

"Markov Processes", Problem Sheet 3

Please hand in your solutions before 12 noon on Monday, October 28, into the marked post boxes opposite to the maths library.

1. (Strong Markov property and Harris recurrence). Let (X_n, P_x) be a time homogeneous (\mathcal{F}_n) Markov chain on the state space (S, \mathcal{B}) with transition kernel $\pi(x, dy)$.

- a) Show that if T is a finite (\mathcal{F}_n) stopping time, then conditionally given \mathcal{F}_T , the process $\hat{X}_n := X_{T+n}$ is a Markov chain with transition kernel π starting in X_T .
- b) Conclude that a set $A \in \mathcal{B}$ is *Harris recurrent*, i.e.,

 $P_x[X_n \in A \text{ for some } n \ge 1] = 1 \text{ for any } x \in A,$

if and only if

 $P_x[X_n \in A \text{ infinitely often}] = 1 \text{ for any } x \in A.$

2. (Strong Markov property in continuous time). Suppose that (X_t, P_x) is a time homogeneous (\mathcal{F}_t) Markov process in continuous time with state space \mathbb{R}^d and transition semigroup (p_t) .

a) Let T be an (\mathcal{F}_t) stopping time taking only the discrete values $t_i = ih, i \in \mathbb{Z}_+$, for some fixed $h \in (0, \infty)$. Prove that for any initial value $x \in \mathbb{R}^d$ and any non-negative measurable function $F : (\mathbb{R}^d)^{[0,\infty)} \to \mathbb{R}$,

$$E_x[F(X_{T+\bullet})|\mathcal{F}_T] = E_{X_T}[F(X)] \qquad P_x\text{-almost surely.}$$
(1)

b) The transition semigroup (p_t) is called *Feller* iff for every $t \ge 0$ and every bounded continuous function $f : \mathbb{R}^d \to \mathbb{R}, x \mapsto (p_t f)(x)$ is continuous. Prove that if $t \mapsto X_t(\omega)$ is right continuous for all ω and (p_t) is a Feller semigroup, then the strong Markov property (1) holds for every (\mathcal{F}_t) stopping time $T : \Omega \to [0, \infty)$. *Hint: Show first that for any* $t \ge 0$ *and* $f \in C_b(\mathbb{R}^d)$,

$$E_x[f(X_{T+t})|\mathcal{F}_T] = E_{X_T}[f(X_t)] \qquad P_x\text{-almost surely.}$$
(2)

3. (Brownian motion killed at 0). Let $X_t = B_t$ for t < T and $X_t = \Delta$ for $t \ge T$, where $(B_t)_{t\ge 0}$ is a one-dimensional Brownian motion, and $T = \inf\{t\ge 0: B_t = 0\}$.

a) Show that $(X_t)_{t\geq 0}$ is a Markov process on the extended state space $(0,\infty)\dot{\cup}\{\Delta\}$ with transition kernel satisfying $p_t^{\text{Dir}}(x,B) = \int_B p_t^{\text{Dir}}(x,y) \, dy$ for any $x \in (0,\infty)$ and $B \in \mathcal{B}((0,\infty))$, where

$$p_t^{\text{Dir}}(x,y) = \frac{1}{\sqrt{2\pi t}} \left(\exp\left(-\frac{(y-x)^2}{2t}\right) - \exp\left(-\frac{(y+x)^2}{2t}\right) \right) \quad \text{for } x,y \in (0,\infty).$$

b) We extend functions $f : (0, \infty) \to \mathbb{R}$ to the extended state space $(0, \infty) \dot{\cup} \{\Delta\}$ by setting $f(\Delta) := 0$, Prove that in this sense, (X_t, P) solves the martingale problem for the operator $\mathcal{L}f = \frac{1}{2}f''$ with domain

$$\mathcal{A} = \{ f \in C_b^2([0,\infty)) : f(0) = 0 \}.$$

4. (Boundary value problems for Markov chains). Let (X_n, P_x) be a canonical time-homogeneous Markov chain with measurable state space (S, \mathcal{B}) and generator \mathcal{L} .

a) The first part of this exercise gives a direct proof of the uniqueness part in the Feynman-Kac formula for Markov chains. Let $w: S \to \mathbb{R}$ be a non-negative measurable function. Determine for which functions v the process

$$M_n = e^{-\sum_{k=0}^{n-1} w(X_i)} v(X_n)$$

is a martingale. Now let $D \subset S$ be a measurable subset such that

$$T = \inf\{n \ge 0 : X_n \in D^c\} < \infty \quad P_x\text{-a.s. for any } x,$$

and let v be a bounded solution to the boundary value problem

$$(\mathcal{L}v)(x) = (e^{w(x)} - 1)v(x) \text{ for all } x \in D,$$

$$v(x) = f(x) \text{ for all } x \in D^c.$$
(3)

Show that

$$v(x) = E_x \left[e^{-\sum_{k=0}^{T-1} w(X_k)} f(X_T) \right].$$

b) Suppose that $S = \mathbb{Z}$ and the transition matrix π of (X_n, P_x) is given by

$$\pi(x, x+1) = p, \ \pi(x, x) = r, \ \pi(x, x-1) = q$$

where p + q + r = 1, p > 0, q > 0 and $r \ge 0$. Fix $a, b \in \mathbb{Z}$ with a < b - 1 and let

$$T = \inf\{n \ge 0 : X_n \notin (a, b)\}$$

Prove that for any function $g: \{a+1, a+2, \ldots, b-1\} \to \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}$, the system

$$\begin{aligned} (\mathcal{L}u)(x) &= -g(x) \quad \text{for } a < x < b, \\ u(a) &= \alpha, \quad u(b) = \beta, \end{aligned}$$

$$(4)$$

has a unique solution. Conclude that $E_x[T] < \infty$ for any x. How can the mean exit time be computed explicitly ?