Institut für angewandte Mathematik Wintersemester 2019/20 Andreas Eberle

"Markov Processes", Problem Sheet 13

Please hand in your solutions before 12 noon on Monday, January 20.

1. (Simple exclusion process). Let $\mathbb{Z}_n^d = \mathbb{Z}^d/(n\mathbb{Z})^d$ denote a discrete *d*-dimensional torus. The simple exclusion process on $S = \{0, 1\}^{\mathbb{Z}_n^d}$ is the continuous time Markov process with generator

$$(\mathcal{L}f)(\eta) = \frac{1}{2d} \sum_{x \in \mathbb{Z}_n^d} \sum_{y: |y-x|=1} \mathbf{1}_{\{\eta(x)=1, \eta(y)=0\}} \cdot (f(\eta^{x,y}) - f(\eta)),$$

where $\eta^{x,y}$ is the configuration obtained from η by exchanging the values at x and y. Show that every Bernoulli measure of type

$$\mu_p = \bigotimes_{x \in \mathbb{Z}_n^d} \nu_p, \qquad \nu_p(1) = p, \ \nu_p(0) = 1 - p,$$

 $p \in [0, 1]$, is invariant. Why does this not contradict the fact that an irreducible Markov process on a finite state space has a unique stationary distribution ?

2. (Infinitesimal characterization of invariant measures - A counterexample). Consider the minimal time-homogeneous Markov jump process (X_t, P_x) with state space \mathbb{Z} and generator $\mathcal{L} = \lambda (\pi - I)$, where

$$\lambda(x) = 1 + x^2$$
 and $\pi(x, \cdot) = \delta_{x+1}$ for all $x \in \mathbb{Z}$.

a) Show that the probability measure μ with weights $\mu(x) \propto 1/(1+x^2)$ is infinitesimally invariant, i.e.,

$$(\mu \mathcal{L})(y) = 0$$
 for all $y \in \mathbb{Z}$.

b) Show that nevertheless, μ is not an invariant measure for the transition semigroup (p_t) of the process.

3. (Stochastic dominance I). Let μ and ν be probability measures on \mathbb{R} . Prove that the following statements are equivalent.

- (i) $\mu \leq \nu$, i.e., $\int f d\mu \leq \int f d\nu$ for every increasing function $f \in \mathcal{F}_b(\mathbb{R})$.
- (ii) $F_{\mu}(c) = \mu((-\infty, c]) \ge F_{\nu}(c) \quad \forall c \in \mathbb{R}.$
- (iii) There exists a coupling realized by random variables X and Y with distributions μ and ν , respectively, such that $X \leq Y$ almost surely.

4. (Stochastic dominance II). Let μ and ν be probability measures on the configuration space $S = \{0, 1\}^{\mathbb{Z}^d}$, endowed with the product topology.

a) Prove that $\mu = \nu$ if and only if

 $\int f d\mu = \int f d\nu \quad \text{for any increasing, bounded and continuous function } f: S \to \mathbb{R}.$

b) Conclude that if $\mu \leq \nu$ and $\nu \leq \mu$ then $\mu = \nu$.