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1. (Strong Markov property and Harris recurrence). Let (Xn, Px) be a time
homogeneous (Fn) Markov chain on the state space (S,B) with transition kernel π(x, dy).

a) Show that if T is a finite (Fn) stopping time, then conditionally given FT , the process
X̂n := XT+n is a Markov chain with transition kernel π starting in XT .

b) Conclude that a set A ∈ B is Harris recurrent, i.e.,

Px[Xn ∈ A for some n ≥ 1] = 1 for any x ∈ A,

if and only if
Px[Xn ∈ A infinitely often] = 1 for any x ∈ A.

2. (Strong Markov property in continuous time). Suppose that (Xt, Px) is a time
homogeneous (Ft) Markov process in continuous time with state space Rd and transition
semigroup (pt).

a) Let T be an (Ft) stopping time taking only the discrete values ti = ih, i ∈ Z+, for
some fixed h ∈ (0,∞). Prove that for any initial value x ∈ Rd and any non-negative
measurable function F : (Rd)[0,∞) → R,

Ex [F (XT+•)|FT ] = EXT
[F (X)] Px-almost surely. (1)

b) The transition semigroup (pt) is called Feller iff for every t ≥ 0 and every bounded
continuous function f : Rd → R, x 7→ (ptf)(x) is continuous. Prove that if t 7→ Xt(ω)
is right continuous for all ω and (pt) is a Feller semigroup, then the strong Markov
property (1) holds for every (Ft) stopping time T : Ω→ [0,∞).

Hint: Show first that for any t ≥ 0 and f ∈ Cb(Rd),

Ex [f(XT+t)|FT ] = EXT
[f(Xt)] Px-almost surely. (2)



3. (Brownian motion killed at 0). Let Xt = Bt for t < T and Xt = ∆ for t ≥ T ,
where (Bt)t≥0 is a one-dimensional Brownian motion, and T = inf{t ≥ 0 : Bt = 0}.

a) Show that (Xt)t≥0 is a Markov process on the extended state space (0,∞)∪̇{∆}
with transition kernel satisfying pDir

t (x,B) =
∫
B
pDir
t (x, y) dy for any x ∈ (0,∞) and

B ∈ B((0,∞)), where

pDir
t (x, y) =

1√
2πt

(
exp

(
−(y − x)2

2t

)
− exp

(
−(y + x)2

2t

))
for x, y ∈ (0,∞).

b) We extend functions f : (0,∞) → R to the extended state space (0,∞)∪̇{∆} by
setting f(∆) := 0, Prove that in this sense, (Xt, P ) solves the martingale problem
for the operator Lf = 1

2
f ′′ with domain

A = {f ∈ C2
b ([0,∞)) : f(0) = 0}.

4. (Boundary value problems for Markov chains). Let (Xn, Px) be a canonical
time-homogeneous Markov chain with measurable state space (S,B) and generator L.

a) The first part of this exercise gives a direct proof of the uniqueness part in the
Feynman-Kac formula for Markov chains. Let w : S → R be a non-negative measu-
rable function. Determine for which functions v the process

Mn = e−
∑n−1

k=0 w(Xi)v(Xn)

is a martingale. Now let D ⊂ S be a measurable subset such that

T = inf{n ≥ 0 : Xn ∈ Dc} <∞ Px-a.s. for any x,

and let v be a bounded solution to the boundary value problem

(Lv)(x) = (ew(x) − 1)v(x) for all x ∈ D, (3)

v(x) = f(x) for all x ∈ Dc.

Show that
v(x) = Ex

[
e−

∑T−1
k=0 w(Xk)f(XT )

]
.

b) Suppose that S = Z and the transition matrix π of (Xn, Px) is given by

π(x, x+ 1) = p, π(x, x) = r, π(x, x− 1) = q

where p+ q + r = 1, p > 0, q > 0 and r ≥ 0. Fix a, b ∈ Z with a < b− 1 and let

T = inf{n ≥ 0 : Xn 6∈ (a, b)}.

Prove that for any function g : {a+1, a+2, . . . , b−1} → R and α, β ∈ R, the system

(Lu)(x) = −g(x) for a < x < b, (4)

u(a) = α, u(b) = β,

has a unique solution. Conclude that Ex[T ] < ∞ for any x. How can the mean exit
time be computed explicitly ?


