i.e., $(\mu\pi)(B) = \int \mu(dx) \pi(x, B) = \mu(B)$ for any $B \in \mathcal{B}$.
- b) Let $S \subset \mathbb{R}^d$ be a bounded measurable set. We define a Markov chain $(X_n)_{n \in \mathbb{Z}_+}$ by

$$X_0 = x_0 \in S, \qquad X_{n+1} = X_n + W_{n+1} \cdot 1_S(X_n + W_{n+1}),$$

where $W_i : \Omega \to \mathbb{R}^d$ are i.i.d. random variables. Suppose that the law of W_1 is absolutely continuous with a strictly positive density satisfying f(x) = f(-x). Prove that the uniform distribution on S is invariant w.r.t. the transition kernel of the Markov chain (X_n) .

c) Let $\mu(dx) = \mu(x) dx$ be a probability measure with strictly positive density on \mathbb{R}^d . Show that the process (X_n) defined by the following algorithm is a time-homogeneous Markov chain, identify its transition kernel π , and show that μ is invariant for π :

Random Walk Metropolis algorithm

- 1.) Set n := 0 and choose some arbitrary point $X_0 \in \mathbb{R}^d$.
- 2.) Set $Y_{n+1} := X_n + W_{n+1}$, and draw independently $U_{n+1} \sim \text{Unif}(0, 1)$.
- 3.) If $\mu(Y_{n+1})/\mu(X_n) > U_{n+1}$ then set $X_{n+1} := Y_{n+1}$, else set $X_{n+1} := X_n$.
- 4.) Set n := n + 1 and go to Step 2.

3. (Recurrence of Brownian motion). A continuous-time stochastic process $((B_t)_{t \in [0,\infty)}, P_x)$ taking values in \mathbb{R}^d is called a *Brownian motion starting at x* if the sample paths $t \mapsto B_t(\omega)$ are continuous, $B_0 = x P_x$ -a.s., and for every $f \in C_b^2(\mathbb{R}^d)$, the process

$$M_t^{[f]} := f(B_t) - \frac{1}{2} \int_0^t \Delta f(B_s) \, ds$$

is a martingale w.r.t. the filtration $\mathcal{F}_t^B = \sigma(B_s : s \in [0, t])$. Let $T_a = \inf\{t \ge 0 : |B_t| = a\}$.

- a) Compute $P_x[T_a < T_b]$ for a < |x| < b.
- b) Show that for $d \leq 2$ a Brownian motion is recurrent in the sense that $P_x[T_a < \infty] = 1$ for any a < |x|.
- c) Show that for $d \ge 3$ a Brownian motion is transient in the sense that $P_x[T_a < \infty] \to 0$ as $|x| \to \infty$.

You may assume the optional stopping theorem and the martingale convergence theorem in continuous time without proof. You may also assume that the Laplacian applied to a rotationally symmetric function $g(x) = \gamma(|x|)$ is given by

$$\Delta g(x) = r^{1-d} \frac{d}{dr} \left(r^{d-1} \frac{d}{dr} \gamma \right)(r) = \frac{d^2}{dr^2} \gamma(r) + \frac{d-1}{r} \frac{d}{dr} \gamma(r) \qquad \text{where } r = |x|.$$

(How can you derive this expression rapidly if you do not remember it ?)

4. (Markov properties). Let $(X_t)_{t \in I}$ be a stochastic process with state space $(S_{\Delta}, \mathcal{B}_{\Delta})$ defined on a probability space $(\Omega, \mathfrak{A}, P)$. Show that the following statements are equivalent:

- (i) (X_t, P) is a Markov process with initial distribution ν and transition function $(p_{s,t})$.
- (ii) For any $n \in \mathbb{Z}_+$ and $0 = t_0 \le t_1 \le \ldots \le t_n$,

$$(X_{t_0}, X_{t_1}, \dots, X_{t_n}) \sim \nu \otimes p_{t_0, t_1} \otimes p_{t_1, t_2} \otimes \dots \otimes p_{t_{n-1}, t_n}$$
 w.r.t. P

(iii) $(X_t)_{t\in I} \sim P_{\nu}$.

(iv) For any $s \in I$, $P_{X_s}^{(s)}$ is a version of the conditional distribution of $(X_t)_{t \ge s}$ given \mathcal{F}_s^X , i.e.,

$$E[F((X_t)_{t\geq s})|\mathcal{F}_s^X] = E_{X_s}^{(s)}[F]$$
 P-a.s

for any product measurable function $F: S^I_\Delta \to \mathbb{R}_+$.

Here P_{ν} and $P_x^{(s)}$ denote the laws on S_{Δ}^I of the Markov processes with initial distributions ν, δ_x and transition functions $(p_{r,t})_{0 \le r \le t}$, $(p_{s+r,s+t})_{0 \le r \le t}$, respectively.