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1. (Recurrence on discrete state spaces). Let (Xn, Px) be an irreducible homoge-
neous Markov chain with countable state space S.

a) Prove that the following three conditions are equivalent:

(i) There exists a finite set A ⊂ S such that A is recurrent.

(ii) {x} is recurrent for any x ∈ S.

(iii) Px(Xn = y infinitely often) = 1 ∀ x, y ∈ S.

b) Show using Lyapunov functions that the simple random walk on Z2 is recurrent.
Hint: Consider for example the functions V (x) = (log |x|)α.

2. (Lyapunov functions and stochastic stability).

a) Consider a state space model on Rd with one-step transition x→ x+ b(x) + σ(x)W ,
where b : Rd → Rd and σ : Rd → Rd×d are measurable functions, and W : Ω → Rd

is a square integrable random variable such that E(W ) = 0 and Cov(Wi,Wj) = δij.
Show by considering a Lyapunov function V (x) = |x|2/ε with ε > 0, that sufficiently
large balls are positive recurrent provided

lim sup
|x|→∞

(
2x · b(x) + |b(x)|2 + tr(σT (x)σ(x))

)
< 0.

b) Consider a perturbed random walk on Zd with transition rates

π(x, y) =

{
1
2d

+ δ(x, y) for |x− y| = 1,
0 otherwise.

Find an estimate on the exit time from a ball of radius R. To this end consider for
σ > 0 the function F (x) = exp

(
σ
∑d

i=1 |xi|
)

on Zd and show that

(πF )(x1, . . . , xd) ≥ θF (x1, . . . , xd)

for some choices of σ > 0 and θ > 1 that may depend on R.



3. (Tightness). Prove the following three statements.

a) A sequence of probability measures on the line is tight if and only if, for the corre-
sponding distribution functions, we have limx→∞ Fn(x) = 1 and limx→−∞ Fn(x) = 0
uniformly in n.

b) A sequence of normal distributions on the line is tight if and only if the means and the
variances are bounded (a normal distribution with variance 0 being a point mass).

c) A sequence of distributions of random variables Xn is tight if (Xn) is uniformly
integrable.
Reminder: A sequence of random variables Xn is uniformly integrable if

sup
n∈N

E[|Xn|; |Xn| ≥ c]→ 0 as c→∞.


