

"Markov Processes", Problem Sheet 2

Please hand in your solutions before 12 am on Monday, October 21, into the marked post boxes opposite to the maths library.

- 1. (Reduction to the time-homogeneous case). Let $I = \mathbb{R}_+$ or $I = \mathbb{Z}_+$.
 - a) Let $(X_t)_{t \in I}$ be a Markov process with transition function $(p_{s,t})$ and state space S. Show that for any $t_0 \in I$, the time-space process $\hat{X}_t = (t_0 + t, X_{t_0+t})$ is a timehomogeneous Markov process with state space $\mathbb{R}_+ \times S$ and transition function

$$\hat{p}_t\left((s,x),\cdot\right) = \delta_{s+t} \otimes p_{s,s+t}(x,\cdot).$$

b) Now suppose that $(X_t)_{t \in \mathbb{Z}_+}$ is a Markov chain with one step transition kernels π_t , $t \in \mathbb{N}$. Determine the one step transition kernel and the generator of the time-space process (t, X_t) . Conclude that for any function $f \in \mathcal{F}_b(\mathbb{Z}_+ \times S)$, the process

$$M_t^{[f]} = f(t, X_t) - \sum_{k=0}^{t-1} \mathcal{L}_k(f(k+1, \cdot))(X_k) - \sum_{k=0}^{t-1} (f(k+1, X_k) - f(k, X_k))$$

is a martingale, where (\mathcal{L}_t) are the generators of (X_t) . What would be a corresponding statement in continuous time (without proof) ?

2. (Markov properties).

- a) Let $(X_t)_{t \in \mathbb{R}_+}$ be an arbitrary stochastic process on a probability space (Ω, \mathcal{A}, P) . Show that the *historical process* $\hat{X}_t = (X_s)_{s \in [0,t]}$ is an (\mathcal{F}_t^X) Markov process.
- b) Let (B_t) be a standard Brownian motion on a probability space (Ω, \mathcal{A}, P) , and let

$$X_t = \int_0^t B_s ds$$
 and $S_t = \sup_{s \le t} B_s.$

Show that (X_t) and (S_t) are not Markov processes, but the two component processes (B_t, X_t) and (B_t, S_t) are Markov.

c) Determine the laws of these Markov processes at time t.

3. (Brownian motion reflected at 0). Let $(B_t)_{t\geq 0}$ be a standard one-dimensional Brownian motion with transition density $p_t(x, y)$.

a) Show that $X_t = |B_t|$ is a Markov process with transition density

$$p_t^{\text{refl}}(x,y) = \frac{1}{\sqrt{2\pi t}} \left(\exp\left(-\frac{(y-x)^2}{2t}\right) + \exp\left(-\frac{(y+x)^2}{2t}\right) \right).$$

b) Prove that (X_t, P) solves the martingale problem for the operator $\mathcal{L}f = \frac{1}{2}f''$ with domain

$$\mathcal{A} = \{ f \in C_b^2([0,\infty)) : f'(0) = 0 \}$$

Hint: Note that functions in \mathcal{A} can be extended to symmetric functions in $C_b^2(\mathbb{R})$.

c) Construct another solution to the martingale problem for \mathcal{L} with domain $C_0^{\infty}(0,\infty)$. Does it also solve the martingale problem in b)?

4. (Reflected Random Walks and Metropolis algorithm). Let π be a probability kernel on a measurable space (S, \mathcal{B}) . A probability measure μ satisfies the *detailed balance* condition w.r.t. π iff for any $A, B \in \mathcal{B}$,

$$(\mu \otimes \pi)(A \times B) = (\mu \otimes \pi)(B \times A).$$

- a) Prove that a probability measure μ which satisfies detailed balance w.r.t. π is also invariant w.r.t. π , i.e., $(\mu\pi)(B) = \int \mu(dx) \pi(x, B) = \mu(B)$ for any $B \in \mathcal{B}$.
- b) Let $S \subset \mathbb{R}^d$ be a bounded measurable set. We define a Markov chain $(X_n)_{n \in \mathbb{Z}_+}$ by

 $X_0 = x_0 \in S,$ $X_{n+1} = X_n + W_{n+1} \cdot 1_S(X_n + W_{n+1}),$

where $W_i : \Omega \to \mathbb{R}^d$ are i.i.d. random variables. Suppose that the law of W_1 is absolutely continuous with a strictly positive density satisfying f(x) = f(-x). Prove that the uniform distribution on S is invariant w.r.t. the transition kernel of the Markov chain (X_n) .

c) Let $\mu(dx) = \mu(x) dx$ be a probability measure with strictly positive density on \mathbb{R}^d . Show that the process (X_n) defined by the following algorithm is a time-homogeneous Markov chain, identify its transition kernel π , and show that μ is invariant for π :

Random Walk Metropolis algorithm

- 1.) Set n := 0 and choose some arbitrary point $X_0 \in \mathbb{R}^d$.
- 2.) Set $Y_{n+1} := X_n + W_{n+1}$, and draw independently $U_{n+1} \sim \text{Unif}(0, 1)$.
- 3.) If $\mu(Y_{n+1})/\mu(X_n) > U_{n+1}$ then set $X_{n+1} := Y_{n+1}$, else set $X_{n+1} := X_n$.
- 4.) Set n := n + 1 and go to Step 2.