Institut für angewandte Mathematik Wintersemester 2019/20 Andreas Eberle

"Markov Processes", Problem Sheet 10

Please hand in your solutions before 12 noon on Monday, December 16.

1. (Conductance and lower bounds for mixing times). Let π be a transition kernel on (S, \mathcal{B}) with invariant probability measure μ . For sets $A, B \in \mathcal{B}$ with $\mu(A) > 0$, the *equilibrium flow* Q(A, B) from A to B is defined by

$$Q(A,B) = (\mu \otimes \pi)(A \times B) = \int_A \mu(dx) \,\pi(x,B),$$

and the *conductance* of A is given by

$$\Phi(A) = \frac{Q(A, A^C)}{\mu(A)}.$$

The bottleneck ratio (isoperimetric constant) Φ_* is defined as

$$\Phi_* = \min_{A:\mu(A) \le 1/2} \Phi(A)$$

Let $\mu_A(B) = \mu(B|A)$ denote the conditioned measure given A.

a) Show that for any $A \in \mathcal{B}$ with $\mu(A) > 0$,

$$\|\mu_A \pi - \mu_A\|_{TV} = (\mu_A \pi)(A^C) = \Phi(A).$$

Hint: Prove first that

- (i) $(\mu_A \pi)(B) \mu_A(B) \leq 0$ for any measurable $B \subseteq A$, and
- (ii) $(\mu_A \pi)(B) \mu_A(B) = (\mu_A \pi)(B) \ge 0$ for any measurable $B \subseteq A^C$.
- b) Conclude that

$$\|\mu_A - \mu\|_{TV} \le t\Phi(A) + \|\mu_A \pi^t - \mu\|_{TV} \quad \text{for any } t \in \mathbb{Z}_+.$$

c) Hence prove the lower bound

$$t_{mix}\left(\frac{1}{4}\right) \geq \frac{1}{4\Phi_*}.$$

2. (Gibbs sampler for the Ising model). Consider a finite graph (V, E) with n vertices of maximal degree Δ . The Ising model with inverse temperature $\beta \geq 0$ is the probability measure μ_{β} on $\{-1, 1\}^{V}$ with mass function

$$\mu_{\beta}(\eta) = \frac{1}{Z(\beta)} \exp\left(\beta \sum_{\{x,y\} \in E} \eta(x)\eta(y)\right),$$

where $Z(\beta)$ is a normalization constant.

- a) Show that given $\eta(y)$ for $y \neq x$, $\eta(x) = \pm 1$ with probability $(1 \pm \tanh(\beta m(x,\eta))/2)$, where $m(x,\eta) := \sum_{y \sim x} \eta(y)$ is the local magnetization in the neighbourhood of x. Hence determine the transition kernel π for the Gibbs sampler with equilibrium μ_{β} .
- b) Prove that for any $t \in \mathbb{N}$,

$$\mathcal{W}^{1}(\nu\pi^{t},\mu_{\beta}) \leq \alpha(n,\beta,\Delta)^{t} \mathcal{W}^{1}(\nu,\mu_{\beta}) \leq \exp\left(-\frac{t}{n}\left(1-\Delta\tanh(\beta)\right)\right) \mathcal{W}^{1}(\nu,\mu_{\beta}),$$

where $\alpha(n, \beta, \Delta) = 1 - (1 - \Delta \tanh(\beta))/n$, and \mathcal{W}^1 is the transportation metric based on the Hamming distance on $\{-1, 1\}^V$. Conclude that for $\Delta \tanh\beta < 1$, the Gibbs sampler is geometrically ergodic with a rate of order $\Omega(1/n)$. *Hint: You may use the inequality*

 $|\tanh(y+\beta) - \tanh(y-\beta)| \leq 2 \tanh(\beta)$ for any $\beta \geq 0$ and $y \in \mathbb{R}$.

c) The mean-field Ising model with parameter $\alpha \ge 0$ is the Ising model on the complete graph over $V = \{1, ..., n\}$ with inverse temperature $\beta = \alpha/n$. Show that for $\alpha < 1$, the ϵ -mixing time for the Gibbs sampler on the mean field Ising model is of order $O(n \log n)$ for any $\epsilon \in (0, 1)$.

3. (Successful couplings and TV-convergence to equilibrium). Consider a timehomogeneous Markov chain with transition kernel π and stationary distribution μ .

a) Show that for every initial distribution ν and every fixed integer $t \ge 0$, there exists a coupling (X, Y, P) of the Markov chains with transition kernel π and initial laws ν and μ such that

$$P[X_n = Y_n \text{ for all } n \ge t] = 1 - \left\| \nu \pi^t - \mu \right\|_{TV}$$

b) Conclude that $\|\nu \pi^t - \mu\|_{TV} \to 0$ as $t \to \infty$ if and only if for every $\epsilon > 0$ there exists a coupling of the Markov chains with initial laws ν and μ such that the coupling time

$$T = \inf \{t \ge 0 : X_n = Y_n \text{ for all } n \ge t\}$$

is finite with probability at least $1 - \epsilon$.

***c) A coupling as above is called *successful* if the coupling time is almost surely finite. Show that a successful coupling exists if and only if $\|\nu \pi^t - \mu\|_{TV} \to 0$ as $t \to \infty$. (*This part is optional and very difficult.*)