

"Markov Processes", Problem Sheet 8

Please hand in your solutions before 12 noon on Monday, December 2.

1. (Couplings on \mathbb{R}^d). Let $W : \Omega \to \mathbb{R}^d$ be a random variable on (Ω, \mathcal{A}, P) , and let μ_a denote the law of a + W.

- a) Show that for $a, b \in \mathbb{R}^d$, every coupling of μ_a and μ_b can be realized by random variables $X = a + W_1$ and $Y = b + W_2$ with $W_1, W_2 \sim W$.
- b) (Synchronous coupling) Let X = a + W and Y = b + W. Show that (X, Y) is an optimal coupling of μ_a and μ_b w.r.t. \mathcal{W}^2 .
- c) (Reflection coupling) Now assume that the law of W is invariant under orthogonal transformations of \mathbb{R}^d , and let $\widetilde{Y} = b + \widetilde{W}$ where $\widetilde{W} = W 2(e^T W)e$ with $e = \frac{a-b}{|a-b|}$. Prove that (X, \widetilde{Y}) realizes a coupling of μ_a and μ_b , and if $|W| \leq \frac{|a-b|}{2}$ a.s., then

$$E\left[f(|X - \widetilde{Y}|)\right] \leq f(|a - b|) = E\left[f(|X - Y|)\right]$$

for any concave, increasing function $f : \mathbb{R}_+ \to \mathbb{R}_+$ such that f(0) = 0.

2. (Wasserstein contractions). Let π be a probability kernel on a Polish space S. Suppose that $\overline{\pi}$ is a probability kernel on $S \times S$ such that $\overline{\pi}((x, y), dx'dy')$ is a coupling of $\pi(x, dx')$ and $\pi(y, dy')$ for any $x, y \in S$.

a) Prove that if there exists a distance function $d: S \times S \to [0, \infty)$ that is compatible with the topology on S and a constant $\alpha \in (0, 1)$ such that $\overline{\pi}d \leq \alpha d$, then there is a unique invariant probability measure μ of π , and

$$\mathcal{W}^1_d(\nu \pi^n, \mu) \leq \alpha^n \mathcal{W}^1_d(\nu, \mu) \quad \text{for any } \nu \in \mathcal{P}^1(S).$$

Remark. If π is Feller, then the statement can be deduced from a result in the lecture. Try to give a direct proof without assuming the Feller property.

b) Apply the result to the autoregressive process on \mathbb{R}^d with transition kernel

$$\pi(x, \bullet) = \mathcal{N}(\gamma x, I_d)$$
 for some $\gamma \in (0, 1)$.

What is the invariant measure in this case ?

3. (Asymptotic variances of ergodic averages). We consider a stationary Markov chain (X_n, P_μ) with state space (S, \mathcal{B}) , transition kernel π , and initial distribution μ .

a) For $f \in \mathcal{L}^2(\mu)$ let $f_0 = f - \int f d\mu$, and let $A_t f = \frac{1}{t} \sum_{i=0}^{t-1} f(X_i)$. Prove (without assuming the CLT) that if $Gf_0 = \sum_{k=0}^{\infty} \pi^k f_0$ converges in $\mathcal{L}^2(\mu)$, then

$$\lim_{t \to \infty} t \operatorname{Var} \left[A_t f \right] = 2(f_0, Gf_0)_{L^2(\mu)} - (f_0, f_0)_{L^2(\mu)} = \operatorname{Var}_{\mu}(f) + \sum_{k=1}^{\infty} \operatorname{Cov}_{\mu}(f, \pi^k f).$$

b) Let $S = \{1, 2\}$, and suppose that the transition rates are given by $\pi(1, 1) = \pi(2, 2) = p$ and $\pi(2, 1) = \pi(1, 2) = 1 - p$ with $p \in (0, 1)$. Show that the unique stationary distribution μ is given by $\mu(1) = \mu(2) = 1/2$ for all values of p. Now consider

$$S_n = A_n - B_n,$$

where A_n and B_n are, respectively, the number of visits to the states 1 and 2 during the first *n* steps. Show that S_n/\sqrt{n} satisfies a central limit theorem, and calculate the limiting variance as a function $\sigma^2(p)$ of *p*. How does $\sigma^2(p)$ behave as *p* tends to 0 or 1? Can you explain it? What is the value of $\sigma^2(1/2)$? Could you have guessed it?

4. (Structure of invariant measures). Let π be a probability kernel on (S, \mathcal{B}) , and let

$$\mathcal{S}(\pi) = \{ \mu \in \mathcal{P}(S) : \mu = \mu \pi \}.$$

- a) Show that $\mathcal{S}(\pi)$ is convex.
- b) Prove that $\mu \in \mathcal{S}(\pi)$ is extremal if and only if every set $B \in \mathcal{B}$ such that $\pi 1_B = 1_B$ μ -a.e. satisfies $\mu(B) \in \{0, 1\}$.
- c) Show that every $\mu \in \mathcal{S}(\pi)$ is a convex combination of extremals. (*Hint: You may use Exercise 4 on Sheet 6.*)