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1. (Strong continuity of transition semigroups of Markov processes on Lp spaces).
Suppose that (pt)t≥0 is the transition function of a right-continuous, time homogeneous
Markov process ((Xt)t≥0, (Px)x∈S), and µ ∈M+(S) is a sub-invariant measure.

a) Show that for every f ∈ Cb(S) and x ∈ S,

(ptf)(x)→ f(x) as t ↓ 0.

b) Now let f be a non-negative function in Cb(S) ∩ L1(S, µ) and p ∈ [1,∞). Show that
as t ↓ 0, ∫

|ptf − f |dµ → 0 , and hence ptf → f in Lp(S, µ).

Hint: You may use that |x| = x+ 2x−.

c) Conclude that (pt) induces a strongly continuous contraction semigroup of linear
operators on Lp(S, µ) for every p ∈ [1,∞).

2. (Semigroups generated by self-adjoint operators on Hilbert spaces). Show
that if E is a Hilbert space (for example an L2 space) with norm ‖f‖ = (f, f)1/2, and L is
a self-adjoint linear operator, i.e.,

(L,Dom(L)) = (L∗,Dom(L∗)),

then L is the generator of a C0 contraction semigroup on E if and only if L is negative
definite, i.e.,

(f, Lf) ≤ 0 for all f ∈ Dom(L).

Remark. In this case, the C0 semigroup generated by L is given by Pt = etL, where the
exponential is defined by spectral theory, see e.g. Reed & Simon: Methods of modern mathe-
matical physics, Vol. I and II.



3. (Brownian motion with absorption at 0). Brownian motion with absorption at
0 is the Markov process with state space S = [0,∞) defined by Xt = Bt∧T0 where (Bt, Px)
is a Brownian motion on R.

a) On which Banach spaces does this process induce C0 contraction semigroups ?

b) Identify the corresponding generators.

4. (Approximation of semigroups by resolvents). Suppose that (Pt)t≥0 is a Feller
semigroup with resolvent (Gα)α>0.

a) Prove that for any g ∈ Ĉ(S), t > 0, n ∈ N and x ∈ S,((n
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where (Ek)k∈N is a sequence of independent exponentially distributed random varia-
bles with parameter 1.

b) Hence conclude that (n
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g → Ptg uniformly as n→∞. (1)

c) How could you derive (1) more directly if the state space is finite?


