Institut für angewandte Mathematik Wintersemester 2019/20 Andreas Eberle

"Markov Processes", Problem Sheet 11

Please hand in your solutions before 12 noon on Tuesday, January 7.

We wish you a merry Christmas and a happy new year!

1. (Strongly continuous semigroups and resolvents).

- a) State the defining properties of a strongly continuous contraction semigroup and a strongly continuous contraction resolvent on a Banach space E.
- b) Prove that if (P_t) is a C_0 contraction semigroup then $G_{\alpha}f = \int_0^{\infty} e^{-\alpha t} P_t f dt$ defines a C_0 contraction resolvent.

2. (Uniform motion to the right). Consider the deterministic Markov process (X_t, P_x) on \mathbb{R} given by $X_t = x + t P_x$ -almost surely.

- a) Show that the transition semigroup $(P_t)_{t\geq 0}$ is strongly continuous both on $\hat{C}(\mathbb{R})$ and on $L^2(\mathbb{R}, dx)$.
- b) Prove that the generator on $\hat{C}(\mathbb{R})$ is given by

$$Lf = f',$$
 $Dom(L) = \{f \in C^1(\mathbb{R}) : f, f' \in \hat{C}(\mathbb{R})\}.$

c) Show that the generator on $L^2(\mathbb{R}, dx)$ is given by

$$Lf = f', \quad Dom(L) = H^{1,2}(\mathbb{R}, dx).$$

3. (Ornstein-Uhlenbeck process). The transition semigroup of the Ornstein-Uhlenbeck process on \mathbb{R} is given by

$$(p_t f)(x) = (2\pi)^{-1/2} \int f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) e^{-y^2/2} dy \quad \text{for } f \in \mathcal{F}_b(\mathbb{R}).$$

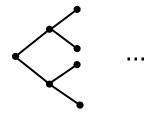
- a) Show that the standard normal distribution γ is invariant.
- b) Let L denote the generator on $L^2(\mathbb{R},\gamma)$. Show that $C^2_{\text{pol}} \subset \text{Dom}(L)$ and

$$(Lf)(x) = f''(x) - xf'(x)$$
 for any $f \in C^2_{\text{pol}}$.

c) Show that p_t preserves polynomials. Hence conclude that $C_{\rm pol}^2$ is a core for the generator.

Remark. C_{pol}^2 denotes the space of all twice continuously differentiable functions on \mathbb{R} such that f, f' and f'' are growing at most polynomially at infinity.

4. (Lazy random walk on a binary tree). Consider the lazy random walk with resting probability $\pi(x, x) = 1/2$ on a binary tree of depth k.



Let $m = 2^{k+1} - 1$ denote the number of vertices, and let T be the first hitting time of the root. Prove that:

- a) $t_{mix}(1/4) = \Omega(m)$.
- b) $\sup_x E_x[T] = O(m).$
- c) $t_{mix}(1/4) = O(m)$.