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Chapter 0

Introduction

0.1 Stochastic processes

Let/ = Z, = {0,1,2,...} (discrete time) o = R, = [0,00) (continuous time), and let
(Q, 2, P) be a probability space. [fS, B) is a measurable space thestachastic process with
state spaces is a collection( X} ), of random variables

Xt:Q—>S.

More generally, we will consider processes with finite lii@e. Here we add an extra poiatto
the state space and we endSw = SU{A} with thes-algebraBBy = {B, BU{A} : B € B}.
A stochastic process with state spacg and life time ( is then defined as a process

X;:Q — Sa suchthat X;(w)=A ifandonlyif > ((w).

Here¢ : Q — [0, 00| is a random variable.

We will usually assume that the state spateés a polish space i.e., there exists a metric
d:S xS — R, suchthats,d) is complete and separable. Note that for example open sets in
R™ are polish spaces, although they are not complete w.r.tEtioidean metric. Indeed, most
state spaces encountered in applications are polish. Meramn polish spaces regular version of
conditional probability distributions exist. This will lucial for much of the theory developed
below. If S is polish then we will always endow it with its Boretalgebrals = 5(.5).

A filtration on (2,2, P) is an increasing collectiof¥;);c; of o-algebrasF; C 2(. A stochastic
process X,);c; is adaptedw.r.t. a filtration(F;),c; iff X, is F;-measurable for any € I. In
particular, any proces¥ = (X, ), is adapted to the filtrationsF;¥) and(F;*") where

FX=0(X,:s5€l,5<t), tel,

6



0.2. TRANSITION FUNCTIONS AND MARKOV PROCESSES 7

is thefiltration generated by X, and]—"tX’P denotes theompletion of thes-algebraF; w.r.t. the
probability measuré’:

FXP = {AeA:3A e FX with P[AAA] = 0}.

Finally, a stochastic process;);c; on (2,2, P) with state spac€s, 3) is called an(F;)
Markov processiff (X;) is adapted w.r.t. the filtratiof7; ), and

P[X; € B|Fs] = P[X; € B|X,|] P-as.foranyB € Bands,t € ITwiths <t¢.  (0.1.1)

Any (F;) Markov process is also a Markov process w.r.t. the filtratidif' ) generated by the
process. Hence aiF;X) Markov process will be called simplyMarkov process We will see
other equivalent forms of the Markov property below. For thement we just note thdt (0.1.1)
implies

P[X; € B|F;s] = ps+(Xs,B) P-as.forB € Bands <t and (0.1.2)
Elf(Xy)|Fs] = (ps+f)(Xs) P-a.s. for any measurable functign S — R, ands < ¢.
(0.1.3)

wherep;(x, dy) is a regular version of the conditional probability distiion of X; given X,
and

(pesf)() = / Pecl,dy) f(y).

Furthermore, by the tower property of conditional expéctes, the kernelp,; (s,t € I with
s < t) satisfy the consistency condition

pealXe B) = [ s dipialy, B (0.1.4)
P-almost surely forany3 € Bands <t < u, i.e.,
Psuf = Dsubinf P o X '-almostsurely forang < s <t < u. (0.1.5)
Exercise. Show that the consistency conditions (0.1.4) and (D.11svidrom the defining prop-
erty (0.1.2) of the kernels, ;.

0.2 Transition functions and Markov processes

From now on we assume thétis a polish space an8l is the Borelo-algebra onS. We denote
the collection of all non-negative respectively boundedasueable functiong : S — R by

University of Bonn Winter term 2014/2015



8 CHAPTER 0. INTRODUCTION

F(9), Fp(S) respectively. The space of all probability measures regyitefsigned measures
are denoted byP(S) and M(S). Forp € M(S)andf € F,(S), and forp € P(S) and
f e Fi(S) we set

w(f) = /fdu'

The following definition is natural by the consideration®ad

Definition (Sub-probability kernel, transition function). 1) A(sub) probability kernep on
(S,B) isamap(z, B) — p(z, B) from S x Bto [0, 1] such that

(i) foranyz € S, p(z,-) is a positive measure off, B) with total masg(z, S) = 1
(p(x, S) < 1 respectively, and

(i) forany B € B, p(-, B) is a measurable function ofb, ).

2) Atransition function is a collectionp,; (s, ¢ € I with s < t) of sub-probability kernels on
(S, B) satisfying

pee(z,-) =0, foranyz e Sandte I, and (0.2.1)

PstPt,u = Psu for anys S t S u, (022)

where the composition of two sub-probability kernedsdq on (.S, B) is the sub-probability
kernelpq defined by

(pg)(z, B) = /p(fv,dy)Q(y, B) foranyxz € S,B € B.

The equations in(0.2.2) are called tBeapman-Kolmogorov equations They correspond to
the consistency conditions in_(0.1.4). Note, however, W@are now assuming that the consis-
tency conditions hold everywhere. This will allow us to tela family of Markov processes with
arbitrary starting points and starting times to a transifienction. The reason for considering
sub-probability instead of probability kernels is that siasay be lost during the evolution if the
process has a finite life-time.

Example (Discrete and absolutely continuous transition kernels A sub-probability kernel on
a countable sef takes the fornp(z, {y}) = p(x,y) wherep : S x S — [0, 1] is a non-negative

function satisfying) _ p(z,y) < 1. More generally, leA be a non-negative measure on a general
yes

polish state space (e.g. the counting measure on a dispaate er Lebesgue measurel®h). If
p: S xS — R, isameasurable function satisfying

/P(l’,y))\(dy) <1 foranyzxz e S,

Markov processes Andreas Eberle



0.2. TRANSITION FUNCTIONS AND MARKOV PROCESSES 9

thenp is the density of a sub-probability kernel given by

plz, B) = /B P, y)A(dy).

The collection of corresponding densities (z, y) for the kernels of a transition function w.r.t.
a fixed measurae is called atransition density. Note however, that many interesting Markov
processes on general state spaces do not possess a tnagsitgty w.r.t. a natural reference
measure. A simple example is the Random Walk Metropolis d@hlgoronR?. This Markov
chain moves in each time step with a positive probabilityoading to an absolutely continuous
transition density, whereas with the opposite probabilitytays at its current position, ck X X
below.

Definition (Markov process with transition function ps:). Letps; (s,t € I withs < t) be a
transition function or(S, B), and let(F;):c; be a filtration on a probability spac&?, 2, P).

1) A stochastic process(;).c;r on (2,2, P) is called an(F;) Markov process with transition
function (ps,) iff itis (F;) adapted, and

(MP) P[X, € B|F,] = ps:(Xs,B) P-a.s. foranys <tandB € B.

2) Itis calledtime-homogeneoutsf the transition function is time-homogeneous, i.ethiére
exist sub-probability kernels; (¢t € I') such that

Dst = Di—s foranys <t.

Notice that time-homogeneity does not mean that the la0is independent of; it is only
a property of the transition function. For the transitiomreds (p;),c; of a time-homogeneous
Markov process, the Chapman-Kolmogorov equations takeitiaes form

Psit = pspy  foranys,t e I. (0.2.3)

A time-inhomogeneous Markov process;) with state spacé can be identified with the time-
homogeneous Markov proce@s X;) on the enlarged state spake x S :

Exercise (Reduction to time-homogeneous cayelet ((X;):r, P) be a Markov process with
transition functionps ;). Show that for any € I the time-space proceéét =(s+t,Xs)isa
time-homogeneous Markov process with state sffacex S and transition function

Pe((5,2),) = dspt @ Do spe(, 7).

University of Bonn Winter term 2014/2015



10 CHAPTER 0. INTRODUCTION

Markov processesX,).cz, in discrete time are calledarkov chains. The transition function of
a Markov chain is completely determined by its one-stepsitamm kernelsr,, = p,,_1, (n € N).
Indeed, by the Chapman-Kolmogorov equation,

Dst = Ms41Msya - - - M foranys,t € Z, with s <t¢.

In particular, in the time-homogeneous case, the tramsitinction takes the form

p,=m" foranyt e Z,,

wherer = p,_; , IS the one-step transition kernel that does not depend on
Examples.

1) Random dynamical systems:A stochastic process on a probability spage2l, P) de-
fined recursively by
Xn+1 = ¢n+1(Xn7 Wn+1) forn S Z+ (024)

is a Markov chain ifX, : Q@ — S andWy, W, ---: Q — T are independent random vari-
ables taking values in measurable spgce®3) and(7,C), and®d,, ®,, ... are measurable
functions fromS x T to S. The one-step transition kernels are

mn(z, B) = P[®,(x,W,) € B],
and the transition function is given by
psi(z, B) = P[X(s,z) € B,

whereX;(s, z) for t > s denotes the solution of the recurrence relation (D.2.4) initial
value X,(s,z) = z at times. The Markov chain is time-homogeneous if the random
variableslV,, are identically distributed, and the functiofg coincide for anyn € N.

2) Continuous time Markov chains: If (Y,),cz, is atime-homogeneous Markov chain
on a polish spacé, 2, P), and(N;):>o is aPoisson processvith intensity A > 0 on
(2,2, P) that is independent dt},),.cz, then the process

X: =Yy, te€]0,00),

is a time-homogeneous Markov process in continuous tineeg ge [10]. Conditioning on
the value ofV; shows that the transition function is given by

> At )k
niaB) =3 O ni(e gy = M2, )
k=0 )

Markov processes Andreas Eberle



0.2. TRANSITION FUNCTIONS AND MARKOV PROCESSES 11

The construction can be generalized to time-inhomogengoup processes with finite
jump intensities, but in this case the procesS€g and (1V;) determining the positions
and the jump times are not necessarily Markov processeseinaivn, and they are not
necessarily independent of each other, see Sdctibn 3.&.belo

3) Diffusion processes orR™: A Brownian motion ((B;);>o, P) taking values inR™ is a
time-homogeneous Markov process with continuous samglespa— B;(w) and transi-
tion density

2
n x—y
pi(z,y) = (27t) /2 exp (—%>

with respect to the-dimensional Lebesgue measure In general, Markov processes with
continuous sample paths are caltkffusion processeslt can be shown that a solution to
an Itd stochastic differential equation of the form

dXt = b(t, Xt>dt + U(t,Xt)dBt7 X() = 2o, (025)

is a diffusion process if, for example, the coefficients aigsthitz continuous functions
b:R, xR® = R"ando : R, x R" — R™ 4 and(B;);> is a Brownian motion irR?. In
this case, the transition function is usually not known exiby.

Kolmogorov’s Theorem states that for any transition fumctand any given initial distribution
there is a unique canonical Markov process on the producespa

Qean= SA = {w: T — Sa}.

Indeed, letX; : Qcan — Sa, Xi(w) = w(t), denote the evaluation at timeand endow),, with
the product-algebra

Qlcan:@BA :J(Xttel)

tel

Theorem 0.1(Kolmogorov’s Theorem). Letp,, (s,t € I with s < t) be a transition function on
(S, B). Then for any probability measureon (S, B), there exists a unique probability measure
P, on (Qcan, Acan) such that (X, )., B,) is a Markov process with transition functigp, ;) and
initial distribution P, o X;* = v.

Since the Markov property (MP) is equivalent to the fact tthet finite-dimensional marginal
laws of the process are given by

(Xtm th, cee ,th) ~ M(dxo)]?o,tl(ﬂﬁo, dxl)ph,tg (1’17 d$2) o Pta_itn ('xnfl? d»’Un)

University of Bonn Winter term 2014/2015



12 CHAPTER 0. INTRODUCTION

forany0 =ty < t; < --- < t,, the proof of Theoreh 0.1 is a consequence of Kolmogorov's
extension theorem (which follows from Carathéodory’s esitem theorem), cf. X X X. Thus
Theoreni Q1 is a purely measure-theoretic statement. lits disadvantage is that the spage

is too large and the produetalgebra is too small wheh = R . Indeed, in this case important
events such as the event that the pro¢éss;~, has continuous trajectories are not measurable
w.r.t. Acan Therefore, in continuous time we will usually replaeg,, by the spac@ (R, Sa)

of all right-continuous functions : R, — Sa with left limits w(t—) for anyt > 0. To realize a
Markov process with a given transition function @n= D(R, , SA) requires modest additional
regularity conditions, cf. e.g. Rogers & Williams 1[32].

0.3 Generators and Martingales

Since the transition function of a Markov process is usuadiiyknown explicitly, one is looking
for other natural ways to describe the evolution. An obviloles: is to consider the rate of change
of the transition probabilities or expectations at a giveret:.

In discrete time this is straightforward: Fére F,(S) andt > 0,
Elf(Xe41) — f(X)|F] = (Lef)(X;) P-as.

whereL, : F,(S) — Fp(S) is the linear operator defined by

(Cof) (@) = (mf) () — f(z) = / mi(z, dy) (F(y) — ().

L, is called thegenerator at time t - in the time homogeneous case it does not depend on

In continuous time, the situation is more involved. Here \agehto consider the instantaneous
rate of change, i.e., the derivative of the transition fiorctWe would like to define

(Lof)(z) = im (pt,th)(Z) —f(a) _ lim %E[f(XHh) — f(X))| X, = 2. (0.3.1)

By an informal calculation based on the Chapman-Kolmogorawaggn, we could then hope
that the transition function satisfies the differential @iipns

d d
(FE) Eps,tf = ah (psePeisnf) ln=o = psLof, and (0.3.2)
d d

(BE) - %p&tf =7 (Ds,s+hPsthtf) |h=0 + Ds,sLspstf = Lspsif- (0.3.3)

Markov processes Andreas Eberle



0.3. GENERATORS AND MARTINGALES 13

These equations are call&@lmogorov’s forward and backward equation respectively, since
they describe the forward and backward in time evolutiorhefttansition probabilities.
However, making these informal computations rigorous tsartaviality in general. The problem
is that the right-sided derivative ih (0.8.1) may not exatdll bounded functiong. Moreover,
different notions of convergence on function spaces leatifferent definitions ofZ, (or at least
of its domain). Indeed, we will see that in many cases, theegegar of a Markov process in
continuous time is an unbounded linear operator - for ircgagenerators of diffusion processes
are (generalized) second order differential operatorse Way to circumvent these difficulties
partially is the martingale problem of Stroock and Varadidmich sets up a connection to the
generator only on a fixed class of nice functions:

Let A be a linear space of bounded measurable functionsSoB), and letZ, : A — F(5),
t € I, be a collection of linear operators with domaihtaking values in the spacg(S) of
measurable (not necessarily bounded) function6i5).

Definition (Martingale problem). A stochastic procesg X;).c;, P) that is adapted to a filtra-
tion (F;) is said to be asolution of the martingale problem fof (L)1, A) iff the real valued
processes

t—1

Mtf = f(Xt) - Z('Csf)(Xs) if I = Z+, resp.

s=0

t
Ml = 00 - [ =R,
0
are (F;) martingales for all functiong € A.

In the discrete time case, a procg§d,), P) is a solution to the martingale problem w.r.t. the
operatorl, = m, — I with domain A = F,(S) if and only if it is a Markov chain with one-
step transition kernels;. Again, in continuous time the situation is much more triskyce the
solution to the martingale problem may not be unique, an@theblutions are Markov processes.
Indeed, the price to pay in the martingale formulation i€ th& usually not easy to establish
uniqueness. Nevertheless, if uniqgueness holds, and eveaisgs where uniqueness does not
hold, the martingale problem turns out to be a powerful toolderiving properties of a Markov
process in an elegant and general way. This together withlistainder weak convergence turns
the martingale problem into a fundamental concept in a modpproach to Markov processes.

Example. 1) Markov chains. As remarked above, a Markov chain solves the martingale
problem for the operator&,, F,(S)) where(L.f)(z) = [(f(y) — f(z))m(z, dy).

University of Bonn Winter term 2014/2015



14 CHAPTER 0. INTRODUCTION

2) Continuous time Markov chains. A continuous time process; = Yy, constructed from
a time-homogeneous Markov chdiH, ),cz, with transition kernetr and an independent
Poisson processV;);>o solves the martingale problem for the operdidrF,(S)) defined

by
(Cf)(x) = / () — F(@))ale, dy)

whereq(z, dy) = Aw(x, dy) are the jump rates of the process; );~,. More generally, we
will construct in Sectio_3]1 Markov jump processes with gyah finite time-dependent
jump intensitiesy (x, dy).

3) Diffusion processes.By Itd’s formula, a Brownian motion ifR™ solves the martingale
problem for

Lf= %Af with domainA = CZ(R").

More generally, an 1td diffusion solving the stochastidefiéntial equation (0.2.5) solves
the martingale problem for

1 — 0 f o
£tf—b(t,x)-Vf+§Zaij(t,x)axiawj, A= Ce(R"Y),

,j=1

wherea(t,z) = o(t, z)o(t,z)T. This is again a consequence of Itd’s formula, cf. Stochas-
tic Analysis, e.qg.[[7]/9].

0.4 Stability and asymptotic stationarity

A question of fundamental importance in the theory of Markovcesses are the long-time sta-
bility properties of the process and its transition functitn the time-homogeneous case that we
will mostly consider here, many Markov processes approaatgailibrium distributionu in the
long-time limit, i.e.,

Law(X;) - p ast — oo (0.4.1)

w.r.t. an appropriate notion of convergence of probabitigasures. The limit is then necessarily
astationary distribution for the transition kernels, i.e.,

w(B) = (up)(B) = /,u(dm)pt(x, B) foranyte I andB € B.

Markov processes Andreas Eberle



0.4. STABILITY AND ASYMPTOTIC STATIONARITY 15

More generally, the laws of the trajectoriés... = (Xs)s>: from timet onwards converge to
the law P, of the Markov process with initial distributiop, and ergodic averages approach
expectations w.r.tP,, i.e.,

t—1

1

S ZO F(Xn, Xpi1,...) . FdP,, (0.4.2)
1 [t :

- / F(Xs00)ds — / FdP, respectively (0.4.3)
t Jo D(R+4,S)

w.r.t. appropriate notions of convergence.

Statements as i (0.4.2) and (0]4.3) are cadlgpbdic theorems They provide far-reaching gen-
eralizations of the classical law of large numbers. We vp#rsd a substantial amount of time on
proving convergence statements asin (0.4.1), (0.4.2)@AdB) w.r.t. different notions of conver-
gence, and on quantifying the approximation errors asytigalty and non-asymptotically w.r.t.
different metrics. This includes studying the existenog amqueness of stationary distributions.
In particular, we will see inX X X that for Markov processes on infinite dimensional spaces (e.
interacting particle systems with an infinite number of joéest), the non-uniqueness of station-
ary distributions is often related tophase transition On spaces with high finite dimension the
phase transition will sometimes correspond to a slowdowhegequilibration/mixing properties
of the process as the dimension (or some other system pagreztds to infinity.

We start in Sections 1.1[- 1.4 by applying martingale theorilarkov chains in discrete time.
A key idea in the theory of Markov processes is to relate lomgg properties of the process to
short-time properties described in terms of its generafaro important approaches for doing
this are the coupling/transportation approach consider&ctior 1.6 F 1]7 and 2.5 for discrete
time chains, and thé&?/Dirichlet form approach considered in Chagter 4. Chdgterc2ges on
ergodic theorems and bounds for ergodic averages as i@)@dd (0.4.8), and in Chapter 3 we
introduce basic concepts and examples for Markov procéssestinuous time and the relation
to their generator. The concluding Chap®érstudies a few selected applications to interacting
particle systems. Other jump processes with infinite jumprisities (e.g. general Lévy pro-
cesses) as well as jump diffusions will be constructed aradyaad in the stochastic analysis
course.

University of Bonn Winter term 2014/2015



Chapter 1

Markov chains & stochastic stability

1.1 Transition probabilities and Markov chains

Let X, Y : Q — S berandom variables on a probability spae®(, P) with polish state spacg.
A regular version of the conditional distribution of Y given X is a stochastic kernel(z, dy)
on S such that

PlY € B|X|=p(X,B) P —a.s.foranyB e B.

If pis a regular version of the conditional distributionYofgiven X then
PIX €AY € Bl = E[P[Y € BIX]: X € A] = /p(x, B)ux(dx) foranyA B e B,
A

wherep x denotes the law oK. For random variables with a polish state space, regulaioms

of conditional distributions always exist, cf. [XXX] []. N@let . andp be a probability measure
and a transition kernel ofS, B). The first step towards analyzing a Markov chain with initial
distributiony and transition probability is to consider a single transitstep:

Lemma 1.1(Two-stage mode). Suppose thak andY are random variables on a probability
space(Q2,2(, P) such thatX ~ p andp(X, dy) is a regular version of the conditional law &f
givenX. Then

(X,)Y)~p@p and Y ~ pup,

whereu ® p and up are the probability measures g x S and S respectively defined by

o) = [ uti) ( [ e date y>) for Ac BB,

(1p)(C) = / u(dz)p(x,C) for C € B.

16



1.1. TRANSITION PROBABILITIES AND MARKQOV CHAINS 17

Proof. Let A = B x C'with B,C € B. Then

P[(X,Y)e A= P[X € B,Y € C] = E[P[X € B,Y € C|X]]
= E[lixen PlY € C|X]] = E[p(X,C); X € B
p(dz)p(z,C) = (p®p)(A), and

PlY € C] = P[(X,Y) € § x C] = (up)(C).

o

The assertion follows since the product sets form a gemgratistem for the produet-algebra
that is stable under intersections. O

1.1.1 Markov chains

Now suppose that we are given a probability meaguoa (S, B) and a sequenga, pa, . .. of
stochastic kernels oS, B). Recall that a stochastic proce&s : @ — S (n € Z,) defined
on a probability spacé&?, 2, P) is called an(F,,) Markov chain with initial distribution  and
transition kernely,, iff (X,,) is adapted to the filtratiofF,,), Xo ~ p, andp,1(X,,-) is a
version of the conditional distribution of,, ., givenF, for anyn € Z . By iteratively applying
Lemma_l.l, we see that w.r.t. the measure

P=u@p®p®---®p, onsiob-nt

the canonical process; (wp, w1, ..., w,) = wr (K = 0,1,...,n) is a Markov chain with initial
distributiony, and transition kernelg,, . . ., p, (e.9. w.r.t. the filtration generated by the process).
More generally, there exists a unique probability meagtren

Qcan - 3{07172,.“} - {(wn)n€Z+ S wp € S}

endowed with the produet-algebrall ., generated by the maps,, (w) = w, (n € Z,) such
that w.r.t. P,, the canonical process\,),cz, is a Markov chain with initial distribution: and
transition kernelg,,. The probability measurg, can be viewed as the infinite product

Pu:u®p1®p2®p3®... ,i.e.,
P, (dwo:00) = p(dzo)p1 (o, dv1)p2(w1, dos)ps(we, dxs) . . ..

We denote byPgE”) the canonical measure for the Markov chain with initial digttion ¢, and
transition kernel®,, 1, P12, Pnaz, - - -
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18 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

Theorem 1.2(Markov properties). Let(X,,),cz, be a stochastic process with state spages)
defined on a probability spadé?, 2, P). Then the following statements are equivalent:

(i) (X,, P)is a Markov chain with initial distribution. and transition kernelgy, ps, . . . .
(i) Xopn~p®@p @p2® -+ & p, W.ILt. P foranyn > 0.
(i) Xo.0o ~ P,.
(iv) Foranyn € Z, P)(Q is a version of the conditional distribution df,,... givenXj.,, i.e.,
E[F(Xn, Xni1- - )| Xom] = EQ[F]  P-ass.
for any2l.a-measurable functiot” : Qcan — R,

In the time homogeneous case, the properties (i)-(iv) ase aljuivalent to thetrong Markov
property:

(v) For any(F-X) stopping timel" : Q — Z, U {cc},
E [F(Xr, Xr41,...)|Fy] = Ex,[F] P-as.on{T < oo}

for any2lc.a-measurable functiolt” : Qcan — R,

The proofs can be found in the lectures notes of Stochasimegses [10], Sectiohs 2.2 2.3.

On a Polish state spacg any Markov chain can be represented as a random dynamial sy
tem in the form
Xn+1 = (I)n+1(Xn7 Wn—i—l)

with independent random variabl&g, W, W5, W3, ... and measurable functiods, ®,, ®s, ..
see e.g. Kallenberg{ X X|. Often such representations arise naturally:

Example. 1) Random Walk on RY. A d-dimensional Random Walk is defined by a recur-
rence relationX,, ., = X,, + W, with i.i.d. random variable§/’,, Wy, W5, ... :  — R¢
and a independent initial valug, : Q — R,
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1.1. TRANSITION PROBABILITIES AND MARKQOV CHAINS 19

2)

3)

Reflected Random Walk onS c R4. There are several possibilities for defining a re-
flected random walk on a measurable sulsset R?. The easiest is to set

Xn+1 = Xn + Wn+11{Xn+Wn+1€S}

with i.i.d. random variabledV; : @ — R<. One application where reflected random walks
are of interest is the simulation ¢fard-core models Suppose there aré particles of
diameter in a box B C R3. The configuration space of the system is given by

S:{(xl,...,xd)ERSd:xiEBand\xi—xﬂ>rVi7éj}.

Then the uniform distribution off is a stationary distribution of the reflected random walk
on S defined above.

State Space Models with additive noiseSeveral important models of Markov chains in
R? are defined by recurrence relations of the form

Xn+l = (I)(Xn) + Wn—H

with i.i.d. random variable$V; (i € N). Besides random walks these include digear
state space modelg/here

Xpi1 = AX, +W,,, forsome matrixd € R4,
and stochastic volatility models defined e.g. by

Xn+1 =X, + evn/QWn-Ha
Vier=m+a(V, —m)+ 02,44

with constantsy,c € R,,m € R, and i.i.d. random variabled’; and Z;. In the latter
class of modelsX,, stands for the logarithmic price of an asset afdor the logarithmic
volatility.

1.1.2 Markov chains with absorption

Given an arbitrary Markov chain and a possibly time-depahdbsorption rate on the state space

we can define another Markov chain that follows the same diggaontil it is eventually ab-

sorbed with the given rate. To this end we add an extra pbitd the state spac€ where the

Markov chain stays after absorption. L€, ),cz, be the original Markov chain with state space
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20 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

S and transition probabilities,,, and suppose that the absorption rates are given by meésurab
functionsw,, : S x S — [0, c], i.e., the survival (non-absorption) probabilityes®~(*) if the
Markov chain is jJumping fromx to y in the n-th step. LeE,, (n € N) be independent exponential
random variables with parametethat are also independent of the Markov ch@ki,). Then we

can define the absorbed chains with state spacé recursively byX? = X,

n+l —

" X, ifXY#4AA and  E,q > wn(Xn, Xny1),
A otherwise.

Example (Absorption at the boundary). If D is a measurable subset&fand we set

0 fory e D,
wn(x,y) -
oo  fory e S\D,

then the Markov chain is absorbed completely when exitiegdiimainD for the first time.

Lemma 1.3(Absorbed Markov chain). The proces$X ") is a Markov chain o5, w.r.t. the
filtration F,, = o(Xo, X1, ..., X, E1, ..., E,). The transition probabilities are given by

PY(z,dy) = e @y, (z, dy) + (1 — /e_w”(x’z)pn(:p, dz)) oa(dy) forz e S.

Proof. For any Borel subse® of S,

P [X71i)+1 S B|fn} - E [P [Xn—H S B: En+1 Z wn(Xna Xn+1)|O-(XO:ooa El:n)] ’-Fn]
= B [1p(Xp)em b)) X,
:/ew”(X”’y)pn(Xn,dy).
B
Here we have used the properties of conditional expecttod the Markov property farX,,).

The assertion follows since thealgebra onS U {A} is generated by the sets i and5 is
stable under intersections. O

1.2 Generators and martingales

Let (X, P.) be a time-homogeneous Markov chain with transition prdiighi and initial dis-
tribution X, = « P,-almost surely for any: € S.
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1.2.1 Generator

The average change ¢t X,,) in one transition step of the Markov chain starting:as given by

(CF)(x) = BLf(X1) — F(X0)] = / P, dy) (f(y) — f (). (1.2.1)

Definition (Generator of a time-homogeneous Markov chaih
The linear operatorC : F,(S) — F(S) defined by(1.2.1)is called thegeneratorof the Markov
chain (X, P,).

Examples. 1) Simple random walk onZ. Herep(z, ) = %@H + %5%1. Hence the gener-
ator is given by

(L) =5 (fle+ 1)+ flz = 1)=f(2) = S [(fz +1) = f(z)) = (f(z) = flz = 1))].

N | =
N |

2) Random walk onR9. A random walk orR? with increment distribution: can be repre-
sented as

Xn:m—i-ZWk (n€Zs)
k=1

with independent random variabl@&g, ~ . The generator is given by
(£5)@) = [ £+ wnldu) - fa) = [ (7ot w) = f@)ldu)

3) Markov chain with absorption. Suppose thaf is the generator of a time-homogeneous
Markov chain with state space Then the generator of the corresponding Markov chain
on SU{A} with absorption ratev(z, y) is given by

(LY f)(x) = (p* f)(x) = f(2) = p (") f) = f()
=L (e‘w(x")f) (x) + (e_“’(”;) — 1) f(x)

for any bounded functiorf : S U {A} — R with f(0) = 0, and for anyz € S.

1.2.2 Martingale problem

The generator can be used to identify martingales assdd@mseMarkov chain. Indeed {fX,,, P)
is an(F,,) Markov chain with transition kernel then for f € F,(.5),

Bf(Xin) — J(XOIF] = Ex, [F(X0) = [(X0)] = (£F)(X) P-asvk > 0.
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22 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

Hence the proces¥ /! defined by
MY = F(X,) - YLD, ne s, (12.2)

is an(F,,) martingale. We even have:

Theorem 1.4(Martingale problem characterization of Markov chains). Let X,, : 2 — S be
an (F,,) adapted stochastic process defined on a probability sgeicél, P). Then(X,,, P) is
an (F,,) Markov chain with transition kernel if and only if M!/!, defined by(I.Z.2)is an (F,,)
martingale for any functiorf € F,(5).

The proof is left as an exercise.

The result in Theorefn 1.4 can be extended to the time-inhemsayus case. Indeed,(iX,,, P)

is an inhomogeneous Markov chain with state spé@nd transition kernelg,, n € N, then

the time-space process, := (n, X,) is a time-homogeneous Markov chains with state space
Z, x S. Let

~

(L0)0.2) = [ puss(ady) 0+ 1,9) = f(0.9)
= En-i—lf(n + 17 )(I) + f(n + 1,%) - f(n,:z:)
denote the correspondinigne-space generator

Corollary 1.5 (Time-dependent martingale problen). Let X,, : Q2 — S be an(F,,) adapted
stochastic process defined on a probability sp&ee, P). Then(X,, P) is an (F,) Markov
chain with transition kernelg,, p,, . .. if and only if the processes

n

MU= )= D L)k X)) (n€Zy)

are (F,,) martingales for all bounded functionse F,(Z, x S).

Proof. By definition, the proces§X,,, P) is a Markov chain with transition kernels, if and
only if the time-space proce$&, X,,), P) is a time-homogeneous Markov chain with transition
kernel

p((n, ), +) = g1 @ Prsa(z, -)-

The assertion now follows from Theorém]1.4. O
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In applications it is often not possible to identify relevamartingales explicitly. Instead one
is frequently using supermartingales (or, equivalentijgrsartingales) to derive upper or lower
bounds on expectation values one is interested in. It is ¢tbemenient to drop the integrability
assumption in the martingale definition:

Definition (Non-negative supermartingald. A real-valued stochastic proce&s/,,, P) is called
anon-negative supermartingalev.r.t. a filtration (F,,) if and only if for anyn € Z..,

(i) M, >0 P-almostsurely,
(i) M, is F,-measurable, and
(i) E[M,1|F,) < M, P-almost surely.

The optional stopping theorem and the supermartingaleszgence theorem have versions for
non-negative supermartingales. Indeed by Fatou’s lemma,

E[Mp; T < oo] <liminf E[Mrp,| < E[My]

n—o0

holds for anarbitrary (F,,) stopping timel" : Q — Z, U {oc}. Similarly, the limit

My, = lim M,

n—oo

exists almost surely if0), o).

1.2.3 Potential theory for Markov chains

Let (X, P,) be a canonical time-homogeneous Markov chain with stateegpa3) and
generator

(Lf)(@) = (pf)(@) — fz) = E:[f(X1) — f(Xo)]
By Theoreni 14,
M = £(Xa) = Y (LX)

<n
is a martingale w.r.t(F.X) and P, for anyz € S andf € F,(S). Similarly, one easily verifies
that if the inequalityC f < —c holds for non-negative functions ¢ € 7, (5), then the process

MY = f(Xa) + Y el(X)
<n
is a non-negative supermartingale w.rtF=X) and P, for anyxz € S. By applying optional
stopping to these processes, we will derive upper boundsaftous expectations of the Markov
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24 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

chain.
Let D € B be a measurable subset©fWe define thexterior boundary of D w.r.t. the Markov
chain as

= | suppp(z,-)\ D

xeD
where the support supp) of a measure: on (S, B) is defined as the smallest closed set A such
that, vanishes omic. Thus, open sets contained in the complemei? 0D D can not be reached
by the Markov chain in a single transition step frdm

Examples. (1). For the simple random walk dZr, the exterior boundary of a subsetc Z4
is given by
0D ={x € Z°\ D : |x —y| = 1 for somey € D}.

(2). For the ball walk orR? with transition kernel
p(z,-) = Unif (B(z,r)),
the exterior boundary of a Borel sbt € B is ther-neighbourhood
OD = {z € R*\ D : dist(x, D) < r}.

Let
T =min{n >0: X, € D}

denote the first exit time from®. Then
Xr €90D Pyas.onT < oo} foranyz € D.

Our aim is to compute or bound expectations of the form

- w(Xn
@) = By e 20" p ) T < oo +

T— n_1

B3 B )

=0

(1.2.3)

for given non-negative measurable functiohs 0D — R,,c,w : D — R,. The general
expression[(1.213) combines a number of important probisiland expectations related to the
Markov chain:

Examples. (1). w =0,¢ =0, f = 1: Exit probability from D:

u(z) = Pp[T < o0
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(2). w=0,c=0,f=1p,B C D : Law of the exit point Xr:
u(z) = P[Xr € B;T < 0.

For instance iDD is the disjoint union of setd andB and f = 1 then
U(l’) = PI[TB < TA]

(3). w =0, f =0,c= 1: Mean exit time from D:

(4). w=0,f=0,c= 1g: Average occupation time ofB before exiting D:

u(z) = Gp(z, B) where

TX:_I 1B(Xn)] = iPx[Xn € B,n < T).

n=0

GD<.%',B) = Ex

n=0
Gp is called thepotential kernel or Green kernel of the domainD, it is a kernel of
positive measure.

(5). ¢c=0, f =1,w = X for some constamt > 0: Laplace transform of mean exit time:

u(z) = Egxlexp (=AT)].

(6). c=0,f=1,w= Apgforsome) > 0, B C D: Laplace transform of occupation time:

exp <—)\2 1B(Xn)>] :

n=0

The next fundamental theorem shows that supersolutions &ssociated boundary value prob-
lem provide upper bounds for expectations of the fdrm (}.2Tis observation is crucial for
studying stability properties of Markov chains.

Theorem 1.6(Maximum principle ). Suppose € F, (.S) is a non-negative function satisfying

IN

Ly < (e’ —1)v—e“c onD, (1.2.4)
v>f onobD.

Vv

Thenu < v.
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The proof is straightforward application of the optionalgting theorem for non-negative super-
martingales, and will be given below. The expectatidm) can be identified precisely as the
minimal non-negative solution of the corresponding boupdalue problem:

Theorem 1.7(Dirichlet problem, Poisson equation, Feynman-Kac formuld. The functionu
Is theminimal non-negative solutiorof the boundary value problem

Lv=(e"—1)v—e€Yc onD, (1.2.5)
v=f onoD.

If c =0, fisbounded and’ < o P,-almost surely for any € S, then u is theinique bounded
solution of (1.2.5). We first prove both theorems in the case& 0. The extension to the general
case will be discussed afterwards.

Proof of Theorerh 116 fow = 0: Letv € F,(S) such thatCv < —c on D. Then the process

is a non-negative supermartingale. In particulaf,,) converges almost surely to a limit
M., > 0, and thusM is defined and non-negative even{0h = oo}. If v > f ondD then

T-1

My > f(Xr)lgeoy + Y e(X5). (1.2.6)

=0

Therefore, by optional stopping combined with Fatou’s lea;mm
u(z) < E[Mr] < E.[My] = v(x) (1.2.7)
O

Proof of Theorer 117 fow = 0: By Theoreni 1.6, all non-negative solution®f (1.2.5) dom-
inate v from above. This proves minimality. Moreover,df= 0, f is bounded, and” < o
P,-a.s. for anyz, then(),,) is a bounded martingale, and hence all inequalitie§ In @} &nd
([@.2.1) are equalities. Thus if a non-negative solutiorflg2.8) exists then it coincides with
l.e., uniqueness holds.

It remains to verify that satisfies[(1.2]4). This can be done by conditioning on thedtep of
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the Markov chain: Fox € D, we havel’ > 1 P,-almost surely. In particular, i’ < co then X
coincides with the exit point of the shifted Markov chaiK,, 1 ),>o, and7 — 1 is the exit time
of (X,.+1). Therefore, the Markov property implies that

E,

F(Xr)lrcoey + Z c(Xn)]Xll

n<T

= C(.T) + Em f(XT)]-{T<oo} + Z C(Xn+1)|X1]
= c(z) + Ex, | [(X7)l{r<oe} + Z C(Xn)]
n<T

= c¢(z) +u(X;) P,-almost surely,

and hence

u(z) = Eq e(z) + u(X1)] = c(z) + (pu)(2),
ie., Lu(zx)=—c(z).

Moreover, forz € 0D, we havel’ = (0 P,-almost surely and hence
u(x) = Eu[f(Xo)] = f(=).
O

We now extend the results to the casez 0. This can be done by representing the expectation
in (I.Z.5) as a corresponding expectation witke 0 for an absorbed Markov chain:

Reduction of general case to= 0: We consider the Markov chaifX’) with absorption rate
w defined on the extended state spacg A} by X = X,

X o — Xn+1 if X;LU # A andEn+1 Z /LU(Xn),
e A otherwise,

with independent Ex ) distributed random variablds;(: € N) that are independent ¢X,,) as
well. Settingf(A) = ¢(A) = 0 one easily verifies that

S
L

u(r) = B [f(X7); T < ool + Ex[p_ e(X,))].

3
Il
o

By applying Theoremi 116 arid 1.7 with = 0 to the Markov chain X*), we see that; is the
minimal non-negative solution of

LYY =—c onD, wu=f ondD, (1.2.8)
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and any non-negative supersolutioof (1.2.8) dominates from above. Moreover, the boundary
value problem[{1.2]8) is equivalent fo (1]2.5) since

L =e“pu—u=e"Lu+t (e —1)u=—c
ifandonly if Lu= (e —1)u—e“c.

This proves Theorein 1.6 and the main part of Thedrem 1.7 isdkew # 0. The proof of the
last assertion of Theorelm 1.7 is left as an exercise. O

Example (Random walks with bounded steps We consider a random walk dR with tran-
sition stepr — = + W where the increment’ : 2 — R is a bounded random variable, i.e.,
|W| < r for some constant € (0, 00). Our goal is to derive tail estimates for passage times.

T, =min{n >0: X, > a}.

Note that7, is the first exit time from the domai® = (—o0,a). Since the increments are
bounded by, 9D C [a, a+r]|. Moreover, the moment generating functisth\) = Elexp (A\IW)],
A € R, is bounded by*", and for\ < 0, the functionu(z) = ¢* satisfies

(Lu)(z) = B, [*T] — M = (Z(\) — 1) &M  forz € D,

u(zx) > Mot forz € 0D.

By applying Theoreni 116 with the constant functionsand f satisfyinge®® = Z(\) and
f(z) = eMetm) we conclude that

E, [Z(\) M) T < oo] <M VrzeR (1.2.9)
We now distinguish cases:

(i) E[W] > 0 : In this case, by the Law of large numbers, — oo P,-a.s., and hence
P,|T, < o] = 1foranyz € R. Moreover, for\ < 0 with |\| sufficiently small,

Z(\) = EeM] =1+ AEW]+0(N\) < 1.

Therefore,[(1.219) yields the exponential moment bound

Ta
E, [(ﬁ) } < e Natr—a) (1.2.10)

foranyz € R and)\ < 0 as above. In particular, by Markov’s inequality, the passtaige
T, has exponential tails:

P[T, > n] < Z(A)"EL[Z(A) "] < Z(A)re M40,
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(i) E[W] = 0 : In this case, we may hav&(\) > 1 for any A € R, and thus we can not
apply the argument above. Indeed, it is well known that fetance for the simple random
walk onZ even the first moment, [T, ] is infinite, cf. [Eberle:Stochastic processes] [10].
However, we may apply a similar approach as above to theimetly, _, ., from a finite
interval. We assume thd&t’ has a symmetric distribution, i.d¥ ~ —WW. By choosing
u(x) = cos(Azx) for someX > 0 with A(a + r) < 7/2, we obtain

(Lu)(x) = Elcos(A\x + W)] — cos(A\x)
= cos(\x)E[cos(AW)] + sin(Az) E[sin(AW)] — cos(\x)
= (C(N\) — 1) cos(Ax)
whereC'(\) := E[cos(AW)], andcos(Ax) > cos (N(a +r)) > 0 for z € d(—a,a). Here
we have used thal(—a,a) C [—a —r,a + r| andA(a + r) < w/2. If W does not vanish

almost surely thew'(\) < 1 for sufficiently small\. Hence we obtain similarly as above
the exponential tail estimate

Pa: [T‘(—a,a)C > TL} < O(/\)nE [C’(A)—T(,a’wc} < C()\)Tb COS()\'T)

——  f :
- cos(A(a+71)) orfz} < a

1.3 Lyapunov functions and recurrence

The results in the last section already indicated that sigperonic functions can be used to con-
trol stability properties of Markov chains, i.e., they camng as stochastic Lyapunov functions.
This idea will be developed systematically in this and thet sections. As before we consider a
time-homogeneous Markov chaliX,,, P,) with generatoi. = p — I on a Polish state space
endowed with the Boret-algebraB. We start with the following simple observation:

Lemma 1.8.[Locally Superharmonic functions and supermartingalglset A € 5 and suppose
thatV € F,(9) is a non-negative function satisfying

LV < —c onS\A
for some constant > 0. Then the process
M, =V (Xonr,) + ¢ (n ATy) (1.3.1)
is a non-negative supermartingale.

The elementary proof is left as an exercise.
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1.3.1 Recurrence of sets
The first return time to a set is given by
Ty =inf{n>1:X, € A}.
Notice that
Ta =Ty - 1ixeear,

i.e., the first hitting time and the first return time coincitland only if the chain is not started in
A.

Definition (Harris recurrence and positive recurrence). A setA € B is calledHarris recur-
rent iff
PT} <oo]=1 foranyz € A.

It is called positive recurreniff

E,[Tf] <oco foranyz e A.

The name “Harris recurrence” is used to be able to diffead@tbetween several possible notions
of recurrence that are all equivalent on a discrete stateedmat not necessarily on a general state
space, cf. [Meyn and Tweedie: Markov Chains and Stochasaigil&y] [23]. Harris recurrence

is the most widely used notion of recurrence on general sjgdees. By the strong Markov
property, the following alternative characterisation&lso

Exercise. Prove that a sel € 5 is Harris recurrent if and only if
P.[X,, € Ainfinitely often =1 foranyz € A

We will now show that the existence of superharmonic fumdiaith certain properties provides
sufficient conditions for non-recurrence, Harris recuceeand positive recurrence respectively.
Below, we will see that for irreducible Markov chains on cabié spaces these conditions are
essentially sharp. The conditions are:

(LT) There exists a functiol” € F,(S) andy € S such that

LV <0onA®andV(y) < ing.

(LR) There exists a functiol” € F', (S) such that

LV <0onA°andTy~q < oo P,-a.s. foranyr € S andc > 0.
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(LP) There exists a functioW € F, (S) such that

LV < —1onA°andpV < ocoonA.

Theorem 1.9. (Foster-Lyapunov conditions for non-recurrence, Harrisecurrence and
positive recurrence)

(1). If (LT) holds then
Py[Tx < 00] < V(y)/infV < 1.
(2). If (LR) holds then

P,[Ty < o0l =1 foranyz e S.

In particular, the set4 is Harris recurrent.
(3). If (LP) holds then
E.[Ta] <V(z) <o foranyz € A, and
E.T5] < (pV)(z) < o foranyz € A.

In particular, the setA is positive recurrent.

Proof: (1). If LV < 0onA°then by Lemma&1l8the proces, = V (X7, ) IS @ non-negative

supermartingale w.r.t?, for any x. Hence by optional stopping and Fatou’s lemma,
V(y) = Ey[My] > E,[Mr,; T4 < 00] > Py[T4 < 0] -ing.
Assuming(LT"), we obtainP, [Ty < oo] < 1.
(2). Now assume thdt. R) holds. Then by applying optional stopping(td/,,), we obtain
V() = E.[Mo] > Ex[Mr, .| = Ex[V(X1urryye,y)] = cPu[Ta = o]

foranyc > 0 andx € S. Here we have used thdy, .., < oo P,-almost surely and
henceV(XTAAT{V>C}) > ¢ P,-almost surely o7y = oco}. By letting ¢ tend to infinity,
we conclude thaP, [Ty = oco] = 0 for any .

(3). Finally, suppose thall” < —1 on A¢. Then by Lemma_1l8,

M, =V (Xurr,) + n ATy
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is a non-negative supermartingale w.i?, for any x. In particular,(M,,) convergesP,-
almost surely to a finite limit, and hené& [Ty < oo| = 1. Thus by optional stopping and
sinceV > 0,

E,[T4) < E,[Mr,] < E.[My] =V(z) foranyze S. (1.3.2)

Moreover, we can also estimate the first return time by carditg on the first step. In-
deed, forr € A we obtain by[(1.3]2):

Ex[TX] =k, [E:E[TX‘XIH =Lk, [EXl [TAH < Em[V(Xl)] = (pV)(ZL’)

ThusA is positive recurrent if L P) holds.
Ol

Example (State space model orR?). We consider a simple state space model with one-step
transition
r—=x+bx)+ W

whereb : R? — R? is a measurable vector field afid : @ — R? is a square-integrable random
vector with E[W] = 0 andCov(W*, W) = §,;. As a Lyapunov function we try

V(z) = |z|/e for some constant > 0.
A simple calculation shows that

e(LV)(z)=F [|x +b(z) + W|2] — |z|?
— o+ (@) BIWP] — [ = 22 () + [b(&) + .

Therefore, the conditiofV (z) < —1 is satisfied if and only if
21 - b(x) + |b(z)]* + d < —e.

By choosings small enough we see that positive recurrence holds for/@ll ) with r suffi-
ciently large provided

limsup (2z - b(z) + |b(z)]*) < —d. (1.3.3)

|z| =00

This condition is satisfied in particular if outside of a bétle radial componerdt (x) = T -b(x)
of the drift satisfieg1 — 6)b,(z) < —5% for somed > 0, and|b(z)|?/r < —6 - b.(z).

~ 2a]
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Exercise. Derive a sufficient condition similar td (1.3.3) for poséivecurrence of state space
models with transition step

r—x+b(x) +o(x)W

whereb andW are chosen as in the example above and a measurable function froiR? to
Rdxd_

Example (Recurrence and transience for the simple random walk orZ¢). The simple random
walk is the Markov chain ofZ? with transition probabilitew(z,y) = 55 if |z — y| = 1 and
p(z,y) = 0 otherwise. The generator is given by

ISH

1

(LF)(x) = =

~(Anf)(a (+e) = f(2) = (f(2) = fz —ei))].

2d

In order to find suitable Lyapunov functions, we approxintatediscrete Laplacian dff by the
Laplacian orR¢. By Taylor's theorem, foif € C*(R%),

flx+e) — flx) =0:f(x) + 82f( )+ = Lop, flx) + Loz, S(8),

2 k23 6 111 4 21
flo =) = F@) = ~0f (@) + 5087 (@) ~ SO%f () + o0 f ().

where¢ andn are intermediate points on the line segments betweamndz + ¢;, x andx — e;
respectively. Adding thes&i equations, we see that

Agzaf(x) = Af(x) + R(x), where (1.3.4)
d 4
R < g s 1071, (1.35)

This suggests to choose Lyapunov functions that are cldsartaonic functions oiR? outside a
ball. However, since there is a perturbation involved, witwat be able to use exactly harmonic
functions, but we will have to choose functions that aretyrisuperharmonic instead. We try

V(z) = |z for somep € R.

By the expression for the Laplacian in polar coordinates,

AV(x):(d—2+d_1 d)rp

dr? r dr

=p-(p—1+d—1)r"?
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wherer = |z|. In particular,V is superharmonic oR¢ if and only if p € [0,2—d] orp € [2—d, 0]
respectively. The perturbation term can be controlled dyngahat there exists a finite constant
C' such that

10V (x)|| < C - |z|P~* (Exercise).

This bound shows that the approximation of the discretedaah by the Laplacian oR? im-
proves if|z| is large. Indeed by (1.3.4) and (1.B.5) we obtain

LV () = AV (z)

2d

p o, C
< = d— 2)r? — P2,
_2d<p+ )r +2dr

ThusV is superharmonic fof outside a ball providegd € (0,2—d) orp € (2—d, 0) respectively.
We now distinguish cases:

d > 2 : Inthis case we can chooge< 0 such thatCV' < 0 outside some balB(0, ry). Sincer?
Is decreasing, we have

V(z) < inf V  foranyaz with |z| > 7,
B(0,r0)

and hence by Theorem 1.9,
P, [Ty < 00| <1 wheneverz| > rg.

Theoren_1.10 below shows that this implies that any finiteésseansient, i.e., it is almost
surely visited only finitely many times by the random walkwéin arbitrary starting point.

d < 2 : In this case we can choope= (0,2 — d) to obtainV < 0 outside some balB(0, r).
Now V' (z) — oo as|z| — oco. Sincelimsup |X,,| = co almost surely, we see that

Tivsey < 0o P,-almost surely for any ¢ Z% andc € R,..

Therefore, by Theoreim 1.9, the b&l0, r,) is (Harris)recurrent. By irreducibility this
implies that any state ¢ Z< is recurrent, cf. Theorefn 1110 below.

d = 2 : This is the critical case and therefore more delicate. Trapluyov functions considered
above can not be used. Since a rotationally symmetric hamfamction for the Laplacian
onR? is log ||, it is natural to try choosing’(z) = (log |z|)* for somea € R, . Indeed,
one can show by choosing appropriately that the Lyapunowition for recurrence is
satisfied in this case as well:
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Exercise (Recurrence of the two-dimensional simple random walk Show by choosing an
appropriate Lyapunov function that the simple random walZéis recurrent.

Exercise(Recurrence and transience of Brownian motioj. A continuous-time stochastic pro-
cess((Bt)te[o,oo), Pm) taking values iR? is called aBrownian motion starting at ¥ the sample
pathst — B;(w) are continuousB, = = P,-a.s., and for every € C?(R?), the process

1

1 _ 1
M = (B =5 [ ArB)as

is a martingale w.r.t. the filtratioX” = o(B; : s € [0,t]). LetT, = inf{t > 0: |B;| = a}.
a) Computel, [T, < Ty] fora < |z| < b.

b) Show that forl < 2, a Brownian motion is recurrent in the sense tRgf}, < o] = 1 for
anya < |z|.

c) Show that ford > 3, a Brownian motion is transient in the sense tRAT, < co] — 0 as

|z| = 0.

You may assume the optional stopping theorem and the malicgnvergence theorem in con-
tinuous time without proof. You may also assume that the kcegplaapplied to a rotationally
symmetric functiog(x) = ~(|x|) is given by

. d . d d? d—14d
Ag(z) =r! d_— (rd 1%’y> (r) = W’y(r) + " %7(7“) wherer = |z|.

(How can you derive this expression rapidly if you do not narier it?)

1.3.2 Global recurrence

For irreducible Markov chains on countable state spacesrmence respectively transience of an
arbitrary finite set already implies that recurrence resgndience holds for any finite set. This
allows to show that the Lyapunov conditions for recurrence sansience are both necessary
and sufficient. On general state spaces this is not necgssas, and proving corresponding
statements under appropriate conditions is much moreadeli®Ve recall the results on countable
state spaces, and we state a result on general state spduast wroof. For a thorough treatment
of recurrence properties for Markov chains on general sipéees we refer to the monograph
“Markov chains and stochastic stability” by Meyn and Tweed23].
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a) Countable state space

Suppose thai(z,y) = p(z, {y}) are the transition probabilities of a homogeneous Markairch
(X,, P,) taking values in a countable sgétand letT;, andT;" denote the first hitting resp. return
time to a sefy} consisting of a single staiee S.

Definition (Irreducibility on countable state space$. The transition matrixp and the Markov
chain(X,, P,) are calledirreducible if and only if

(1). Ve,y € S:3In € Zy : p™(x,y) > 0, or equivalently, if and only if
(2). Y,y € §: P[T, < o0] > 0.

If the transition matrix is irreducible then recurrence gqusitive recurrence of different states
are equivalent to each other, since between two visits te@ament state the Markov chain will
visit any other state with positive probability:

Theorem 1.10(Recurrence and positive recurrence of irreducible Markov chains). Suppose
that S is countable and the transition matrixis irreducible.

(1). The following statements are all equivalent:

(i) There exists a finite recurrent sdtC S.
(i) Foranyz € S, the set{x} is recurrent.
(i) Forany z,y € S,
P.[X,, = y infinitely often] = 1.

(2). The following statements are all equivalent:

(i) There exists a finite positive recurrent setC S.
(i) Foranyz € S, the set{z} is positive recurrent.

(i) Forany z,y € S,

The proof is left as an exercise, see also the lecture notéStonhastic Processes?, [10]. The
Markov chain is calledglobally) recurrent iff the equivalent conditions in (1) hold, and tran-
sient iff these conditions do not hold. Similarly, it is eal(globally) positive recurrent iff the
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conditions in (2) are satisfied. By the example abovedfer 2 the simple random walk oA? is
globally recurrent but not positive recurrent. by 3 it is transient.

As a consequence of Theorém 1.10, we obtain Lyapunov condifior transience, recurrence
and positive recurrence on a countable state space thavtredcessary and sufficient:

Corollary 1.11 (Foster-Lyapunov conditions for recurrence on a countable te space.
Suppose tha$' is countable and the transition matrixis irreducible. Then:

1) The Markov chain is transient if and only if there existsngtdi setA C S and a function
V € F,(S) such that( LT holds.

2) The Markov chain is recurrent if and only if there existsratd setA C S and a function
V € F.(9) such that

(LR") LV <0onA° and{V < c}isfinite for anyc € R,.

3) The Markov chain is positive recurrent if and only if thesasts a finite setl C S and a
functionV € F, () such that( L P) holds.

Proof: Sufficiency of the Lyapunov conditions follows directly byn@doremg 119 and 1.10: If
(LT') holds then by 119 there exisgse S such thatP, [Ty < oo, and hence the Markov chain is
transient by 1.70. Similarly, ifZP) holds thenA is positive recurrent bly 1.9, and hence global
positive recurrence holds loy 1]10. Finally(fR’) holds and the state space is not finite, then
for anyc € R, the sef{V < ¢} is not empty. Thereford,LR) holds by irreducibility, and the
recurrence follows again from 1.9 and 1.10.5lfs finite then any irreducible chain is globally

recurrent.
We now prove that the Lyapunov conditions are alsoessary:

1) If the Markov chain is transient then we can find a state S and a finite sed C S such
that the functiorl/(z) = P,[T4 < oo| satisfies

Viz)<1= iI}‘fV.
By Theoreni L7} is harmonic onA¢ and thug LT)) is satisfied.

2) Now suppose that the Markov chain is recurrenf i$ finite then(L R’) holds withA = S
for an arbitrary functio/ € F,(.S). If S is not finite then we choose a finite sétC S
and an arbitrary decreasing sequence of sgts” S such thatd C DS, D¢ is finite for
anyn, and( D,, = (), and we set

Vo(x) = Pu[Tp, < Tal.
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ThenV,, =1onD, and as» — oo,
Vo(z) \( Pe[T4 =00] =0 foranyz € S.
SinceS is countable, we can apply a diagonal argument to extradbsesuence such that
V(z) = i Vo () < oo foranyz e S.
n=0
By Theoreni 1J7, the functiorig, andV are harmonic oi$' \ A. MoreoverV > konD,, .
Thus the sub-level sets of are finite, and LR') is satisfied.

3) Finally if the chain is positive recurrent then for an &mdniy finite setd C S, the function
V(z) = E,[T4] is finite and satisfie€V = —1 on A°. Since

(pV)(@) = B [Ex,[Ta]] = B [E[T1|X1]] = Eu[T] < o0

for anyz, condition(LP) is satisfied.

b) Extension to locally compact state spaces

Extensions of Corollarly_1.11 to general state spaces argivial.t Suppose for example that

is locally compact, i.e., there exists a sequence of compact &gts~ S such thatS = | K.
neN
Let p be a transition kernel oS, 3), and let\ be a positive measure @8, ) with full support,

i.e., \(B) > 0 for any non-empty open sé&t C S. For instanceS = R? and ) the Lebesgue
measure.

Definition (A-irreducibility and Feller property ).

1) The transition kernep is called M-irreducible if and only if for anyx € S and for any
Borel setd € B with A(4) > 0, there exists € Z, such thap™(z, A) > 0.

2) pis calledFeller iff
(F) »pfeCy(S) foranyf e Cy(S)

One of the difficulties on general state spaces is that threrditierent concepts of irreducibility.
In general A-irreducibility is a strictly stronger condition thaapological irreducibility which
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means that every non-empty open Bet S is accessible from any statec S.
The following equivalences are proven in Chapter 9 of [Meyd @&wveedie: Markov Chains and
Stochastic Stability] [23]:

Theorem 1.12(Necessary and sufficient conditions for Harris recurrence o a locally com-
pact state spacg Suppose that is a A-irreducible Feller transition kernel oS, B). Then the
following statements are all equivalent:

(i) There exists a compact skt C S and a function” € F,(.S) such that

(LR") LV <0onK¢ and{V < c}is compact for any € R..

(i) There exists a compact sét C S such that/’ is Harris recurrent.
(i) Every non-empty open Balp C S is Harris recurrent.

(iv) Foranyz € S and any setd € B with A\(A) > 0,

P,[X, € Ainfinitely often] = 1.

The idea of the proof is to show at first thapifs A-irreducible and Feller then for any compact
setK C S, there exist a probability mass functiém,) onZ, , a probability measure on (.S, B),
and a constant > 0 such that the minorization condition

Z app™(z, ) > ev (1.3.6)

n=0
holds for anyr € K. In the theory of Markov chain on general state spaces, & seith this
property is callecpetite. Given a petite sek’ and a Lyapunov condition oA one can then
find a strictly increasing sequence of regeneration tiffigén € N) such that the law o,
dominates the measuse from above. By the strong Markov property, the Markov chairkesa
a “fresh start” with probabilitye at each of the regeneration times, and during each excursion
between two fresh start it visits a given sésatisfyingA(A) > 0 with a fixed strictly positive
probability.

Example (Recurrence of Markov chains onR).
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1.4 The space of probability measures

Our next goal is to study convergence of Markov chains taastaty distributions. To this end
we consider different topologies and metrics on the space) of probability measures on a
Polish spaces endowed with its Boret-algebraB. We study and apply weak convergence of
probability measures in this section, and we consider Wsigse and total variation metrics in
the next two sections. A useful additional reference fos g&ction is [Billingsley:Convergence
of probability measures| [2]. Recall th&(.5) is a convex subset of the vector space

M(S) = {apy — B py, i € P(S),, 8> 0}

consisting of all finite signed measures %1 5). By M., (S) we denote the set of all (not
necessarily finite) non-negative measureg.8113). For a measurg and a measurable function
f we set

pu(f) = /fdu whenever the integral exists.

Definition (Invariant measures, stationary distribution). A measureu € M. (S) is called
invariant w.r.t. a transition kernep on (S, B) iff up = p, i.e., iff

/,u(dx)p(x, B) =u(B) foranyB € B.

An invariant probability measure is also calledsationary (initial) distribution or an equilib-
rium of p.

Exercise. Show that the set of invariant probability measures for amgitransition kerneb is a
convex subset dP(.S).

1.4.1 Weak topology

Recall that a sequendg; ). Of probability measures off, ) is said toconverge weaklyto
ameasurg € P(S) if and only if

() pe(f) = p(f) foranyf e Gy(S).

ThePortemanteau Theoremstates that weak convergence is equivalent to each of tleeviol
properties:

(i) wux(f) — p(f) forany uniformly continuoug € C(S).

(iii) limsup pg(A) < p(A) forany closed setl C S.
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(iv) liminf p(O) > p(O) forany opensed C S.

(V) limsup ux(f) < u(f) forany upper semicontinuous functign S — R that is bounded
from above.

(vi) liminf ux(f) > wu(f) for any lower semicontinuous functigh: S — R that is bounded
from below.

(Vi) ux(f) — p(f) forany functionf € F,(S) that is continuous gi-almost everyr € S.

For the proof see e.g. [Stroock:Probability Theory: An Amial View] [34], Theorem 3.1.5, or
[Billingsley:Convergence of probability measures] [2]. Tlo#owing observation is crucial for
studying weak convergence on polish spaces:

Remark (Polish spaces as measurable subset [0f 1]Y). Suppose thatS, o) is a separable
metric space, anflr,, : n € N} is a countable dense subset. Then the map

S = [0, 1N
h: - ( o(z,zn) > (1.4.1)
! THewen) ) ey

is a homeomorphism frorfi to 1 (S) provided|0, 1]" is endowed with the product topology (i.e.,
the topology corresponding to pointwise convergence).eimegal .(S) is a measurable subset
of the compact spade, 1] (endowed with the produet-algebra that is generated by the product
topology). If S is compact ther(.S) is compact as well. In general,

S=n(S)cSclo1l

whereS := h(S) is compact since it is a closed subset of the compact gpat€. ThusS can
be viewed as a compactification &f

On compact spaces, any sequence of probability measurasteskly convergent subsequence.

Theorem 1.13.If S is compact therP(.S) is compact w.r.t. weak convergence.

Proof: Suppose tha$ is compact. Then it can be shown based on the remark abové’lsat
is separable w.r.t. uniform convergence. Thus there eaistequence,, € C(S) (n € N) such
that||g,||sup < 1 for anyn, and the linear span of the functiogisis dense irC'(5).

Now consider an arbitrary sequeng@g,)xcn in P(S). We will show that(y,) has a convergent
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subsequence. Note first that (g, ) )ken iS @ bounded sequence of real numbers foranBy a
diagonal argument, we can extract a subsequenc¢®cy of (114 )ken such thaguy, (g,) converges
asl — oo for everyn € N. Since the span of the functiopgs is dense irC'(S), this implies that

A(f) = lim p, (f) (1.4.2)

exists for anyf € C(S). Itis easy to verify that\ is apositive (i.e., A(f) > 0 wheneverf > 0)
linear functional orC'(.S) with A(1) = 1. Moreover, if( f,,).cn IS a decreasing sequenceiifs)
such thatf,, ™\, 0 pointwise, thery,, — 0 uniformly by compactness d¢f, and hencé\(f,,) — 0.
Therefore, there exists a probability measurmn S such that

A(f) = nu(f) foranyf e C(S).
By (1.4.2), the sequendgy,) converges weakly tp. O

Remark (A metric for weak convergencg. Choosing the functiog,, as in the proof above, we
see that a sequen¢g;. ).cn Of probability measures i?(.S) converges weakly tg if and only

if uk(gn) — 1(gn) foranyn € N. Thus weak convergence #(.S) is equivalent to convergence
w.r.t. the metric

d(p,v) = 27" |ul(gn) — v(gn)].

1.4.2 Prokhorov’s theorem

We now consider the case wheseis a non-compact polish space. By identifyifgwith the
imageh(S) under the map defined by[(1.4]1), we can still vie® as a measurable subset of the
compact spacs:

ScScloh.

HenceP(S) can be viewed as a subset of the compact spacs:
P(S) = {n € P(S): p(S\ S) =0} C P(S).
If 4w (k € N) andy. are probability measures gh(that trivially extend taS) then:
pre — pweakly inP(S) (1.4.3)

< uk(f) — p(f) for any uniformly continuoug € Cy(.5)
& () = u(f) forany f € C(S)

~

< up — pweakly inP(S).
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~

ThusP(S) inherits the weak topology fror?(S). The problem is, however, that sinéeis
not necessarily a closed subset%fit can happen that a sequer(ge) in P(S) converges to a
probability measurg, on S s.t. ;(S) < 1. To exclude this possibility, the following tightness
condition is required:

Definition (Tightness of collections of probability measures LetR C P(.S) be a set consist-
ing of probability measures ofi. ThenR is calledtight iff for anye > 0 there exists a compact
setK C S such that

sup u(S\ K) < e.
HER

Thus tightness means that the measures in thR see concentrated uniformly on a compact set
up to an arbitrary small positive amount of mass. ARetC P(S) is calledrelatively compact
iff every sequence iR has a subsequence that converges weakB(ifi).

Theorem 1.14(Prokhorov). Suppose tha$ is polish, and lefR C P(S). Then
R is relatively compacts R is tight.

In particular, every tight sequence fA(S) has a weakly convergent subsequence.

We only prove the implication<" that will be the more important one for our purposes. This
implication holds in arbitrary separable metric spaces.tke proof of the converse implication
cf. e.g. [Billingsley:Convergence of probability measuri2}]

Proof of “«<":  Let (u)reny be a sequence iR. We have to show thdju,) has a weakly con-
vergent subsequence ®(S). SinceP(S) is compact by Theorem 113, there is a subsequence
(ur,) that converges weakly 'rﬁ(S) to a probability measure on S. We claim that by tightness,
pu(S) = 1landyy,, — pweakly inP(S). Lete > 0 be given. Then there exists a compact subset
K of S such thapu, (K) > 1 — ¢ for any!l. SinceK is compact, it is also a compact and (hence)
closed subset of. Therefore, by the Portmanteau Theorem,

p(K) > limsup pu, (K) > 1 —¢,

l—00
and thus
p(S\S) < p(S\ K) <e.
Letting e tend to0, we see tha(S \ S) = 0. Henceu € P(S) andyy, — 1 weakly inP(S) by
(T43). O
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1.4.3 Existence of invariant probability measures

We now apply Prokhorov’s Theorem to derive sufficient caods for the existence of an invari-
ant probability measure for a given transition kerpl, dy) on (.S, B).

Definition (Feller property). The stochastic kernelis called(weakly) Felleriff pf is continu-
ous for anyf € Cy(.9).

A kernelp is Feller if and only ifx — p(z, -) is a continuous map frorfi to P(.S) w.r.t. the weak
topology onP(S). Indeed, by definitionp is Feller if and only if

oy = x = (pf)(xn) = (pf)(x) V[ € Cp(S).

A topological space is said to becompactiff it is the union of countably many compact subsets.
For exampleR¢? is o-compact whereas an infinite dimensional Hilbert space isrrepmpact.

Theorem 1.15(Foguel, Krylov-Bogolionbov). Suppose thap is a Feller transition kernel on
n—1
the Polish spacé, and letp,, := % > p'. Then there exists an invariant probability measpure
=0
of p if one of the following conditions is satisfied for some S:
(i) The sequencép, (z,-) : n € N} is tight, or
(i) Sis o-compact, and there exists a compact&et S such that
liminf p, (z, K) > 0.

n—00

Remark. If (X, P,) is a canonical Markov chain with transition kerpahen
n—1

1

LS )

is the average proportion of time spent by the chain in théssduring the firstn steps. Condi-

tions (i) and(i:) say that
(i) Ve > 03K C S compactp,(z,K) >1—¢ foralln €N,
(i) 3 >0, K C Scompactyy oo p, (v,K)>e forallkcN.

Clearly, the second condition is weaker than the first onevars¢respects.
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Proof of Theorerh 1.15: (i) Suppose that the sequenge:= p, (z, -) is tight for somer € S.

(i)

Then by Prokhorov’s Theorem, there exists a subsequepncand a probability measure
p on S such thaw,, — p weakly. We claim thafip = p. Indeed for,f € C,(S) we have
pf € Cy(S) by the Feller property. Therefore,

(up)(f) = p(pf) = lim v, (pf) = lim (v, p)(f)
= k:lggo Vny, (f) = N(f) for anyf € Cb<S)>

where the second last equality holds since

nk—l

1 ) 1 1
VniP = o ;0 P, ) = v, et (x,-)

Now suppose that Conditiof¥i) holds. We may also assume tfats a Borel subset of a
compact spacé. SinceP(S) is compact andii) holds, there exists > 0, a compact set
K C S, asubsequende,, ) of (1), and a probability measugeon S such that

vn,(K)>¢ foranyk e N, and v, — i weaklyins.

Note that weak convergence $hdoes not imply weak convergence$h However
v, (f) — p(f) for any compactly supported functighe C(.S), and

f(S) > a(K) > limsup v, (K) > e.

Therefore, it can be verified similarly as above that the dmrmkd measure

_MBNS)

is an invariant probability measure fpr

= [((B|S), B eB(S),

]

In practice, the assumptions in Theorlem 1.15 can be verifeedppropriate Lyapunov functions:

Corollary 1.16 (Lyapunov condition for the existence of an invariant probablity measure).

Suppose thap is a Feller transition kernel and' is o-compact. Then an invariant probability

measure fop exists if the following Lyapunov condition is satisfied:

(L) There exists a functioly € F,(S), a compact seK C S, and constants,c € (0,00)

such that
LV <clyg —e.
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Proof: By (L1),
clg >e+ LV =c+pV —-V.

By integrating the inequality w.r.t. the probability measpy (z, -), we obtain

n—1
1 . .
Cﬁn(U K) = Cﬁan > e+ ﬁ § (pH_lV - plv)
=0

—_

1 1
=e+—p'V-=V>e--V
n n

n
for anyn € N. Therefore,

liminfp, (z, K) > ¢ foranyz € S.

n—o0

The assertion now follows by Theorém 11.15. O

Example. 1) Countable state spaceif S is countable ang is irreducible then an invariant
probability measure exists if and only if the Markov chaipasitive recurrent. On the other
hand, by Corollary 1.11, positive recurrence is equivalerit’t/). Hence for irreducible
Markov chains on countable state spaces, Conditlah) is both necessary and sufficient
for the existence of a stationary distribution.

2) S =R4: OnR¢, Condition(LI) is satisfied in particular iV is continuous and
limsup LV (z) < 0.

|z| =00

1.5 Couplings and transportation metrics

Additional reference: [Villani:Optional transport-old and new] [37].

Let S be a Polish space endowed with its Barehlgebra3. An invariant probability measure
is a fixed point of the map — up acting on an appropriate subspaceRgfs). Therefore, one
approach for studying convergence to equilibrium of Markbains is to apply the Banach fixed
point theorem and variants thereof. To obtain useful resalthis way we need adequate metrics
on probability measures.

1.5.1 Wasserstein distances

We fix a metricd : S x S — [0,00) on the state spacg. Forp € [1,00), the space of all
probability measures ofi with finite p-th moment is defined by

Pr(S) = {u e P(S): [ dlan. i) < oo} ,
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wherez, is an arbitrary given point ity. Note that by the triangle inequality, the definition is
indeed independent af,. A natural distance o®?(.S) can be defined via couplings:

Definition (Coupling of probability measures). A coupling of measures:,v € PP(S) is a
probability measurey € P(S x S) with marginalsy; and v. The couplingy is realized by
random variablesX,Y : Q — S defined on a common probability spage, A, P) such that
(X7 Y) ~ .

We denote the set of all couplings of given probability measu andv by IT(x, v).

Definition (Wasserstein distance, Kantorovich distance For p € [1, c0), theLP Wasserstein
distanceof probability measureg, v € P(S) is defined by

WP(u,v) = hr%f : </ d(:c,y)“y(dxdy)) D [d(X, Y)p]% , (1.5.1)
e 12214 X~
Y~v

where the second infimum is over all random variables” defined on a common probability
space with lawsg: andv. TheKantorovich distanceof ;, and v is the L' Wasserstein distance
W, v).

Remark (Optimal transport). The Minimization in [1.5.11) is a particular case of an optima
transport problem. Given a cost function S x S — [0, cc], one is either looking for a map
T : S — S minimizing the average cost

[ e Tia)utan)

under the constraint = ;. o 7-' (Monge problem, 8™ century), or, less restrictively, for a
couplingy € II(u, v) minimizing
/ c(z, y)y(dzdy)

(Kantorovich problem, around 1940).

Note that the definition of th&V? distance depends in an essential way on the distécoasid-
ered onS. In particular, we can create different distances on pritibameasures by modifying
the underlying metric. For example, jf : [0,00) — [0,00) is increasing anadoncavewith
f(0) = 0andf(r) > 0 foranyr > 0 thenf o d is again a metric, and we can consider the
corresponding Kantorovich distance

Wilu,v) = inf E[f(d(X,Y))].

The distancesV, obtained in this way are in some sense convers@/todistances fop > 1
which are obtained by applying the convex functiors r* to d(z, y).
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Example (Couplings and Wasserstein distances for probability meases onR?).
Let i, v € P(R) with distribution functionsF, and F,,, and let

F Y (u) =inf{c e R: Fy(c) >u}, wue(0,1),

denote thdeft-continuous generalized inverseof the distribution function. I/ ~ Unif(0, 1)
thenFM—l(U) is a random variable with law. This can be used to determine optimal couplings
of 1 andv for Wasserstein distances based on the Euclidean naétrig) = |z — y| explicitly:

() Coupling by monotone rearrangement
A straightforward coupling of: andv is given by

X =F;'(U)andY = F,(U), whereU ~ Unif(0,1).

This coupling is a monotone rearrangement, i.e., it coupletower lying parts of the mass
of 1 with the lower lying parts of the mass of If £, and F, are both one-to-one then it
mapsu-quantiles ofu, to u-quantiles ofv. It can be shown that the coupling aptimal
w.r.t. the WP distancefor anyp > 1, i.e.,

Wr(p,v) = E[|X =Y Ir = ||F, " = F | o),

cf. e.g. [Rachev&Rueschendorf] [25]. On the other hand, theplg by monotone
rearrangement igot optimal w.r.t. Wk if f is strictly concave Indeed, consider for
exampley = £(6y + 61) andv = (& + 6_1). Then the coupling above satisfi&s~ 4
andY = X — 1, hence

E[f(IX = Y]] = f(1).
On the other hand, we may couple by antimonotone rearrangestheosingX ~ x and
Y = —X. In this case the average distance is smaller since by Jemsequality,

E[f(|X = Y|)] = E[f(2X)] < f(E[2X]) = f(1).
(i) Maximal coupling with antimonotone rearrangement
We now give a coupling that is optimal w.nitV; for any concavef provided an additional

condition is satisfied. The idea is to keep the common magsad v in place and to
apply an antimonotone rearrangement to the remaining mass:

14 %
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Suppose that = STUS™ andy—v = (u—v)"—(u—v)~ is a Hahn-Jordan decomposition
of the finite signed measufe— v into a difference of positive measures such that
(u—v)t(ANnS™)=0and(u—v) (ANST) =0foranyA € B, cf. also Sectioh 116. Let

+

pAv=p—(p—v)" =v—(u-—v)".

If p= (uAv)(S)is the total shared mass of the measyresidv then we can writg: and
v as mixtures
p=(pAv)+(p—v)" =pa+(l-p)B,
v=(pAv)+(p—v) =pa+(l-p)y
of probability measures, 5 andy. Hence a couplingX, Y) of x andv as described above
is given by setting
F-YU), F;Y (U if B=1
(ng::{ (FR @), @) - B=1
(Fy'(U), ' 1-U))  if B=0,
with independent random variablés~Bernoulli(p) andU ~Unif(0,1). It can be shown

that if ST andS— are intervals the(lX, Y') is an optimal coupling w.r.oV; for any concave
f, cf. [McCann:Exact solution to the transportation problemtize line] [22].

In contrast to the one-dimensional case it is not easy torithesoptimal couplings oR? for
d > 1 explicitly. On the other hand, the existence of optimal dmgs holds on an arbitrary
polish space by Prokhorov’s Theorem:

Theorem 1.17(Existence of optimal coupling$. For anyu, v € P(S) and anyp € [1, co) there
exists a couplingy € II(u, v) such that

mew:/aawwmwy

Proof: Let I(y) := [d(z,y)Py(dzdy). By definition of WP(y,v) there exists a minimizing
sequencéy, ) in I1(u, ) such that

I(vn) = WP(u,v)P asn — oo.

Moreover, such a sequence is automatically tigh?{$' x S). Indeed, let > 0 be given. Then,
sincesS is a polish space, there exists a compactset S such that

WS\K) <=, v(S\K) <z,
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50 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

and hence for any € N,
T ((2,y) K X K) <yl ¢ K) +(y € K)

=u(S\K)+v(S\K) <e.
Prokhorov’s Theorem now implies that there is a subsequéngé that converges weakly to a
limit v € P(S x 5). Itis straightforward to verify thay is again a coupling of. andv, and,
sinced(z, y)? is (lower semi-)continuous,

10) = [ d(o.r(dedy) < limint [ dGe. )2, (drdy) = W (0

—00
by the portemanteau Theorem. O
Lemma 1.18(Triangle inequality). WP is a metric onP?(S).
Proof: Let u, v, 0 € PP(S). We prove the triangle inequality

WP (11, 0) < WP(,v) + WP (v, 0). (1.5.2)

The other properties of a metric can be verified easily. Te@(@.5.2) lety andy be couplings
of u andv, v andp respectively. We show

wieo < ([ d<x,y>pv<dxdy>); + ([ 2)p5(dyd2)); . as3)

The claim then follows by taking the infimum over alke I1(x, v) andy € I1(v, o). SinceS'is a
polish space we can disintegrate
V(dzdy) = p(dr)p(z, dy) and ¥(dydz) = v(dy)p(y, dz)

wherep andp are regular versions of conditional distributions of thetfscomponent w.r.tzy, 5
given the second component. The disintegration enables ‘iggue” the couplingsy and~ to a
joint coupling

Ydzdydz) = p(dx)p(z, dy)p(y, dz)
of the measureg, v andp such that undet,

(z,y) ~~ and (y,z)~7.

Therefore, by the triangle inequality for tli¢ norm, we obtain

1

We(u, o) < ( [ . demydz)) ”

< ( / d(z,y)™y dxdydz) + ( / d(y dxdy(fz))p
:(/d( Y)Yy dmdy) (/d dydz))p.
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Exercise(Couplings in R9). Let W : Q — R? be a random variable qf2, A, P) with
W ~ —W , and letu, denote the law ofi + V.

a) (Synchronous coupling) Léf = a + W andY = b + W for a,b € R?. Show that
W2 (ptar o) = la—b| = E(|X =Y [)'?,

i.e., (X,Y) is an optimal coupling w.r.8/2.

b) (Reflection coupling) LeY = W +bwhereW = W —2¢- W e with e = ‘ng‘. Prove that

(X,Y) is also a coupling ofi, and, and if[W| < @ a.s. then

E(f(X =Y]) < fla=bl) = E(F(X = Y1)

for any concave, increasing functigin R, — R, such thatf(0) = 0.

1.5.2 Kantorovich-Rubinstein duality
TheLipschitz norm of a functiong : S — R is defined by
19l[Lip = sup
zAY

Bounds in Wasserstein distances can be used to estimateeddés of integrals of Lipschitz
continuous functions w.r.t. different probability meassirindeed, one even has:

Theorem 1.19(Kantorovich-Rubinstein duality ). For anyu, v € P(S),

W, v) = du— | gdv ). 1.5.4
)= g, (founfour) as

Remark. There is a corresponding dual description/®@f for p > 1 but it takes a more compli-
cated form, cf. [Villani:OT-old&new][[37].

Proof: We only prove the easy>” part. For different proofs of the converse inequality see
Rachev and Rueschendoarf [25], VillariB8], Villani2 [37] and Mufa Chen[4]. For instance one
can approximatg andv by finite convex combinations of Dirac measures for whichd).is a
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consequence of the standard duality principle of lineagramming, cf. Cheri[4].
To prove >"let u, v € P(S) andg € C(.5). If v is a coupling ofu andv then

/ gdp — / gdv = / v(dzdy)
< llgllp / A(w, y)(dady).

Hence, by taking the infimum overe I1(u, v), we obtain
/gdu— /gdv < lgllipW* (1, v).
O

As a consequence of the>" part of (1.5.4), we see that {fiz,).cn iS @ sequence of probability
measures such thaw'(u,,, ) — 0 then [ gdu, — [ gdp for any Lipschitz continuous func-
tiong : S — R, and hences,, — p weakly. The following more general statement connects
convergence in Wasserstein distances and weak convergence

Theorem 1.20(00VP convergence and weak convergengeletp € [1, 00).
1) The metric spacé&Pr(S),W?) is complete and separable.

2) A sequencéu,) in PP(S) converges to a limit w.r.t. theW? distance if and only if

/gd,un — /gdu foranyg € C(5) satisfyingg(z) < C - (1 + d(z, x,)?)

for a finite constant” and somer, € S.

Among other things, the proof relies on Prokhorov’s Theoreva refer to [Villani:OT-old&new]
[37].

1.5.3 Contraction coefficients

Let p(z, dy) be a transition kernel ofS, B) and fixq € [1, c0). We will be mainly interested in
the case = 1.

Definition (Wasserstein contraction coefficient of a transition kernél. The globalkontraction
coefficientof p w.r.t. the distancéV" is defined as

_ Wi(up, vp) g
ay(p) —sup{W v € PUSG)s.t.u # 1/}.
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In other words,a,(p) is the Lipschitz norm of the map — up w.r.t. the)V? distance. By
applying the Banach fixed point theorem, we obtain:

Theorem 1.21(Geometric ergodicity for Wasserstein contraction}. If «,(p) < 1 then there
exists a unique invariant probability measuyref p in P4(.S). Moreover, for any initial distribu-
tion v € PI(S), vp™ converges tq. with a geometric rate:

Wi (vp", ) < ag(p)"W(v, ).

Proof: The Banach fixed point theorem can be applied by Theéren 1.20. n

The assumption,(p) < 1 seems restrictive. However, one should bear in mind thatitioker-
lying metric onS can be chosen adequately. In particular, in applicatiorssatten possible to
find a concave functiorf such tha: — up is a contraction w.r.t. th#V! distance based on the
modified metricf o d.

The next lemma is crucial for bounding(p) in applications:

Lemma 1.22(Bounds for contraction coefficients, Path couplingg 1) Suppose that the tran-
sition kernelp(z, dy) is Feller. Then

a(p) = sup wi (p(;l?, ')7p(y7 )) ‘

Sup () (1.5.5)

2) Moreover, suppose thét is a geodesic graptwith edge sef in the sense that for any
x,y € S there exists a pathry = z,zq,29,...,2,_1,2, = y from z to y such that
{1'1;1, l’l} € Efori= 1, o, n andd(l’, y) = Z d(l’l’,h $Z> Then

=1

_ o V(). 0y, )
a(p) = {@y}[éE e . (1.5.6)

The application of the second assertion of the lemma to pupper bounds foe,(p) is known
as thepath coupling methodof Bubley and Dyer.

Proof: 1) Lets:=sup W. We have to show that
xFy ’

Wi(up,vp) < BW(p, v) (1.5.7)
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holds for arbitrary probability measurgsy € P(S). By definition of 3 and since
Wi(o,,0,) = d(z,y), (L5.T) is satisfied if. andv are Dirac measures.
Next suppose that

= Zu(:c)éz and v = Z v(x)d,

zeC zeC

are convex combinations of Dirac measures, whiére S is a countable subset. Then for
anyz,y € C, we can choose a coupling, of J,p andé,p such that

( / (2, y’)q%ywx'dy’)) "= WS, b,p) < Bd(x,y). (1.5.8)

Let &(dzdy) be an arbitrary coupling gf andv. Then a couplingy(dx'dy’) of up andvp
is given by

y = / ey (ddy),

and therefore, by (1.5.8),

W (up, vp) < ( / d(z’, y’)qv(dx’dy’)> ,,

_ ( /] d<x',y')qvggy(dx'dy')g(dazdy)); <p ( / d(w)%(dmdy));

By taking the infimum over all couplingse T1(x, v), we see that andv satisfy [1.5.7).

Finally, to show that[(1.517) holds for arbitrapy v € P(S), note that sinces is sepa-
rable, there is a countable dense suliseand the convex combinations of Dirac measures
based inC' are dense iW?. Hencen andy areWV? limits of corresponding convex com-
binationsy,, andv,, (n € N). By the Feller property, the sequenegp andv,,p converge
weakly toup, vp respectively. Hence

W(up, vp) < liminf W4 (p1,p, v,p)
< Bliminf W (pu, v,) = W1, v).

2) LetB := sup XAe@)r@) \we show that

(z,y)EE dlw)

Wq(p(x, ')7p(ya )) < §d<x7 y)
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holds for arbitraryr,y € S. Indeed, letey = z, xq, 29, ..., 2z, = y be a geodesic from
to y such thatx; ,,x;) € E fori = 1,...,n. Then by the triangle inequality for thé&
distance,

Wq(p(m, ')7p<y7 )) < Z Wq(p@jiflv ')7p(xi7 ))

< EZ d(w; 1, a:) = Bd(x,y),
=1
where we have used in the last equality that . . , z,, is a geodesic.
O

Exercise.Letp be a transition kernel ofix S such thap((z, y), d=’dy’) is a coupling op(z, dz')
andp(y,dy’) foranyz,y € S. Prove that if there exists a distance functibnS x S — [0, o)
and a constant € (0, 1) such that

pd < ad,

then there is a unique invariant probability measui p, and

Wivp", 1) < a"Wi(v,u) foranyv € PH(S).

1.5.4 Glauber dynamics, Gibbs sampler
Let 1 be a probability measure on a product space
S=T"={n:V =T}

We assume that is a finite set (for example a finite graph) afids a polish space (e.d! = R).
Depending on the model considered the elemenis ame called types, states, spins, colors etc.,
whereas we call the elements ®fconfigurations. There is a natural transition mechanismy on
that leads to a Markov chain which is reversible wyu.tThe transition step from a configuration
¢ € S to the next configuratiog’ is given in the following way:

e Choose an elemente V uniformly at random
e Seté'(y) = &(y) for anyy # x, and sample’(x) from the conditional distribution w.r.t.
1(dy) of n(x) given thaty(y) = {(y) for anyy # z.

To make this precise, we fix a regular versjafn|n = £ onV \ {x}) of the conditional proba-
bility given (1(y))yev\ (2}, and we define the transition kerneby

1
P= 1 > p..  where

zeV
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pa(§,dE’) = p(dg'|¢" = gonV A\ {z}).

Definition. A time-homogeneous Markov chain with transition keqmés called Glauber dy-
namicsor random scan Gibbs samplevith stationary distribution..

Thatp is indeed invariant w.r.tp is shown in the next lemma:
Lemma 1.23. The transition kernelg, (z € V') andp satisfy the detailed balance conditions
p(d€)ps (€, d€') = pu(d€")po (€', dE),
pu(d§)p(&, d&) = pu(dg)p(E', d).

In particular, 1 is a stationary distribution fop.

Proof: Letz € V, and letrj(z) := (n(y)),-. denote the configuration restricted 0\ {z}.
Disintegration of the measupe into the law/i, of 7(x) and the conditional law,(-|7(x)) of
n(x) givenn(z) yields

0 (49) pa (€, d€) = o (E(2)) s (AE(@)IE()) Oy (€(2)) o (€ (@)IEC) )
= iz (4€(@)) 1o (d6(@)IE (@) Og) (@) pz (€ @)1 ())
= 1 (d¢") pa (€', dS) .

Hence the detailed balance condition is satisfied wy.for anyxz € V, and, by averaging over
x, also w.r.t.p. ]

Examples. In the following examples we assume thats the vertex set of a finite graph with
edge sef.

1) Random colourings. HereT" is a finite set (the set of possible colours of a vertex), and
1 1s the uniform distribution on all admissible colouringstié vertices in/ such that no
two neighbouring vertices have the same colour:

p=Unif ({n € TV : n(z) # n(y) ¥(z,y) € E}) .

The Gibbs sampler selects in each step a vertex at randonmhandes its colour randomly
to one of the colours that are different from all colours aghéouring vertices.

2) Hard core model. HereT' = {0, 1} wheren(xz) = 1 stands for the presence of a particle
at the vertexc. The hard core model with fugacity € R is the probability measure,
on{0,1}" satisfying

> )
pa(n) = Z%)\EGV if n(z)n(y) = 0forany(z,y) € E,
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3)

4)

andu,(n) = 0 otherwise, wheré, is a finite normalization constant. The Gibbs sampler
updates in each stepx) for a randomly chosen vertexaccording to

&(x) =0if £(y) = 1 for somey ~ =,

A :
¢ (x) ~ Bernoulli (H—)\> otherwise

Ising model. HereT = {—1,+1} where—1 and+1 stand for Spin directions. The
ferromagnetic Ising model at inverse temperatiire 0 is given by

pp(n) = e foranyn e {~1,+1}",

whereZ; is again a normalizing constant, and the Ising Hamiltordiais given by

1
Hip) =5 > In(@) —n@lP == > nny)+|E|
{z,y}ek {z,y}€E
Thus p3 favours configurations where neighbouring spins coincadel this preference

gets stronger as the temperatl]grelecreases. The heat bath dynamics updates a randomly

chosen spirg(z) to &'(z) with probability proportional teexp (ﬁn(x) > n(y)). The

y~z

meanfield Ising modelis the Ising model on the complete graph withvertices, i.e.,
every spin is interacting with every other spin. In this cés® update probability only
depends om(z) and the “meanfield? 3~ n(y).

yeV
Continuous spin systemsHereT = R, and
1 1
paldy) = ——exp | =5 > [n(x) = n()*+ 8 _U()) | [ dn).
g (zy)el z€V zeV

The functionU : R — [0, 00) is a given potential, and; is a normalizing constant. For
U = 0, the measure is called the massBesussian free field over \V If U is a double-well
potential then. is a continuous version of the Ising model.
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5) Bayesian posterior distributions. Gibbs samplers are applied frequently to sample from

posterior distributions in Bayesian statistical modelsr iRstance in a typical hierarchi-
cal Bayes model one assumes that the data are realizatiomsditionally independent
random variable¥’; (: =1,...,k,j = 1,...,m;) with conditional laws

Y;j|(917 s 70k7 >\e) ~ N(el, )\_1).

€

The parameterg,, ..., 0, and ). are again assumed to be conditionally independent ran-
dom variables with

0l (11, M) ~ N (11, Ag ") and .| (11, Ag) ~ T(as, bo).
Finally, . and )\, are independent with
p~ N(m,v)andg ~ I'(ay, by)

whereay, by, az,b, € R, andv € R are given constants, cf. [Jones] [13]. The posterior
distributiony of (61, ..., 0k, 1, Ae, A\g) ONR**3 given observationy;; = y;; is then given

by Bayes’ formula. Although the density is explicitly up to @malizing constant involv-
ing a possibly high-dimensional integral, it is not cleantto generate exact samples from
1 and how to compute expectation values wyr.t.

On the other hand, it is not difficult to see that all the caodél distributions w.r.t..; of
one of the parameters, ..., 6, u, \c, \g given all the other parameters are either normal
or Gamma distributions with parameters depending on therabd data. Therefore, it is
easy to run a Gibbs sampler w.rit.on a computer. If this Markov chain converges suffi-
ciently rapidly to its stationary distribution then its uak after a sufficiently large number
of steps can be used as approximate samplesfrand longtime averages of the values of
a function applied to the Markov chain provide estimatorgiie integral of this function.

It is then an obvious question for how many steps the Gibbgkarhas to be run to ob-
tain sufficiently good approximations, cf. [Roberts&Rosaffdarkov chains and MCMC
algorithms] [30].

Returning to the general setup on the product sfacewe fix a metrico on T, and we denote

by d the correspondingf metric on the configuration spa@#’, i.e.,

d&,n) =Y o), n(@), &EneT”.

zeV

A frequent choice i9(s, t) = 1,. In this case,

d(&n) = {z € V2 &(x) # n(x)}]

is called theHamming distanceof ¢ and.
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Lemma 1.24.Letn = |V/|. Then for the Gibbs sampler,
1 1
W) pln ) < (12 )€ + 2 S Wh (a1, )
zeV

foranyé,neTV.
Proof: Let~, for z € V be optimal couplings w.r.tV; of the conditional measures (-|¢) and
1z (+|n). Then we can construct a couplinggk, d¢') andp(n, dn’) in the following way:

e Draw U ~ Unif(V).

e GivenU, choose(¢'(U),n' (U)) ~ ~u, and sett’(x) = &(z) andrn/(x) = n(x) for any

x#U.

For this coupling we obtain:

E[d(¢',n)] = ) Elo(¢(x),/(2))]

zeV

— (€ n) + B¢ 0). /() — o€(V), V)
= e+ 3 ( [ ol tatasat) = ofeto )

zeV

_ (1 _ %) A€ )+ S W (1), ).

zeV
Here we have used in the last step the optimality of the cogpli. The claim follows since

Wip(z,-),p(y,-)) < Eld(E,7)]. 0

The lemma shows that we obtain contractivity wx¥; if the conditional distributions at € V/
do not depend too strongly on the values of the configuratiatheer vertices:

Theorem 1.25(Geometric ergodicity of the Gibbs sampler for weak interactons).

1) Suppose that there exists a constast (0, 1) such that

> W, (42(-19), pa(-|n) < cd(§,m)  foranyé,n e TV, (1.5.9)
zeV
Then
Whwp!, 1) < a(p)Wj(v, ) foranyv € P(TV) andt € Z,, (1.5.10)

wherea(p) < exp (—¢).
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2) If T is a graph andv is geodesic then it suffices to ver{fiy5.9)for neighbouring configu-
rations¢,n € TV such thatt = nonV \ {z} for somer € V and&(x) ~ n(z).

Proof: 1) If (1.5.9) holds then by Lemma 1124,
1-c

Wa (p(€,-),p(n,-)) < (1 - ) d(&,m) forany&,neTV.

Hence [T5.20) holds with (p) = 1 — 1=¢ < exp (—1=£).

2) If (T, o) is a geodesic graph antlis the' distance based onthen (T, d) is again a
geodesic graph. Indeed, a geodesic path between two catfans¢ andn w.r.t. thel!
distance is given by changing one component after the otbega geodesic path df.

Therefore, the claim follows from the path coupling lenim221.
O

The results in Theorem 1.25 can be applied to many basic mauguding random colourings,
hardcore models and meanfield Ising models at low temperatur

Example (Random colouringg. Suppose thalt’ is a regular graph of degre®. ThenT" is
geodesic w.r.t. the Hamming distanéeSuppose that and»n are admissible random colourings
such that/(¢,n) = 1, and lety € V' be the unique vertex such th@ty) # n(y). Then

pz(|€) = po(:ln)  forz =y and for anyr 2 y.

Moreover, forz ~ y ando(s,t) = 1, we have

Wi (149 Cl) <

since there are at leal§t| — A possible colours available, and the possible coloursgiven ¢
respectivelyy on V' \ {z} differ only in one colour. Hence

S W (1) o) < 7=l

zeV

and therefore[(1.5.10) holds with

A 1
< — — .
a(p) < exp ( (1 = A) n), and hence

a(p)t<exp _Mf
- T|—A n)
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Thus for|T'| > 2A we have an exponential decay of theé] distance to equilibrium with a rate
of orderO(n~'). On the other hand, it is obvious that mixing can break downgletely if there
are too few colours - consider for example two colours onedirgraph:

o0—60—C—10 0080

1.6 Geometric and subgeometric convergence to equilibrium

In this section, we derive different bounds for convergeanasquilibrium w.r.t. the total variation
distance. In particular, we prove a version of Harris’ tlegomvhich states that geometric ergod-
icity follows from a local minorization combined with a glabLyapunov condition. Moreover,
bounds on the rate of convergence to equilibrium are detwecbupling methods. We assume
again thatS is a polish space with Boreil-algebral.

1.6.1 Total variation norm

The variationn|(B) of an additive set-function : B — R on a setB € B is defined by

In|(B) := sup {Z In(A;)] :n €N, Ay, ..., A, € Bdisjoint with UA"' C B} :
i=1

=1
Thetotal variation norm of 5 is
1
Inllre = 51nl(S).

Note that this definition differs from the usual conventioranalysis by a factof. The reason
for introducing the factot will become clear by LemniaL.26 below. Now let us assumertiimt

a finite signed measure ¢ and suppose thatis absolutely continuous with densitywith re-
spect to some positive reference measur€éhen there is an explicit Hahn-Jordan decomposition
of the state spac€ and the measurggiven by

S = STUS™ with ST = {0 >0},5 = {0 < 0},
n=mnt—n" withdnt = o"d\ dn~ = o d\.

The measures™ andn ™~ are finite positive measures with
nt(BNS7)=0 and 5 (BNST)=0 foranyB € B.
Hence the variation of is the measurg| given by

nl=n"+n", e, dn =o-d\
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In particular, the total variation norm gfis the L' norm of o:

Il = / loldz = llellzr. (1.6.1)

Lemma 1.26 (Equivalent descriptions of the total variation norm). Let u,v € P(S) and
A € M, (S) such thaty and v are both absolutely continuous w.r.tA. Then the following
identities hold:

e = vy = (= v)"(S) = (p—v)"(S) = L= (uAv)(S5)

_|ldp dv

N ‘ dx dA (N

= S () (D)l fERS) st flup <1} (162)
=inf{PX#Y]: X ~uY ~v} (1.6.3)

In particular, || — v||tv € [0,1].

Remarks. 1) The last identity shows that the total variation distaotg andv is the Kan-
torovich distancéV; (i, v) based on the trivial metrié(z, y) = 1,., on S.

2) The assumptiom, v << X\ can always be satisfied by choosingappropriately. For
example, we may choose= u + v.

Proof: Sincey andy are both probability measures,
(1= v)(S) = pu(S) —v(S) =0.
Hence(u — v)™(5) = (1 —v)7(5), and
= vl = %Iu —v[(8) = (p—v)"(S) = u(S) = (LA v)(S) = (p—v)"(9).

The identity || — v|lrv = || % — %HD(A) holds by [1.6.1). Moreover, fof € F,(S) with
1/ llswp < 1,

() = v(HOI < (=) (N + (= v)~ ()]
< (p=v)"(S) + (=) (S) =2p— vl

with identity for f = 15+ — 15-. This proves the representatién (116.2)|pf— v/||tv.
Finally, to prove[(1.6.13) note that {fX, Y') is a coupling ofu andv, then

() = v(H)l = [Elf(X) = FY)]| <2P[X #Y]
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holds for any bounded measuralflevith || f||s., < 1. Hence by[(1.612),

[ —vlv < inf PIX #Y].

Y~v

To show the converse inequality we choose a cougliigy”) that maximizes the probability that
X andY agree. The maximal coupling can be constructed by notirtg tha

p=pAv)+@p—v)" =pa+(l-p)s, (1.6.4)
v=(uAv)+(p-v) =pat(l-p)y (1.6.5)

with p = (1 A v)(S) and probability measures 5,y € P(S). We choose independent random
variablesU ~ o,V ~ g, W ~ v andZ ~ Bernoullip), and we define

(X.Y) = {(U,U) on{Z =1},
(V,W) on{Z =0}.
Then by (1.6.4) and (1.6.5)X,Y") € II(x, v) and
PIX#Y]<PZ=0=1-p=1-(uAv)(S) = llu—vrv.
[

Remark. The last equation can also be seen as a special case of ther#iach-Rubinstein
duality formula.

1.6.2 Geometric ergodicity

Let p be a transition kernel oS, B). We define thdocal contraction coefficienta(p, K) of p
on a setk’ C S w.r.t. the total variation distance by

H5xp - 5ypHTv

a(p, K) = sup |Ip(z,-) — p(y,-)|lrv = sup . (1.6.6)
z,yeK m,z;fk ”5:0 - (5yHTV
TFY

Note that in contrast to more general Wasserstein contractefficients, we always have
alp, K) <1.

Moreover,a(p, K) < 1 — ¢ holds fore > 0 if p satisfies the followindocal minorization
condition: There exists a probability measur®n S such that

p(z,B) > ev(B) foranyz € K andB € B. (1.6.7)
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Doeblin’s classical theorem states that{p™, S) < 1 for somen € N then there exists a unique
stationary distribution: of p, and uniform ergodicity holds in the following sense:

sup ||p'(z,+) — pllfv — 0 ast — oo. (1.6.8)
z€S

Exercise(Doeblin’s Theorem). Prove that[(1.618) holds i(p™, S) < 1 for somen € N.

If the state space is infinite, a global contraction condiwar.t. the total variation norm as
assumed in Doeblin’s Theorem can not be expected to hold:

Example (Autoregressive process AR1)). Suppose that
Xn-l—l =aX, + Wn+l> Xo=1

with o € (—1,1),z € R, and i.i.d. random variabldd’, : Q@ — R. By induction, one easily
verifies that

n—1 A 1— 062,“
X,=a"r+ Z a'W,_;i ~ N (a"x, —) ,

— 1—a?
i.e., then-step transition kernel is given by
n n 1—a™
p(CL’,'):N(OéJI,m),IES.

Asn — oo, p"(z,-) — p in total variation, where

1
—N(0,——

is the unique stationary distribution. However, the cogeece is not uniform ix, since
sup [|p"(z,) — pllrv =1 foranyn € N.
zeR

The example demonstrates the need of a weaker notion of igEmae to equilibrium than uni-
form ergodicity, and of a weaker assumption than the globabrization condition.

Definition (Geometric ergodicity). A time-homogeneous Markov ch&iX,,, P,) with transition
kernelp is calledgeometrically ergodic with stationary distributiop iff there existy € (0, 1)
and a non-negative functiol/ : S — R such that

IIp" (x,-) — pl|lrv < M(x)y™  for y-almost every: € S.

Harris’ Theorem states that geometric ergodicity is a cqusrace of docal minorization con-
dition and a globalLyapunov condition of the following form:
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(LG) There exist a functio € F,(.S) and constants > 0 andC' < oo such that
LV (x) < C—\V(x) foranyzx e S. (1.6.9)
In terms of the transition kernel the condition (LG) statest t
pV(z) < C+~V(x) (1.6.10)
wherey =1- )\ < 1.

Below, we follow the approach of M. Hairer and J. Mattingly tgega simple proof of a quan-
titative version of the Harris Theorem, cf. [Hairer:Convange of Markov processes,Webpage
M.Hairer] [12]. The key idea is to replace the total variataistance by the Kantorovich distance

We(u,v) = inf Elds(p, v)]
Y~v

based on a distance function Srof the form

dg(z,y) = (L4 BV (z) + BV (Y)) Lary

with 8 > 0. Note that|;x — v||tv < Ws(u, v) with equality for = 0.

Theorem 1.27(Quantitative Harris Theorem). Suppose that there exists a functidre . (5)
such that the condition in (LG) is satisfied with constatita € (0, ), and

a(p,{V <r}) <1 forsomer>2C/\. (1.6.11)

Then there exists a constafit ¢ R, such thataz(p) < 1. In particular, there is a unique
stationary distributiory: of p satisfying[ Vdu < oo, and geometric ergodicity holds:

167() = il < Wa 97,0 < (14 8V(@) 4.8 [ Vi) o

foranyn € Nandzx € S.

Remark. There are explicit expressions for the constah#sda(p).

Proof: Fix z,y € S with = # y, and let(X,Y’) be amaximal coupling ofp(zx,-) andp(y, -)
w.r.t. the total variation distance, i.e.,

PIX #Y]=p(z,-) = py, v
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Then for > 0,
We(p(z,-),p(y, ) < Elds(X,Y)]
S PIX #£Y]+ BE[V(X)] + BE[V(Y)]
= |lp(x,-) — p(y, v + BV)(x) + BV)(y)
< llp(z,) =p(y, v +208+ (1 = )B(V(z) +V(y), (1.6.12)
where we have usefl (1.6110) in the last step. We now &g in [1.6.111), and distinguish cases:

(i) If V(z)+V(y) > r, then the Lyapunov condition ensures contractivity. Intiéy (1.6.12),
Wis(p(z,),p(y, ")) < ds(z,y) +2CB = AB- (V(x) + V(y)). (1.6.13)

Sinceds(z,y) = 1+ BV (z) + BV (y), the expression on the right hand side[in (1.5.13)

is bounded from above byt — §)ds(x, y) for some constant > 0 provided2Cs + § <

(A — d)pr. This condition is satisfied if we choose
A= w20
145 1+ fr

B,

which is positive since > 2C'/\.

(i) If V(x)+ V(y) < r then contractivity follows from(1.6.11). Indeed, (1.6) Iplies that
for ¢ := min (M, )\),
Wa(p(z,-),p(y, ) < alp, AV <r}) +208+ (1 = N)B(V(z) + V(y))
< (1 —e)ds(z,y)
provideds < %&M
Choosing, ¢, 5 > 0 as in (i) and (ii), we obtain

Wg(p(l’, ')7p(y7 )) < (1 - min(éﬁ 5))d5($7y) for anyr,y € S,

i.e., theglobal contraction coefficientz(p) w.r.t. W is strictly smaller than one. Hence there
exists a unique stationary distribution

uePé(S):{/LEP(S):/Vd;L<oo}, and

Wﬁ(l)n(x? ')7 :U’) = Wﬁ (5zpn, an) < Ozg(p)nt(éx’ ,u)
=ag(p)” (1 + pV(z) + ﬁ/Vdu) :
O]
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Remark (Doeblin’s Theorem). If a(p, S) < 1 then by choosing” = 0, we recover Doeblin’s
Theorem:
1p"(z, ) — pllv < alp, S)" — 0 uniformlyinz € S.

Example (State space model ilR9). Consider the Markov chain with state sp&®and tran-
sition step
x4+ b(x) +o(x)W,

whereb : R — R? ando : R? — R%*? gre measurable functions, aid : ) — R is a random
vector with E[W] = 0 andCov(W;, W) = §,;. ChoosingV/ (z) = |x|?, we obtain

LV (x) =2z - b(x) + |b(x)]* +tr(cTo)(x) < C — AV ()

for someC, \ € (0, c0) provided
x-b(x) + |b(z)]? + tr(cTo)(x)

lim sup 5 < 0.
Since
a(p. AV <)) = sup_sup |[N (z+b(z), (007)(@)) — N (y +b(y), (07))) ||y < 1
2| </ [yl<V/r

for anyr € (0, c0), the conditions in Harris’ Theorem are satisfied in this case

Example (Gibbs Sampler in Bayesian Statistics For several concrete Bayesian posterior dis-
tributions on moderately high dimensional spaces, The@r@&m can be applied to show that the
total variation distance between the law of the Gibbs sangflern steps and the stationary target
distribution is small after a feasible number of iteratiocls e.g. [Roberts&Rosenthal:Markov
chains & MCMC algorithms][30].

1.6.3 Couplings of Markov chains and convergence rates

On infinite state spaces, convergence to equilibrium may boly at asubgeometric (i.e.,
slower than exponential) rate. Roughly, subgeometric agievee occurs if the drift is not strong
enough to push the Markov chain rapidly back towards theetaftthe state space. There are
two possible approaches for proving convergence to equifibat subgeometric rates:

a) The Harris’ Theorem can be extended to the subgeomese&mravided a Lyapunov con-
dition of the form
LV <C—poV

holds with a concave increasing functipn R, — R, satisfyinge(0) = 0, cf. [Hairer]
[12] and [Meyn&Tweedie][[28].
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b) Alternatively, couplings of Markov chains can be appliactly to prove both geometric
and subgeometric convergence bounds.

Both approaches eventually lead to similar conditions. Veeisahow on the second approach.
Definition (Couplings of stochastic processgs

1) A coupling of two stochastic processéX,, P) and (Y,,, Q) with state space& andT is
given by a procesé()? Y), 15) with state spacé x T such that

(Xn)nZO ~ (Xn)nzo and (Yn)nzo ~ (Yn)nZU-

2) The coupling is called/arkovian iff the process()N(n, }N/n)nzo is a Markov chain on the
product spaces x T.

Example (Construction of Markovian couplings). A Markovian coupling of two time homo-
geneous Markov chains can be constructed from a couplingedir&nsition functions. Suppose
thatp andq are transition kernels on measurable spdée#) and (7', C), andp is a transition
kernel on(S x T, B ® C) such thap ((z,y), dz'dy’) is a coupling of the measuresz, dz’) and
p(y,dy’) foranyx € S andy € T. Then for anyr € S andy € T, the canonical Markov chain
((X,,Y,), Pyy) with transition kernep and initial distributiond, ,, is a Markovian coupling of
Markov chains with transition kernetsandq and initial distributions, andd,. More generally,
(X, Y,), Py) is a coupling of Markov chains with transition kernels; and initial distributions
(1, v providedry is a coupling ofu andwv.

Theorem 1.28(Coupling lemma). Suppose that(X,, Y, ).>0, P) is a Markovian coupling of
Markov chains with transition kerngland initial distributions;; andr. Then

||/’Lpn - VanTV S ||LaW(Xnoo> - LaW(Yn:oo)”TV S P[T > TL],
whereT' is thecoupling timedefined by

T =min{n >0: X, =Y,}.

In particular, if7" < oo almost surely then

lim [|Law(X,.00) — LaW(Y},.00) |1y = O.

n—oo
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Proof: 1) We first show that we may assume without loss of generdlday.X,, = Y,, for any
n > T. Indeed, if this is not the case then we can define a modifiegliomu( X,,, ;) with
the same coupling timeby setting

S Y, forn<T,
X, forn>T.

The fact that(X,,, 57”) is again a coupling of the same Markov chains follows from the
strong Markov propertyT is a stopping time w.r.t. the filtratio(7,,) generated by the
process X, Y, ), and hence ofT < oo} and under the conditional law givefr, Xr.
is a Markov chain with transition kerngland initial valueYr. Therefore, the conditional
law of

Yoo = (Y1, o, Y1, Xo, Xraa, ...

given Fr coincides with the conditional law of

)/OIOO - (}/h s 7YT—17YT7YT+17 .. )

given Fr, and hence the unconditioned law(df,) and(Y,,) coincides as well.

2) Now suppose thakX,, = Y, forn > T. Then alsaX,,..c = Y,,..o for n > T, and thus we
obtain
[ILaw (X:00) — LAW (Yoo [l7y < P [ Xnioo 7# Yaioo) < P[T > n).

]

If 1 is a stationary distribution fgs thenup™ = p and LawX,,...) = P, for anyn > 0. Hence
the coupling lemma provides upper bounds for the total tianalistance to stationarity. As an
immediate consequence we note:

Corollary 1.29 (Convergence rates by couplin) LetT be the coupling time for a Markovian
coupling of time-homogeneous Markov chains with transikemelp and initial distributionsy
andv. Suppose that

E[y(T)] < oo
for some increasing function : Z, — R, with lim ¢(n) = co. Then
|up™ — vp™|lrv = O L and even (1.6.14)
lup Vp TV — 77/)(71) Y i
(W(n+1) = () [|up" — vp" v < 0. (1.6.15)
n=0
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Proof: By the coupling lemma and Markov's inequality,

1
lup”™ — vp"||lrv < P[T >n] < ——E[(T)] foranyn € N.

(n)

Furthermore, by Fubini’s Theorem,

S (@Wn+ 1) ())Hup—vpllw<z $(n+1) = (n)) P[T > n]

n=0

_ Z P[T =] (¥(n) — ¥(0)) < E[W(T)].

The corollary shows that convergence to equilibrium happeith a polynomial rate of order
O(n~") if there is a coupling with the stationary Markov chain sugéttthe coupling time has a
finite k-th moment. If an exponential moment exists then the comrerg is geometric.

Example (Markov chainson 7).

Ty
e ()b
(I5 T I— 1 i T —Ii— 1
We consider a Markov chain dh, with transition probabilitieg(z, z+1) = p,, p(z,z—1) = ¢,
andp(x,z) = r,. We assume that, + ¢, +r, = 1,¢q0 = 0, andp,,q, > 0for z > 1. For
simplicity we also assume. = 1/2 for anyzx (i.e., the Markov chain isl&zy”). For f € F,(Z.),
the generator is given by

(L) (@) = pa (f(x +1) = f2) + 4= (f(x = 1) = f(x)) Vel

By solving the system of equationsC = . — up = 0 explicitly, one shows that there is a
two-parameter family of invariant measures given by

M(x):a.{.bM (a’beR)‘
4192 * * * Qx

In particular, a stationary distribution exists if and oifly

7. Z Pop1 - < o0

—o 12

For example, this is the case if there existgan 0 such that

1+4¢
P < | 1— q.+1 forlargex.
Xz
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Now suppose that a stationary distributiprexists. To obtain an upper bound on the rate of
convergence t@, we consider the straightforward Markovian couplifi&,,, Y,,), P.,) of two
chains with transition kernel determined by the transition step

(r+1,y)  with probabilityp,,

(2.y) > (r —1,y)  with probability ¢,
7 (z,y+1)  with probabilityp,,
(r,y—1) with probability ¢, .

Since at each transition step only one of the chdikig) and (Y;,) is moving one unite, the
processes$X,,) and(Y, ) meet before the trajectories cross each other. In partjgtily, > Y,
then the coupling timé& is bounded from above by the first hitting time

T3 = min{n >0: X, = 0}.

Since a stationary distribution exists and the chain islirogble, all states are positive recurrent.
Hence
E[T) < E[T;"] < .

Therefore by Corollary 1.29, the total variation distanafrequilibrium isalwaysdecaying at
least of ordeO(n~1):

I (z,-) = v =O(m™"), > |Ip"(x,) = Fllrv < oo,
n=1

To prove a stronger decay, one can construct appropriafgungs functions for bounding higher
moments off". For instance suppose that

Pe— Qe ~ —azx’ asS T — 00
for somea > 0 andvy € (—1,0].
(i) If v € (—1,0) then ast — oo, the functionV (z) = 2" (n € N) satisfies

LV(z) =pa ((z+1)" —2") + ¢ ((z = )" = 2") ~ n(pz — gz)a"""

~ —nax" T < —naV(x)l_kTv.

It can now be shown in a similar way as in the proofs of Thedregrot Theorenh 1]9 that

E[T* < E[(T;*)*] < oo foranyk < 1L
-7
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Sincen can be chosen arbitrarily large, we see that the convergateés faster than any
polynomial rate:
Ip"(x,-) il = O(n ") foranyk € N.

Indeed, by choosing faster growing Lyapunov functions areshow that the convergence
rate isO(exp (—np)) for somes € (0, 1) depending ony.

(ii) If v = 0 then even geometric convergence holds. Indeed, in this éaséargex, the
functionV (z) = ¢* satisfies

LV(z) = (pz(*=1) + gz (e =1)) V(z) < —c- V()

for some constant > 0 provided\ > 0 is chosen sufficiently small. Hence geometric
ergodicity follows either by Harris’ Theorem, or, alterivaty, by applying Corollary 1.29
with ¢ (n) = e

1.7 Mixing times
Let p be a transition kernel of5, B) with stationary distribution:. For K" € B andt > 0 let
drv(t, K) = sup [|p'(z, ) — pllv
rzeK
denote the maximal total variation distance from equilibriaftert steps of the Markov chain
with transition kernep and initial distribution concentrated ds.

Definition (Mixing time). For ¢ > 0, thee-mixing time of the chain with initial value ink is
defined by
tmix(e, K) = min{t > 0: d(t, K) < &}.

Moreover, we denote hy,x(c) the global mixing timé (s, S).
Exercise(Decay of TV-distance to equilibrium).

Prove that for any initial distribution € P(S), the total variation distanckvp’ — u|rv is a
decreasing function ih Hence conclude that

drv(t, K) <e foranyt > tmix(e, K).

An important problem is the dependence of mixing times ommaters such as the dimension
of the underlying state space. In particular, the distorcbetween Slow’ and “rapid” mixing,
l.e., exponential vs. polynomial increase of the mixingdias a parameter goes to infinity, is
often related to phase transitions.
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1.7.1 Upper bounds in terms of contraction coefficients

To quantify mixing times note that by the triangle inequafar the TV-distances,
drv(t,S) < a(p') < 2drv(t,S),

wherea denotes the global TV-contraction coefficient.

Example (Random colouringg. For the random colouring chain with state spdde we have

shown in the example below Theorém 1.25 thatfdr> 2A, the contraction coefficiernt, w.r.t.
the Hamming distancé&(&, n) = [{z € V : £(z) # n(z)}| satisfies
T|—2A ¢t

aa(p') < aq(p)" < exp (_—|\T‘! — ﬁ). (1.7.1)

HereA denotes the degree of the regular gr&phndn = |V|. Since
ley < d(&,m) <n-ley, foranyéneTV,

we also have
lv— v < Whv.p) < nlly — pllvv - foranyw € P(S).

Therefore, by[(1.7]1), we obtain
T =2A t)

19°(€, ) = pllrv < nag(p') < nexp ( T=A 7n

for any¢ € TV andt > 0. The right-hand side is smaller tharfor ¢ > Igl:zinlog(n/g). Thus

we have shown that
tmix(e) = O (n logn + nlog 5_1) for |T| > 2A.

This is a typical example afapid mixing with a total variationcast-off. After a time of order
nlogn, the total variation distance to equilibrium decays to anteary small values > 0 in a
time window of ordeiO(n).

Example (Harris Theorem). In the situation of Theorein 1.P7, the global distadeg(t, S) to
equilibrium does not go t0 in general. However, on the level sets of the Lyapunov famcdti,

dry(t,{V <7}) < (1 + B+ 5/Vdu) as(p)!

for anyt,» > 0 where/ is chosen as in the theorem, amglis the contraction coefficient w.r.t.
the corresponding distandg. Hence

log (14 fr+ B [ Vdu) + log(e™")

tmix(e, {V <r}) < log(as(p)~t)
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1.7.2 Upper bounds by Coupling

We can also apply the coupling lemma to derive upper boundsiking times in the following
way:

Corollary 1.30 (Coupling times and mixing timeg. Suppose that(X,.Y,), P, ) is a Marko-
vian coupling of the Markov chains with initial valuey € S and transition kernep for any
z,y € S,and letl’ = inf{n € Z, : X,, =Y, }. Then:

1) |Ip™(z,-) —p™(y,)|[rv < Pyl >n| foranyz,y € Sandn € N.

2) a(p",K) < sup P, ,[T > n].

z,yeK

Example (Lazy Random Walks). A lazy random walk on a graph is a random walk that stays
in its current position during each step with probabilit}2. Lazy random walks are considered
to exclude periodicity effects that may occur due to the tihseretization. By a simple coupling
argument we obtain bounds for total variation distancesnaimdhg times on different graphs:

1) S = Z: Here the transition probabilities of the lazy simple randweaik arep(z,x + 1) =
plx,x — 1) = 1/4,p(x,x) = 1/2, andp(z,y) = 0 otherwise. A Markovian coupling
(X,,Y,) is given by moving from(z, y) to (x +1,y), (z — 1,y), (x,y + 1), (z,y — 1) with
probability 1/2 each. Hence only one of two copies is moving during each siepat

the two random walksX,, andY,, can not cross each other without meeting at the same

position. The coupling timé& is the hitting time of0 for the processX,, — Y,, which is a
simple random walk of.. Hencel' < oo P, ,-almost surely, and

lim ”pn(l,’ ) _pn<y7 ')HTV =0 for anyzr,y € S.

n—o0

Nevertheless, a stationary distribution does not exist.

2) S =1Z/(mZ): On a discrete circle witln points we can use the analogue coupling for the
lazy random walk. AgainX,, —Y,, is a simple random walk ofi, and7" is the hitting time
of 0. Hence by the Poisson equation,

1
RW(Z
Bry[T]) = R0 Tas,m-nye] = 2 =yl - (m = o = yl) < —m?.

Corollary[1.30 and Markov's inequality now implies that the-distance to the uniform
distribution aftem steps is bounded from above by

[\

drv(n,S) < a(p") <sup P, [T > n] < ZL—
.,y n

Hencetmix(1/4) < m? which is a rather sharp upper bound.
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3) S = {0, 1}%: The lazy random walk on the hypercufie 1}¢ coincides with the Gibbs sam-
pler for the uniform distribution. Constructing a couplingmsgarly as before, the coupling
time 7" is bounded from above by the first time where each coordinasebkeen updated
once, i.e., by the number of draws required to collect eachamfupons by sampling with
replacement. Therefore, for> 0,

drv(dlogd + cd) < P[T > dlogd + cd]

d [dlog d+cd)]
< (1 B 1) <dem T <
k=1

— —_ Y

d

and hence
tmix(€) < dlogd + log(e~1)d.

Conversely the coupon collecting problem also shows thaugper bound is again almost
sharp.

1.7.3 Conductance lower bounds

A simple and powerful way to derive lower bounds for mixingés due to constraints by bottle-
necks is the conductance.

Exercise (Conductance and lower bounds for mixing time$. Let p be a transition kernel on
(S, B) with stationary distribution:. For sets4, B € B with u(A) > 0, theequilibrium flow
Q(A, B) from A to B is defined by
QAB) = (1@ p)(Ax B) = [ i) (s, B)

and theconductanceof A is given by
Q(A, A%)

1(A)
Thebottleneck ratio (isoperimetric constant) ®,, is defined as

B(A) =

®, = min P(A).
A:p(A)<1/2

Let ua(B) = u(B|A) denote the conditioned measure 4n
a) Show that for anyl € B with u(A) > 0,
lpap = pallry = (pap)(A°) = ®(A).

Hint: Prove first that
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() (nap)(B) — pa(B) <0 for any measurablé? C A, and
(ii) (ap)(B) — pa(B) = (uap)(B) > 0 for any measurablés C A°,

b) Conclude that

lpoa = pllry < tP(A) + [|pap’ — plloy  foranyt € Z,.

1 1
tmim » Z .
(4) 49,

c) Hence prove the lower bound
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Chapter 2
Ergodic averages

Suppose thatX,, P,) is a canonical time-homogeneous Markov chain with tramsikiernelp.
Recall that the processx,,, P,) with initial distribution . is stationary, i.e.,

Xnioo ~ Xo.oo foranyn >0,

if and only if
p= pp-
A probability measureg: with this property is called atationary (initial) distribution or an

invariant probability measure for the transition kernel p. In this chapter we will prove law
of large number type theorems for ergodic averages of the for

n—1
1
—Zf(Xi) — /fdu asn — oo,
n
i=0
and, more generally,
1 n—1
_ZF(X7,7X7,+17)—>/FdP/L asn — oo
n
i=0

wherey is a stationary distribution for the transition kernel. Asfithese limit theorems are de-
rived almost surely or il” w.r.t. the lawP, of the Markov chain in stationarity. Indeed, they turn
out to be special cases of more general ergodic theoremsatawrgary (not necessarily Marko-
vian) stochastic processes. After the derivation of theclyasults we will consider extensions to
continuous time, and we will briefly discuss the validity ofedic theorems for Markov chains
that are not started in stationary. Moreover, we will study fluctuations of ergodic averages
around their limit both asymptotically and non-asymptatlic As usual,S will denote a polish
space endowed with its Boretalgebras.
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2.1 Ergodic theorems

Supplementary references for this section are the pratalileory textbooks by Breimann
[X X X], Durrett [X X X] and Varadhan X X X].We first introduce the more general setup of
ergodic theory that includes stationary Markov chains gseaial case:

Let (2,2, P) be a probability space, and let
0:0—0Q
be a measure-preserving measurable mafioal, P), i.e.,
PoO'=P
The main example is the following: Let
Q=05% X,(w)=w, A=0(X,:neZ,),

be the canonical model for a stochastic process with staigesp Then the shift transformation
O = Xi.. given by

@(WO,wl,...>:(W1,WQ,...) foranyWEQ

is measure-preserving @, 2, P) if and only if (X, P) is a stationary process.

2.1.1 Ergodicity
We denote by7 the sube-algebra of consisting of allO-invariant events, i.e.,
J={AecA:07(A)=A}.

It is easy to verify that7 is indeed ar-algebra, and that a functidfi :  — R is J-measurable
if and only if
F=Fo0O.

Definition (Ergodic probability measure). The probability measuré on (£2,2() is calleder-
godic(w.r.t. ©) if and only if any even#l € 7 has probability zero or one.

Exercise(Characterization of ergodicity). 1) Show thatP is not ergodic if and only if there
exists a non-trivial decomposition = A U A° of Q into disjoint setsA and A° with
P[A] > 0 andP[A¢] > 0 such that

O(A) Cc A and O(A°) C A
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2) Prove thatP is ergodic if and only if any measurable functiégn : 2 — R satisfying
F = F o © is P-almost surely constant.

Before considering general stationary Markov chains we ktdkvo elementary examples:

Example (Deterministic relations of the unit circle).

Let = R/Z or, equivalently(2 = [0, 1]/ ~ where ‘~" is the equivalence relation that identifies
the boundary pointe and1. We endowf2 with the Borelo-algebra?l = 5(£2) and the uniform
distribution (Lebesgue measurB)= Unif($2). Then for any fixed: € R, the rotation

O(w) =w+a (modulol)

is a measure preserving transformatiorj©f2l, P). Moreover,P is ergodic w.r.t.© if and only
if a is irrational:

a € Q: If a =p/qwith p,q € Z relatively prime then
k
O"(w) € {w+—:k:0,1,...,q—1} foranyn € Z.
q

This shows that for instance the union

= (o))

is ©-invariant with P[A] ¢ {0, 1}, i.e., P is not ergodic.

a ¢ Q. Suppose is irrational andF' is a bounded measurable function@mwith F' = F o ©.
ThenF' has a Fourier representation

F(w)= > c,e®™™ for P-almost every € €,

n=—oo

and© invariance ofF’ implies

(o ¢] o0
Z ¢, e2mmwta) — Z c,e?™  for P-almost every € (,
n=-—o0o n=-—oo
i.e., c,e?™m = ¢, for anyn € Z. Sincea is irrational this implies that all Fourier coeffi-
cientsc,, excepte, vanish, i.e. F'is P-almost surely a constant function. Thidss ergodic
in this case.
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Example (IID Sequence$. Let i be a probability measure dib, B). The canonical process

X,(w) = w, is an i.i.d. sequence w.r.t. the product measiire ® p on 2 = SZ+. In par-
n=0
ticular, (X,,, P) is a stationary process, i.e., the sltftwy, wi,...) = (w1, ws,...) IS measure-

preserving. To see thdt is ergodic w.r.t.© we consider an arbitrary evedAte 7. Then
A=0""A) ={(X,, Xns1,...) € A} foranyn > 0.

This shows that! is a tail event, and hende[A] € {0, 1} by Kolmogorov's zero-one law.

2.1.2 Ergodicity of stationary Markov chains

Now suppose thatX,, P,) is a general stationary Markov chain with initial distritout ;. and
transition kernep satisfyingi. = pp. Note that by stationarity, the mafp— pf is a contraction
on £?(u). Indeed, by the Cauchy-Schwarz inequality,

Jorrdn< [orans [ P = [ Pae vre e,

In particular,
Lf=pf—1F

is an element inC?(u) for any f € £2(p).

Theorem 2.1(Characterizations of ergodicity for Markov chains). The following statements
are equivalent:

1) The measuré, is shift-ergodic.
2) Any functiom: € £?(u) satisfyingCh = 0 u-almost surely igi-almost surely constant.

3) Any Borel seB € B satisfyingpls = 15 p-almost surely has measuigB) € {0, 1}.

Proof. 1) = 2). Suppose thaP, is ergodic and leb € £*(u) with Lh = 0 p-a.e. Then the
process\/,, = h(X,) is a square-integrable martingale w.f,.. Moreover, the martingale
is bounded inL?(P,) since by stationarity,

E.h(X,)% = /thu foranyn € Z,..
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Hence by theL? martingale convergence theorem, the limit, = lim M, exists in
n—oo
L*(P,). We fix a version of\/,, by defining

My (w) = limsup h(X,(w)) foreveryw € (.

n—oo

Note that)M ., is a.7-measurable random variable, since

My, 0O = limsup h(X,+1) = limsup h(X,,) = M.

n—o0 n—oo

Therefore, by ergodicity of,, M., is P,-almost surely constant. Furthermore, by the
martingale property,
h(Xo) = My = E,[M.|F;*] P,-a.s.

Henceh(X,) is P,-almost surely constant, and thliss ;-almost surely constant.
2) = 3). If Bis a Borel set withplz = 15 u-almost surely then the function = 15 satisfies

Lh = 0 p-almost surely. If 2) holds theh is p-almost surely constant, i.q«(B) is equal
to zero or one.

3) = 1). For proving that 3) implies ergodicity d?, let A € J. Thenl, = 14 0 ©. We will
show that this property implies that
h(l’) = Ex[lA]
satisfiegph = h, andh is u-almost surely equal to an indicator functibp. Hence by 3),
eitherh = 0 or h = 1 holdsu-almost surely, and thuB,[A] = [ hdp equals zero or one.

The fact that: is harmonic follows from the Markov property and the invaga of A: For
anyzr € S,

(ph)(z) = E, [Ex,[14]] = Ex[14 0 ©] = E,[14] = h(z).
To see that is p-almost surely an indicator function observe that by thekdaproperty
invariance ofA and the martingale convergence theorem,

WX,) = Ex,[1a] = Eu[14 0 ©"|F] = E,[14[F] = 14
P,-almost surely as — oo. Hence
poh™ =P, o(h(X,)) ' = P,ol;"
Since the left-hand side does not dependipn
poh ™t =P,013",

and soh takesyu-almost surely values ifi0, 1}.
O
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The third condition in Theorein 2.1 is reminiscent of the d&én of irreducibility. However,
there is an important difference as the following exampleash

Exercise(Invariant and almost invariant events). An eventA < 2( is calledalmost invariant
iff
PJAAOT(A)] =0.

Prove that the following statements are equivalentfar 2A:
(i) Ais almostinvariant.
(i) Ais contained in the completiai” of thes-algebra7 w.r.t. the measur@,.
(i) There exist a seB € B satisfyingplz = 15 p-almost surely such that

P,JAA{X, € B eventually}| = 0.

Example (Ergodicity and irreducibility ). Consider the constant Markov chain 6n= {0, 1}
with transition probabilities(0,0) = p(1,1) = 1. Obviously, any probability measure ¢h
is a stationary distribution fop. The matrixp is not irreducible, for instancgly;, = 1.
Nevertheless, condition 3) is satisfied afdis ergodic if (and only if): is a Dirac measure.

2.1.3 Birkhoff’s ergodic theorem

We return to the general setup whédds a measure-preserving transformation on a probability
space((2, 2, P), andJ denotes the-algebra ofo-invariant events ir.

Theorem 2.2(Birkhoff ). Suppose thaP = P o ©~! and letp € [1, c0). Then asi — oo,

n—1
1 Y Fo®' — E[F|J] P-almostsurely and if”(€,, P) (2.1.1)
n

1=0
for any random variableg” € L?(Q, 2, P). In particular, if P is ergodic then

n—1
S Y Fo®' — E[F] P-almostsurely and id”(Q, 2, P). (2.1.2)
n

1=0
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Example (Law of large numbers for stationary processes Suppose thatX,,, P) is a station-
ary stochastic process in the canonical model, 2e= S%+ and X,,(w) = w,. Then the shift
O = Xi.» IS measure-preserving. By applying Birkhoff's theorem to action of the form
F(w) = f(wo), we see that as — oo,

%Zf(Xi) = %ZF 0 ©' = B[f(Xo)|J] (2.1.3)
1=0 i=0

P-almost surely and i.? (2,2, P) for any f : S — R such thatf(X,) € £ andp € [1, o). If
ergodicity holds ther)[f(X,)|J] = E[f(Xo)] P-almost surely, wheré(2.1.3) is a law of large
numbers. In particular, we recover the classical law ofdargmbers for i.i.d. sequences. More
generally, Birkhoff's ergodic can be applied to arbitr@®/functionsF : SZ+ — R. In this case,

n—1 n—1
1 1 ,
=3 F(Xi, Xip1,...) ==Y Fo® — E[F|J] (2.1.4)
n =0 n =0

P-almost surely and ii? asn — oco. Even in the classical i.i.d. case whdigF'| 7| = E[F]
almost surely, this result is an important extension of #ve ¢f large numbers.

Before proving Birkhoff's Theorem, we give fanctional analytic interpretation for the L?
convergence.

Remark (Functional analytic interpretation). If © is measure preserving ¢f2, 2(, P) then the
mapU defined by
UF =Fo0©

is a linear isometry o£? (2,21, P) for anyp € [1, oo]. Indeed, ifp is finite then
/[UF\PdP :/\Fo@\de :/\F]de forany F' € LP(Q, 2, P).

Similarly, it can be verified that/ is isometric onC> (2,2, P). Forp = 2, U induces a unitary
transformation on the Hilbert spaéé(Q, 2, P), i.e.,

(UF,UG)p2py = /(Fo ©) (Go©®)dP = (F,G)12ppy foranyF,G € L2 (Q,2, P).

The L? ergodic theorem states that for ahye £7($2, 2, P),

n—1

1 E U'F —7F inL(Q,2A, P)asn — oo, whererF := E[F|J]. (2.1.5)
n
=0

In the Hilbert space cage= 2, 7 F' is the orthogonal projection df onto the closed subspace

Hy=L*Q,J,P) = {F € L*(Q,9,P): UF = F} (2.1.6)
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of L*(Q2,2, P). Note thatH, is the kernel of the linear operatdtr — I. SinceU is unitary, H,
coincides with the orthogonal complement of the rang& ef [, i.e.,

L*(Q,2A,P) = Hy® (U — I)(L?). (2.1.7)
Indeed, every functio’ € H, is orthogonal to the range éf — I, since
(UG—-G,F): = (UG, F)p2— (G, F)2 = (UG, F)2 — (UG, UF)12 = (UG, F—UF)2=0

foranyG € L?(Q,%, P). Conversely, every functioi’ € RangéU — 1)+ is contained inf
since

|UF — F|3. = (UF,UF)2 — 2(F,UF)p2 + (F, F)p2 = 2(F,F —UF) > = 0.

The L? convergence in(2.1.5) therefore reduces to a simple fomatianalytic statement that
will be the starting point for the proof in the general casesgibelow.

Exercise(L2 ergodic theoren). Prove that[(Z.1]5) holds for= 2 and anyF € £2(Q2, %, P).

Notation (Averaging operator). From now on we will use the notation

1 R
AnF:ﬁ;Fo@z:E;UZF

for ergodic averages of” random variables. Note that,, defines a linear operator. Moreover,
A,, induces a contraction oh? (2,2, P) for anyp € [1, oc] andn € N since

n—1
1 )
1A F e < — > U F|l = |Fll»  foranyF e LP(Q,2, P).
1=0

Proof of Theorerh 212The proof of the ergodic theorem will be given in several stejt first we
will show in Step 1 below that for a broad class of functions tenvergence in(2.1.1) follows
in an elementary way. As in the remark above we denote by

Hy={F e L*(Q0,A,P):UF =F}
the kernel of the linear operatdr — I on the Hilbert spacé&?(2, 2, P). Moreover, let
H ={UG—-G:Ge L>®Q,2A P)} =(U—-I)(L>),

and letr F' = E[F|J].
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Step 1: We show that for any” € H, + Hq,
A F —7F — 0 in L>(Q,2, P). (2.1.8)

Indeed, suppose thdt = F, + UG — G with Fy, € Hy andG € L*>. By the remark
aboverF is the orthogonal projection df onto H, in the Hilbert spacd.?(, 2!, P), and
UG — G is orthogonal taH,. Hencer ' = F and

n—1 n—1
1 . 1 )
A F — F:—E U'Fy — E —E UG -G
" ni:O ’ O+ni:0 ( )
1
=~ (UG -G).
~ )

SinceG € L>*(,2, P) andU is an L*>-isometry, the right hand side converge9tm
L*>* asn — oo.

Step 2: L2-convergence:By Step 1,
A F — aF  in L*(Q, 2, P) (2.1.9)

foranyF' € Hy+ H,. As the linear operatord,, andr are all contractions oh?(Q, 2, P),
the convergence extends to all random variables the L closure ofH, + H; by anc/3
argument. Therefore, in order to extefd (2.1.9) taFalt L2 it only remains to verify that
Hy + H, is dense inL?(Q,2l, P). But indeed, sincd.> is dense inL> andU — I is a
bounded linear operator di¥, H, is dense in thé.>-range ofU — I, and hence by (2.1.7),

L2<Q,Q[,P> :H0+(U—I)(L2) :HO +E:H0+H1

Step 3: LP-convergence For F' € L*>(Q,2, P), the sequencéA, I),cy is bounded inL>.
Hence for any € [1, 00),

A F = wF  inLP(Q,9, P) (2.1.10)

by (2.1.9) and the dominated convergence theorem. Sihcandr are contractions on
each L? space, the convergence [n (2.1.10) extends td”akk LP(Q2,2, P) by ane/3
argument.

Step 4: AlImost sure convergenceBy Step 1,

A, F — nF P-almost surely (2.1.11)
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forany F € Hy + H,. Furthermore, we have already shown tlh&t+ H; is dense in
L*(Q,21, P) and hence also i! (2,2, P). Now fix an arbitraryF’ € L'(Q, 2, P), and
let (F},)ren be a sequence i, + H; such thatF, — F in L'. We want to show that
A, F converges almost surely as— oo, then the limit can be identified ag” by the L
convergence shown in Step 3. We already know fhatimost surely,

limsup A, F}, = liminf A,F), foranyk € N,

n—00 n—00

and therefore, fok € N ande > 0,
Pllimsup A, F — liminf A, F' > ¢] < P[sup |A,F' — A, Fi| > ¢/2]
= P[sup |A,(F — Fy)| > ¢/2]. (2.1.12)

Hence we are done if we can show for any> 0 that the right hand side i (2.1]12)
converges td ask — oo. SinceE||F' — Fi|] — 0, the proof is now completed by Lemma
2.3 below.

[]

Lemma 2.3 (Maximal ergodic theorem). Suppose tha” = P o ©~!. Then the following
statements hold for ank € £'(Q, A, P):

1) E[F; max A,F >0/ >0 foranyn € N,

2) Plsup |[A,F|>c] < 1E[|F]] foranyce (0,00).

neN o
Note the similarity to the maximal inequality for martingslél'he proof is not very intuitive but
not difficult either:

Proof.
1) LetM, = maX(F—I—Fo@—i-- -+ Fo®" 1) andletB = {M,, > 0} = {lrgfgilA,F > 0}.
ThenM, = F + M}, 0 ©, and hence
F=M'—-M,00>M"—M'o® onB.
Taking expectations we obtain
E[F;B] > E[Mn*,B] E[M} 06;07(0(B))]
E[M;] = E[(M, 1e(5)) © O]
E[M;] = E[M,;;©(B)] = 0

sinceB C ©71(0(B)).

Markov processes Andreas Eberle



2.1. ERGODIC THEOREMS 87

2) We may assume thatis non-negative - otherwise we can apply the corresponditiugate
for |F|. For FF > 0 andc € (0, 00),

1<i<n

E{F—c;maxAinc} >0

by 1). Therefore,

i<n

c- P [maXAiF > c} <F {F;mngiF > c} < E[F]
for anyn € N. Asn — oo we can conclude that
c-P {supAiF > c} < E[F].
€N

The assertion now follows by replacirdy ¢ — ¢ and lettinge tend to zero.

2.1.4 Application to Markov chains

Suppose tha® is the shift on2 = 5%+, and(X,,, P,) is a canonical time-homogeneous Markov
chain with state spac#, initial distribution ;» and transition kerneb. Then® is measure-
preserving w.r.t.P, if and only if ;1 is a stationary distribution fas. Furthermore, by Theorem
2.1, the measure), is ergodic if and only if any seB € B such thaplz = 15 p-almost surely
has measurg(B) € {0, 1}. In this case, Birkhoff’s theorem has the following consepes:

a) Law of large numbers: For any functionf € £(S, u),

n—1
1
=3 (X)) = /fdu P,-almost surely as — oc. (2.1.13)
n

=0
The law of large numbers for Markov chains is exploited in kéar chain Monte Carlo
(MCMC) methods for the numerical estimation of integralstwa.given probability mea-

surepu.

b) Estimation of the transition kernel: For any Borel setsl, B € B,

n—1

%ZleB(X,»,XiH)—>E[1AxB(X0,X1)] :/Au(dx)p(x,B) (2.1.14)
=0

P,ass. asn — oo. This is applied in statistics of Markov chains for estimgtithe
transition kernel of a Markov chain from observed values.
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Both applications lead to new questions:

e How can the deviation of the ergodic average from its limigoantified?

e What can be said if the initial distribution of the Markov ahas not a stationary distribu-

tion?

We return to these important questions later - in partidnl&ections 24 ard 2.5. For the moment
we conclude with some preliminary observations concerthiergsecond question:

Remark (Non-stationary initial distributions ).

1) If v is a probability measure ofi that is absolutely continuous w.r.t. a stationary distri-
bution i then the lawP, of the Markov chain with initial distribution is absolutely con-
tinuous w.r.t. P,. Therefore, in this casg,-almost sure convergence holds in Birkhoff's
Theorem. More generally?,-almost sure convergence holds wheneye is absolutely
continuous w.r.t.u for somek € N, since the limits of the ergodic averages coincide for
the original Markov chair{X,,),>o and the chaif X, 1. ),>o with initial distributionp*.

2) SinceP, = [ P, u(dx), P,-almost sure convergence also impligsalmost sure conver-
gence of the ergodic averages fealmost everyz.

3) NeverthelesspP,-almost sure convergence does not hold in general. In péaticthere
are many Markov chains that have several stationary digtoibs. If andy are different
stationary distributions for the transition kerpethen the limitsE, [F'|7] and E,[F|J] of
the ergodic averages$, F' w.r.t. P, and P, respectively daot coincide

Exercise(Ergodicity of stationary Markov chains). Suppose that is a stationary distribution
for the transition kerneb of a canonical Markov chaifX,,, P,) with state spacés, B). Prove
that the following statements are equivalent:

(i) P, is ergodic.

(i) ForanyB € B,
1 n—1
- Zpi(l’, B) — u(B) asn — oo for p-a.e.z € S.
n
i=0

(iii)y Forany B € B, such thau(B) > 0,

P,[Tp <o) >0 foru-ae.xes.

(iv) Any B € Bsuchthaplp = 15 p-a.s. has measuyg B) € {0, 1}.
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2.2 Ergodic theory in continuous time

We now extend the results in Section]2.1 to the continuous tiase. Indeed we will see that the
main results in continuous time can be deduced from thossdnate time.

2.2.1 Ergodic theorem

Let (2,2, P) be a probability space. Furthermore, suppose that we aga giproduct-measurable
map

©:[0,00) x Q2 —Q
(t, w)— Oyw)
satisfying the semigroup property
BOp=Iidg; and ©,00,=0,,, foranyt,s>D0. (2.2.1)

The analogue in discrete time are the m&pgw) = O©™(w). As in the discrete time case,
the main example for the mag3; are the time-shifts on the canonical probability space of a
stochastic process:

Example (Stationary processes in continuous time Supposé? = C([0, ), .S) or

Q= D([0,00),5) is the space of continuous, right-continuous or cadlagtfans from[0, co)
to S, X;(w) = w(t) is the evolution of a function at timg and2l = o(X; : ¢t € [0,00)). Then,
by right continuity oft — X;(w), the time-shifto : [0, 00) x Q — ) defined by

Oi(w) =w(t+-) fortel0,00),weQ,

is product-measurable and satisfies the semigroup prof2#&y). Suppose moreover thatis
a probability measure off2, (). Then the continuous-time stochastic proogss ):c(o,«), P) is
stationary, i.e.,

(Xstt)tefo,00) ~ (Xt)icpo,0)  UNderP for anys € [0, co),
if and only if P is shift-invariant , i.e., iff P o ©;! = P for anys € [0, c0).
Theo-algebra of shift-invariant events is defined by

J={AcA: A=0,(A)foranys € [0,00)} .

Verify for yourself that the definition is consistent withetlone in discrete time, and that is
indeed ar-algebra.
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Theorem 2.4(Ergodic theorem in continuous time. Suppose thaP is a probability measure
on (9, 2l) satisfyingP o ©;! = P for anys € [0, 00). Then for any € [1, oo] and any random
variable F' € LP(Q, 2, P),

I .
lim — [ FoO©,ds= E[F|J]| P-almostsurely andid?(,2, P). (2.2.2)

t—oo ¢ 0

Similarly to the discrete time case, we use the notation
1 t

AtF——/ FO@st
3 0

for the ergodic averages. It is straightforward to verifattd, is a contraction orC? (2, 2, P)
for anyp € [1, oo| provided the map®), are measure-preserving.

Proof.

Step 1: Time discretization. Suppose that’ is uniformly bounded, and let
1
F o= / FoO,ds.
0

Since(s,w) — O,(w) is product-measurablé, is a well-defined uniformly bounded ran-

dom variable. Furthermore, by the semigroup propérty 12.2.

1
FO@Z'

n

A, F = A, F foranyn € N, where A, F :=

SENS
l
o

i

estimate
A 1 [t
|AF — Ay F = |AF = A F| < ‘2/ Fo®ds
[t]

denotes the discrete time ergodic averagé off ¢ € [0, c0) is not an integer then we can
1 1 [t]
+ (———) : / FoBOds
1t |
< Louplp|+ (L -1 I
<7 sup w sup .

The right-hand side is independentwfand converges t0 ast — oco. Hence by the
ergodic theorem in discrete time,

lim AF = lim A,F = E[F|J] P-as.andinl”foranyp e [1,00),  (2.2.3)
—00 n—o0

whereJ = {4 € 2 : ©;'(A) = A} is the collection 0B, -invariant events.
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Step 2: Identification of the limit. Next we show that the limit in[(2.2.3) coincides with the
conditional expectatiod’[F'| 7| P-almost surely. To this end note that the limit superior
of A,F ast — o Is J-measurable, since

1 t 1 t 1 s+t
(AtF)o@S:—/FOGUOGSdu:—/FOG)u+Sdu:—/ Fo®O,du
t 0 t 0 t s
has the same limit superior as F' for any s € [0, c0). SinceL' convergence holds,
1 t
lim A,F — Ellim A,F|.7] = lim E[A,F|7] = lim -/ E[F 00,7 ds
t—o00 t—oo t 0

P-almost surely. Sinc®, is measure-preserving, it can be easily verified fiid o O 4| 7|
= E[F|J] P-almost surely for ang € [0, ). Hence

tlim AF = E[F|J] P-almostsurely
—r00

Step 3: Extension to generaF € LP. SinceF,(2) is a dense subset @’ (2,2, P) and A, is
a contraction w.r.t. thd?-norm, theL? convergence in_(2.2.2) holds for ay € L? by
ane/3-argument. In order to show that almost sure convergenakstiot anyF” € £ we
apply once more the maximal ergodic theofem 2.3.tFerl,

1 [ t]+1 . A A .
|AtF| S Z/ |FO@S|dS: \'Jt AUJ+1|F| SQAL”+1|F|
0

Hence for any: € (0, c0),

o 2 .9
P {sup]AtF| > c} <P {supAn]F| > 0/2] < —FE|[|F|] < =E[|F]].
c c

t>1 neN

Thus we have deduced a maximal inequality in continuous frm® the discrete time
maximal ergodic theorem. The proof of almost sure convergai the ergodic averages
can now be completed similarly to the discrete time case pyaimatingF' by uniformly
bounded functions, cf. the proof of Theoréml2.2 above.

The ergodic theorem implies the following alternative euerizations of ergodicity:

Corollary 2.5 (Ergodicity and decay of correlationg. Suppose thaf’ o ©;! = P for any
s € [0,00). Then the following statements are equivalent:

(i) Pis ergodic W.I.t.(O;)s>0-
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(i) Forany F € £2(Q,2, P),

1 t
Var (Z/ Fo@sds) — 0 ast — oo.
0

(i) Forany F € £*(Q,2, P),

1 t
Z/ Cov (Fo®©, F)ds— 0 ast— oo.
0

(iv) Forany A, B € 2,

t
%/ P[ANn®©;(B)] ds — P[A] P[B] ast— oo.
0
The proof is left as an exercise.

2.2.2 Applications

a) Flows of ordinary differential equations
Letd : RY — R be a smootiC*) vector field. The flow©;),.r of b is a dynamical system on
Q) = R? defined by

%@t(w) = b(04(w)), Op(w) =w foranyw e RY. (2.2.4)

For a smooth functiod” : R¢ — R andt € R let
(UF)(w) = F(O(w)).

Then the flow equation (2.2.4) implies tfe@ward equation

d . _
EUtFZGt(VF)O@t: (bVF)O@t, l.e.,
(F) %UtF =ULF where LF =0b-VF

is theinfinitesimal generator of the time-evolution. There is also a correspondiagkward
equationthat follows from the identity/,,U,_, F' = U, F'. By differentiating w.r.t.h ath = 0 we
obtainLU,F — LU, F = 0, and thus

d
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The backward equation can be used to identifyariant measuresfor the flow(©,),cr. Suppose
that P is a positive measure dR¢ with a smooth density w.r.t. Lebesgue measupe and let
F € C°(RY). Then

%/UthP:/hV(Fo@t)gd)\:/Fo@tdiv(gb)d)\.

Hence we can conclude that if
div(ob) =0

then[ Fo©,dP = [U,FdP = [ FdPforanyF € C5°(R%) andt > 0, i.e.,
PoO;'=P foranytecR.

Example (Hamiltonian systemg. In Hamiltonian mechanics, the state space of a system is
Q = R where a vectow = (q,p) € Q consists of the position variable € R? and the
momentum variable € R?. If we choose units such that the mass is equal to one theottle t
energy is given by thelamiltonian

H(4.p) = 5ol + V(a)

where% Ip|? is the kinetic energy an (¢) is the potential energy. Here we assuvhe C>(R?).
The dynamics is given by the equations of motion

dq _ OH

dp OH
pri —a—q(q,P) =-VV(q).

A simple example is the harmonic oscillator (pendulum) vehér= 1 andV'(q) = %qQ. Let
(64):cr be the corresponding flow of the vector field

91 (q, p) p
bg.p) = | 2 - .
(@:7) (—%—f(qm)) (—VV(Q))

The first important observation is that the system does nolbex the whole state space, since
the energy is conserved:

d OH dg OH dp

Eﬂ(qm) = 5—q(q,p) ot a—q(q,p) i (b-VH)(q,p) =0 (2.2.5)

where the dot stands both for the Euclidean inner produ@fimnd inR?¢. ThusH o ©; is
constant, i.e. — ©,(w) remains on a fixed energy shell.
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T
NP,

Figure 2.1: Trajectories of harmonic oscillator

As a consequence, there are infinitely many invariant measumdeed, suppose that
o(q,p) = g(H(q,p)) for a smooth non-negative functigmonR. Then the measure

P(dw) = g(H (w)) A*(dw)

is invariant w.r.t.(©,) because

div(ob) = b- Vo + odiv(b) = (¢ o H) (b- VH) + o (a2H GQH) =0

dq0p  dpdq

by (2.2.5). What about ergodicity? For any Borel #2C R, the even{ H € B} is invariant

w.rt. (©,) by conservation of the energy. Therefore, ergodicity canhotd if g is a smooth

function. However, the example of the harmonic oscillatavegs that ergodicity may hold if we
replaceg by a Dirac measure, i.e., if we restrict to a fixed energy shell

Remark (Deterministic vs. stochastic dynamick The flow of an ordinary differential equation
can be seen as a very special Markov process - with a detstroidynamic. More generally, the
ordinary differential equation can be replaced by a staahdgferential equation to obtain 1t6
type diffusion processes, cf. below. In this case is notipessany more to choose as the state
space of the system as we did above - insteduds to be replaced by the space of all trajectories
with appropriate regularity properties.

b) Gaussian processes

Simple examples of nhon-Markovian stochastic processed®edound in the class of Gaussian
processes. We consider the canonical model @ith D([0, 00), R), X;(w) = w(t),
A=0(X;:t€R,),andO,(w) = w(t + -). In particular,

X;00,=X,;,, foranyt,s>D0.
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Let P be a probability measure g, ). The stochastic proce$<;, P) is called aGaussian
processif and only if (X;,, ..., X;,) has a multivariate normal distribution for anyc N and
ti,...,t, € R, (Recall thatitis not enough to assume thatis normally distributed for any).
The law P of a Gaussian process is uniquely determined by the aveesgkesovariances

m(t) = E[Xy], c(s,t) = Cov(Xs, Xy), s,t>0.

It can be shown (Exercise) that a Gaussian process is safidfrand only if m(¢) is constant,
and

c(s,t) = r(|s — )
for some function- : R, — R (auto-correlation function). To obtain a necessary condition for
ergodicity note that if X;, P) is stationary and ergodic thé;nf[f X, ds converges to the constant

averagen, and hence
t
Var (%/ X, ds> — 0 ast — oo.
0

On the other hand, by Fubini’'s theorem,

t
Var (1/de) Cov( /de /Xdu)
tJ, t
//COV X, Xy) duds = — // s — u) duds
2t2

1
2t2 i (t —v)r(v)dv = % /. (1 — ¥> r(v) dv
1 t
~ o r(v)dv asymptotically ag — oo.

Hence ergodicity can only hold if

1 t
lim — [ r(v)dv=0.

t—oo t 0

It can be shown by Spectral analysis/Fourier transformrtiegles that this condition is also suf-
ficient for ergodicity, cf e.g. Lindgren, “Lectures on Statary Stochastic Processes”[20].

c) Random Fields

We have stated the ergodic theorem for temporal, i.e., amestsional averages. There are
corresponding results in the multi-dimensional case, i.es Z¢ ort € R?, cf. e.g. Strook,
“Probability Theory: An Analytic View”. [34]. These applyf instance to ergodic averages of

the form
1

A=

/ FoOB,ds, teRy,
(=t,t)
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where(0;),cra iS a group of measure-preserving transformations on a pilitlyaspace(2, A, P).
Multi-dimensional ergodic theorems are important to thelgtof stationary random fields. Here
we just mention briefly two typical examples:

Example (Massless Gaussian free field o). LetQ = R%" whered > 3, and letX,(w) = w,
forw = (w,) € Q. Themassless Gaussian free field the probability measur® on 2 given
informally by

“P(dw) = %exp (— % Z |ws — ws|2> H dw,”. (2.2.6)

s,tezd s€Z4
[s—t|=1

The expression is not rigorous since the Gaussian free fielR% does not have a density
w.r.t. a product measure. Indeed, the density in (2.2.6)ldvbe infinite for almost everw.
NeverthelessP can be defined rigorously as the law of a centered Gaussiaegsdor random
field) (X),cz« With covariances

Cov(X,,X;) = G(s,t) foranys,te Z%

whereG(s,t) = > p"(s,t) is the Green’s function of the Random Walk @f. The connection

n=0
to the informal expression il (2.2.6) is made by observirag the generator of the random walk
is the discrete Laplaciair;«, and the informal density i (2.2.6) takes the form

1
Z_l exp (—5 (w, Azdw)l2(zd)) .

Ford > 3, the random walk oZ? is transient. Hence the Green’s function is finite, and one
can show that there is a unique centered Gaussian me&sare? with covariance function
G(s,t). Since G(s,t) depends only ors — ¢, the measure’ is stationary w.r.t. the shift
O,(w) = w(s + ), s € Z%. Furthermore, decay of correlation holds &bk 3 since

G(s,t) ~ |s—t*™* as|s —t| = oco.

It can be shown that this implies ergodicity Bf i.e., theP-almost sure limits of spatial ergodic
averages are constant. In dimensidns 1,2 the Green’s function is infinite and the massless
Gaussian free field does not exist. However, in any dimengi@an N it is possible to define

in a similar way the Gaussian free field with mass> 0, whereG is replaced by the Green’s
function of the operatom? — A..

Example (Markov chains in random environment). Suppose that©, ), is stationary and
ergodic on a probability spad€, 2, P), and letg : 2 x Z¢ — [0, 1] be a stochastic kernel from
Q) to Z?. Then random transition probabilities @1 can be defined by setting

p(w,z,y) = q(O,(w),y —z) foranyw € Qandz,y € Z°.
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For any fixedw € Q, p(w,-) is the transition matrix of a Markov chain d¢f. The variablev

is called therandom environment - it determines which transition matrix is applied. One is
now considering a two-stage model where at first an envirommeas chosen at random, and
then (givenw) a Markov chain is run in this environment. Typical quessidhat arise are the
following:

e Quenched asymptotics.How does the Markov chain with transition kerngly, -, -) be-
have asymptotically for a typical (i.e., for P-almost every € Q)?

e Annealed asymptotics.What can be said about the asymptotics if one is averaging.over
w.r.t. P?

For an introduction to these and other questions see e.ging&am “Ten lectures on Random

~

media” [3].

2.2.3 Ergodic theory for Markov processes

We now return to our main interest in these notes: The appicaf ergodic theorems to
Markov processes in continuous time. Suppose (thal ) is a transition function of a time-
homogeneous Markov procegk;, P,) on (€2,2). We assume thdtX}),c(o ) is the canonical
process onf2 = D([0,00),5), A = o(X; : t € [0,00)), andy is the law of X, w.r.t. P,. The
measure. is a stationary distribution faofp, ) iff

up: = - foranyt € [0, 00).

The existence of stationary distributions can be shownlaityito the discrete time case:

Theorem 2.6(Krylov-Bogolinbov). Suppose that the family

1

t
uﬁtzz/upsds, t>0,
0

of probability measures of is tight for somes € P(S). Then there exists a stationary distribu-
tion p of (p;)>o-

The proof of this and of the next theorem are left as exercises
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Theorem 2.7(Characterizations of ergodicity in continuous timg. 1) The shift semi-

groupO,(w) = w(t + ), t > 0, preserves the measure, if and only if .« is a stationary
distribution for (p;):>o.

2) In this case, the following statements are all equivalent
(i) P, is ergodic.
(i) Forany f € £2(S, ),

1 t
2/ f(Xs) ds—>/fdu P,-a.s. ast — oo.
0

(iii) Forany f € L£2(S, ),

t
Varp, <%/ f(XS)ds> —0 ast— oo.
0
(iv) Forany f, g € £2(S, 1),

1 t
?/ Covp, (9(Xo), f(X)) ds =+ 0 ast — oo.
0

(v) ForanyA, B € B,

1

t
;/ P,[Xo€ A X, € B ds = u(A)u(B) ast — oo.
0

(vi) ForanyB € B,

&~ | =

/tps(x, B)ds — u(B) p-a.e.as — oo.
0
(vii) Forany B € B with u(B) > 0,

P,[Tp <] >0 forpu-a.e.xzes.
(viii) Forany B € B such thaty; 15 = 15 p-a.e. for anyt > 0,
u(B) € {0, 1}.

(ix) Any functionh € F,,(S) satisfyingp,h = h p-a.e. for anyt > 0 is constant up to a
set ofu-measure zero.
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One way to verify ergodicity is the strong Feller property:

Definition (Strong Feller property). A transition kernelp on (S, B) is calledstrong Feller iff
pf is continuous for any bounded measurable funcfianS — R.

Corollary 2.8. Suppose that one of the transition kernglst > 0, is strong Feller. TherP, is
stationary and ergodic for any stationary distributiprof (p;):>, that as connected support.

Proof. Let B € B such that
plp =1 p-a.e. foranyt > 0. (2.2.7)

By Theoren{ 2.7 it suffices to show(B) € {0,1}. If p; is strong Feller for some thenp;15
is a continuous function. Therefore, By (2]2.7) and sineesihpport ofu is connected, either
plg =0o0rplg =1o0nsuppf). Hence

u(B) = pu(lp) = p(plp) € {0,1}.
N

Example (Brownian motion on R/Z). A Brownian motion(X;) on the circleR/Z can be
obtained by considering a Brownian motiohB;) on R modulo the integers, i.e.,

X,=B,—|B:] €[0,1) CR/Z.
Since Brownian motion o has the smooth transition density
pi(w,y) = (2mt) "2 exp(—|z — y[*/(21)),

the transition density of Brownian motion @&yZ w.r.t. the uniform distribution is given by

x,Y) = T, y+n)=
pt( y) %pt( Yy ) \/2_7Tt

Sinceyp;, is a smooth function with bounded derivatives of all ordéing, transition kernels are

1 _|z—y—n|?

e~ =z foranyt >0andx,y €[0,1).

strong Feller for any > 0. The uniform distribution ofR /Z is stationary fo(p;);>o. Therefore,
by Corollary[2.8, Brownian motion oR /Z with uniform initial distribution is a stationary and
ergodic Markov process.

A similar reasoning as in the last example can be carriedavygtdneral non-degenerate diffusion
processes oR“. These are Markov processes generated by a second oraeexlifél operator

of the form
d 82 d a

1

hj= =
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By PDE theory it can be shown that if the coefficients are lgddiblder continuous, the matrix
(a;j(x)) is non-degenerate for any and appropriate growth conditions hold at infinity therr¢he
is a unique transition semigroyp; );>o with a smooth transition density correspondingZtoct.
e.g. [XXX]. Therefore, Corollary 2]8 can be applied to prove that tinedéa corresponding
Markov process with stationary initial distribution is steary and ergodic.

2.3 Structure of invariant measures

In this section we apply the ergodic theorem to study thectire of the set of all invariant
measures w.r.t. a given one-parameter family of transfooms\(©,),~, as well as the structure
of the set of all stationary distributions of a given traiasitsemigrougp; ):>o-

2.3.1 The convex set o®-invariant probability measures

Let© : R, xQ — Q, (t,w) — O;(w) be product-measurable ¢f?, ) satisfying the semigroup

property
Oy =idg, ©;00,=0,, foranyt,s>0,

and let7 = {A€2:0;'(4) = Aforanyt > 0}. Alternatively, the results will also hold in
the discrete time case, i.®,. may be replaced b¥, . We denote by

S(©)={PePQ): PoO;" = Pforanyt > 0}
the set of all(©,)-invariant (stationary) probability measures @h ).

Lemma 2.9(Singularity of ergodic probability measures). Suppose’, () € S(O) are distinct
ergodic probability measures. Théhand( are singular on ther-algebra 7, i.e., there exist an
eventd € J such thatP[A] = 1 andQ[A] = 0.

Proof. This is a direct consequence of the ergodic theorenP? ¥ () then there is a random
variableF' € F,(Q2) such that/ F dP # [ F dQ. The event

A= {limsupAtF = /FdP}
t—o0
is contained in7, and by the ergodic theorem®?[A] = 1 andQ[A] = 0. O

Recall that an element in a convex setr is called an extreme point af' if x can not be
represented in a non-trivial way as a convex combinationl@hents inC'. The setC, of all
extreme points i is hence given by

Co={reC:x,20 € C\{z},a€(0,1): 2 =ax; + (1 —a)za}.
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Theorem 2.10(Structure and extremals of S(®)). 1) The setS(O) is convex.
2) A(©,)-invariant probability measuré is extremal inS(©) if and only if P is ergodic.

3) If Q is a polish space andl is the Borelo-algebra then any©,)-invariant probability
measureP on (£2,2() can be represented as a convex combination of extremal dergo
elements ir5(0), i.e., there exists a probability measw®n S(©). such that

P = Q 0(dQ).

S(©)e

Proof. 1) If P, and P, are(©,)-invariant probability measures then any convex combamati
aP + (1 —a)P,, a € 0,1], is (6;)-invariant, too.

2) Suppose first tha? € S(©) is ergodic and® = aP; + (1 — «) P, for somex € (0, 1) and
P, P, € §(©). ThenP, and P, are both absolutely continuous w.r®. HenceP; and
P, are ergodic, i.e., they only take the valueand1 on sets in7. Since distinct ergodic
measures are singular by Lemmal 2.9 we can concludg?hat P = P, i.e., the convex
combination is trivial. This show® € S(O)..

Conversely, suppose th&te S(0) is not ergodic, and letl € 7 such thatP[A] € (0, 1).
Then P can be represented as a non-trivial combination by comiitgponc(A):

P = P[-|A] P[A] + P[-|A°] PA°].

As Ais in J, the conditional distribution$|-|A] and P[- |A¢| are both(©,)-invariant
again. Hence® ¢ S(0)..

3) This partis a bit tricky, and we only sketch the main idear. flRore details see e.g. Varad-
han, “Probability Theory”[[36]. Sincé&?, 2l) is a polish space with Borel-algebra, there
is a regular versiop 7 (w, -) of the conditional distribution®| - | 7](w) given thes-algebra
J. Furthermore, it can be shown tha}(w,-) is stationary and ergodic for P-almost
everyw € €2 (The idea in the background is that we “divide out” the nawidf invariant
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events by conditioning of). Assuming the ergodicity gf 7 (w, -) for P-a.e.w, we obtain
the representation

P(dw) = / P, ) P(dw)

_ / Q 0(dQ)
S(O)e

wherep is the law ofw — ps(w,-) under P. Here we have used the definition of a

regular version of the conditional distribution and theaxsf@rmation theorem for Lebesgue

integrals.

To prove ergodicity op s (w, -) for almost everyo one can use that a measure is ergodic if
and only if all limits of ergodic averages of indicator fuioets are almost surely constant.

For a fixed eventd € 2,
t

1
lim - [ 1400,ds = P[A|J] P-almostsurely, and thus

t—oo t 0
1 t

1tlim — | 1400,ds =ps(w,A) ps(w,-)-almost surely forP-a.e.w.

—00 0
The problem is that the exceptional set iR-almost every” depends aA, and there are
uncountably many evenit € 2(in general. To resolve this issue, one can use that the Borel
o-algebra on a Polish space is generated by countably masylsetThe convergence
above then holds simultaneously with the same excepti@tdbsall A,,. This is enough
to prove ergodicity op s (w, -) for P-almost everyw.

]

2.3.2 The set of stationary distributions of a transition semigroup

We now specialize again to Markov processes. pet (p;);>o be a transition semigroup on
(S,B), and let(X;, P,) be a corresponding canonical Markov procesflos D(R,,S). We
now denote byS(p) the collection of all stationary distributions f@s;):>, i.e.,

S(p) ={n € P(S) : p= pp, foranyt > 0} .

As usually in this setup is thec-algebra of events iRl = (X, : t > 0) that are invariant
under time-shift9;(w) = w(t + -).

Exercise(Shift-invariants events for Markov processe$. Show that for anyd € 7 there exists
a Borel setB € B such thai, 15 = 1 p-almost surely for any > 0, and

A=) |J{Xn € B} ={X,€ B} P-almostsurely

neNm>n
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The next result is an analogue to Theofem .10 for Markovesses. It can be either deduced
from Theoreni 2,10 or proven independently.

Theorem 2.11(Structure and extremals ofS(p)). 1) The setS(p) is convex.

2) A stationary distribution. of (p;) is extremal inS(p) if and only if any seB3 € 5 such that
pelp = 1p p-a.s. for anyt > 0 has measurg(B) € {0, 1}.

3) Any stationary distribution: of (p;) can be represented as a convex combination of ex-
tremal elements i (p).

Remark (Phase transitiong. The existence of several stationary distributions canespond
to the occurrence of a phase transition. For instance wesedlin XXX below that for the heat
bath dynamics of the Ising model & there is only one stationary distribution above the critica
temperature but there are several stationary distribsifiothe phase transition regime below the
critical temperature.

2.4 Quantitative bounds & CLT for ergodic averages

Let (p:)i>0 be the transition semigroup of a Markov procéss, ).z, , P,) in discrete time or a
right-continuous Markov proces$.X,);cr, , ;) in continuous time with state spacg, 5). In
discrete timep, = p' wherep is the one-step transition kernel. Suppose tha a stationary
distribution of (p;);>0. If ergodicity holds then by the ergodic theorem, the avesag

1 t—1 1 t .
Af = ?;ﬂXi)’ Af = Z/o f(X,)ds respectively

converge tqu(f) = [ fdu forany f € £'(u). In this section, we study the asymptotics of the
functions ofA; f aroundu( f) ast — oo for f € L2(u).

2.4.1 Bias and variance of stationary ergodic averages

Theorem 2.12(Bias, variance and asymptotic variance of ergodic averaggsLet f € £2(u)
and letfy = f — u(f). The following statements hold:
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1) Foranyt > 0, A,f is an unbiased estimator for( f) w.r.t. P, i.e.,
Ep,[Aif] = p(f).

2) The variance ofl, f in stationarity is given by

t

Varp, [Af] = %Varu(f) + % Z (1 - %) Cov,(f,p"f) indiscrete time,
k=1

2 ! : : : :
Varp, [A:f] = ;/ (1 — %) Cov,(f,p-f)dr in continuous time, respectively.
0

3) Suppose that the seriésf, = i p* fo or the integralG f, = f0°° psfods (in discrete/
k=0

continuous time respectively) converge<it{.). Then the asymptotic variance ¢t A, f
is given by

lim ¢ - Varp, [A, f] = a]%, where

t—o00

o} = Var,(f) +2>_ Covu(f,p*f) = 2(fo, Gfo) 12w — (fo fo) r2u)
k=1

in the discrete time case, and

0% = /0 Covyu(f,psf)ds = 2(fo, G fo) 12w

in the continuous time case, respectively.

Remark. 1) The asymptotic variance equals

afc = Varp, [f(Xo)] +2 Z Covp,[f(Xo), f(X4)],
k=1

07 = / Covp,[f(Xo), f(X,)]ds respectively
0
If G'f,, exists then the variance of the ergodic averages behavegpasycally aSO'ch/t.

2) The statement hold under the assumption that the Markanegs is started in stationarity.
Bounds for ergodic averages of Markov processes with ndresgay initial distribution
are given in Section 2.5 below.

Proof of Theorerh 2.12:
We prove the results in the continuous time case. The analdgcrete time case is left as
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an exercise. Note first that by right-continuity @X%):>o, the procesgs,w) — f(Xs(w)) is
product-measurable and square integrabl@of) x Q w.r.t. A @ P, for anyt € R,.

1) By Fubini’s theorem and stationarity,
{ / f(X ds] = / Ep,[f(Xs)]ds = pu(f) foranyt > 0.

2) Similarly, by Fubini’'s theorem, stationarity and the Mav property,

Vs, 14of) = Covr, [ 1 [ 1x0ds. 7 [ 1060 ]
-2 t | covn. 106 506 s
/ | Conspanat) dsa

t2 (t - 7“) COVu(fa prf)

3) Note that by stationarityy(p, f) = u(f), and hence

Cova(f.pof) = / Jopofodu  foranyr > 0.

Therefore, by 2) and Fubini’s theorem,

t- Varp, [Atf]:2/t (1—%>/f0prf0dudr

0

=2 (fo, /0 (1=5)pfo dr> .

2 <f07/ Prfo dT> ast — oo
0 L2(p)

provided the integraf0°° p, fo dr converges in.%(u). Here the last conclusion holds since
L?(u)-convergence of(f prfo dr ast — oo implies that

t 1 t r 1 t t .
/ prfodr:—/ / prfodsdr:—/ / prfodrds — 0in L*(u) ast — oo.
ot tJo Jo tJo Js

]

Remark (Potential operator, existence of asymptotic variance The theorem states that the
asymptotic variance of/tA, f exists if the series/integral f, converges ir.?(;:). Notice that(
is a linear operator that is defined in the same way as the Griesction. However, the Markov
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process is recurrent due to stationarity, and therefdre = co u-a.s. onB for any Borel se3 C
S. Nevertheless(s f, often exists becausg has mean(f,) = 0. Some sufficient conditions
for the existence of- f, (and hence of the asymptotic variance) are given in the eseesbelow.
If G f, exists for anyf € £2(u) thenG induces a linear operator on the Hilbert space

Li(n) = {f € L*(u) = p(f) = 0},

i.e., on the orthogonal complement of the constant funstion’.?(x;). This linear operator is
called thepotential operator. It is the inverse of the negative generator restricted ecottthog-
onal complement of the constant functions. Indeed, in disdime,

—LGfo=(I-p)> p"fo=fo
n=0

whenevelG f, converges. Similarly, in continuous time Gff; exists then

26y =~ [t = ([Tniar = [ s

h

o1
:1}%1% ; pifodt = fo.

The last conclusion holds by strong continuitytefs p; fo, cf. Theoreni 3111 below.

Exercise (Sufficient conditions for existence of the asymptotic variace). Prove that in the
continuous time casé&; f, = f0°° p: fo converges in%(u) if one of the following conditions is
satisfied:

(i) Decay of correlations: [, |Covp, [f(Xo), f(Xy)]| dt < oco.
(i) L2 bound: [ ||pefollL2(udt < oc.

Deduce non-asymptotic {inite) and asymptotict(— oc) bounds for the variances of ergodic
averages under the assumption that either the correlatiomsy, [f(Xo), f(X;)]| or the L*(u)
norms||p; fo|| z2(,) are bounded by an integrable functiofd).

2.4.2 Central limit theorem for Markov chains

We now restrict ourselves to the discrete time case.fLetL?(u), and suppose that the asymp-
totic variance
O'J% = lim n Varp, [A, f]

n—oo
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exists and is finite. Without loss of generality we assurfig) = 0, otherwise we may consider
fo Instead off. Our goal is to prove a central limit theorem of the form

[y

n—

F(X;) B N(0,0%) (2.4.1)

Si-

I
o

where “3” stands for convergence in distribution. The key idea isge the martingale problem

in order to reduce (2.4.1) to a central limit theorem for nimagdles. Ifg is a function inL?(u)
theng(X,,) € £*(P,) foranyn > 0, and hence

n—1

9(X) = 9(Xo) = My + D _(L9g)(Xy) (2.4.2)

k=0
where(1M,,) is a square-integrableF,X) martingale withM, = 0 w.r.t. P,, andLg = pg — g.
Now suppose that there exists a functipg £2(x) such thatCg = —f p-a.e. Note that this is
always the case with = Gf if Gf = > p™f converges in.?>(u). Then by [Z.4.R),
n=0

ERS _ M, | g(Xo) — g(X)
ﬁ;f(xk) =t NG : (2.4.3)

Asn — oo, the second summand converge$ a L*(P,). Therefore,[(24]1) is equivalent to a

central limit theorem for the martingaldZ,,). Explicitly,
M, =>"Y; foranyn >0,
=1

where the martingale incremenitsare given by
Yi=M; = M;—y = g(X;) — 9(Xi-1) — (Lg)(Xi-1)
= 9(Xi) — (pg)(Xi-1).

These increments form a stationary sequence W,r.tThus we can apply the following theorem:

Theorem 2.13(CLT for martingales with stationary increments). Let (F,,) be a filtration on

a probability spacé(2, 2, P). Suppose that/,, = > Y; is an(F,,) martingale on(2, 2, P) with
=1

stationary incrementy; € £?(P), and leto € R.. If

1 < :
- E Y2 —o? inLYP)asn — oo (2.4.4)
n
=1
then ,
D, 2
M, B N(©, W.rt. P. 2.4.5
NG (0,0%) ( )
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The proof of Theorerh 2.13 will be given at the end of this settiNote that by the ergodic
theorem, the conditio (2.4.4) is satisfied with= FE[Y;?] if the procesgY;, P) is ergodic. As
consequence of Theorém 2.13 and the considerations abewa)tain:

Corollary 2.14 (CLT for stationary Markov chains ). Let(X,,, P,) be a stationary and ergodic
Markov chain with initial distributionu and one-step transition kerng| and letf € £2(u).
Suppose that there exists a functipa £2(u) such that

—Lg=f—pn(f). (2.4.6)

Then asy — oo,

3

1 1
—= > (f(X0) = u(f) = N(0,03).  where
k=0
UJ% =2Cov,(f,g) — Var,(f).

Remark. Recall that[(2.416) is satisfied with= G(f — u(f)) if it exists.
Proof. LetY; = ¢(X;) — (pg)(X;—1). Then underP, (Y;) is a stationary sequence of square-
integrable martingale increments. By the ergodic theorenthie processX,,, F,),

1 - 2 2 H 1

- ;Yi — E,[Y?] inLYP,) asn — co.
The limiting expectation can be identified as the asympua'rdancea]% by an explicit computa-
tion:

EY?] = Eul(9(X1) — (pg)(X0))?]

N /M(dfv)Ex[g(le - 29(X1)(pg)(Xo) + (pg)(Xo)?]
= /(p92 —2(pg)* + (p9)*)dp = /92 dp — /(pg)zdu

= (g — P9, 9 +pg)L2(,u) = 2(f07g)L2(u) - (an fO)LQ(,u) = U;-

Here fo := f — u(f) = —Lg = g — pg by assumption. The martingale CLT 2113 now implies
that

1 <. » )
—=> Yi= N(0,07),
\/ﬁizl

and hence
1 n—1 n Xn) — Xn
T2 ) () = = Do+ SR B o, )
=0 i=1
as well, becausg(X,) — g(X,,) is bounded in.?(P,). O
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Some explicit bounds omj% are given in the next section. We conclude this section wighoaf
of the CLT for martingales with stationary increments:

2.4.3 Central limit theorem for martingales

Let M,, = > Y; where(Y;) is a stationary sequence of square-integrable randombl@sian a
=1
probability spacé(2, 2, P) satisfying

ElY;|Fi-1)=0 P-a.s.forany € N (2.4.7)

w.r.t. a filtration(F,,). We now prove the central limit Theordm 2113, i.e.,

%Mn 2 N(0,0?). (2.4.8)

Proof of Theoreri 2.13Since the characteristic functianp) = exp (—o?p?/2) of N(0,0?) is
continuous, it suffices to show that for any fixed R,

1 < .
=3 V2 »o*inL'(P) =
n

=1

E [ez‘pMn/ﬁ} — ¢(p) asn — oo, or, equivalently,

E |:€ipMn/\/ﬁ+0'2p2/2 — 1:| — O asn — oQ. (249)
Let 2,2 1
Y o°p
Dk = —M —— |, k=0,1,...,n.
K exp (Z\/ﬁ kT 5 n) n

Then the left-hand side i (2.4.9) is given by

E[Zn,n - Zn,O] - Z E[Zn,k - Zn,k—l]
k=1

n

. 2,.2
“N"E|Zupr E|exp Ly, + 22 —11F ] (2.4.10)
1 ’ \/ﬁ 2n

The random variable§,, ,_; are uniformly bounded independentlywfandk, and by a Taylor
approximation and(2.4.7),
; 2,2 ; 2
p o'p tp p 2 2
— — 1| Fpa| =E | —=Yr — — (V" — _ n
E|:6Xp<\/ﬁyk+ 271) |~7:k 1:| |:\/ﬁk 2n<k 0')|fk 1:|+R,k

2
p
= —%E[Yg — 02|.Fk_1] + Rn,k

with a remainder?,, ;, of ordero(1/n). Hence by[(Z.4.10),

2 n
ipMy /v/n+o?p?/2 4| _ P v2 2
E |e”® p 1] =5, ,;1 E [Zn,k,l Yo —o )] + T
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wherer, = > E[Z,x-1 R,x]. It can be verified that, — 0 asn — oo, so we are only left
k=1

with the first term. To control this term, we divide the posgtintegers into blocks of sizevhere
| — oo below, and we apply (2.4.4) after replaciag ., by Z, ; on thej-th block. We first
estimate

1 n
= ElZusa(VE = o)
k=1

/1]

1
< S EZw Y. @A+ sw  ElZupr — Zogl 1Y~ o]

n = ) ) GI<k<(G+1)1

j=0 GISk<(G+1)1 k<n
k<n
l
1
<ea-E |72 (-] + C—; +ey sup E[|Zopr —1]- Y2 =] (2.4.11)
Pt 1<k<l

Here we have used that the random varialilgg are uniformly bounded, the sequern(@¢) is
stationary, and

|Zn,k71 - Zn,jl| S ‘Zn,jl| : 9 n

2 Zk,_ il
exp (ip(Mk—Mjl)—i—ap J > —1‘

where the exponential has the same lawag_;; by stationarity. By the assumptidn (2.4.4), the
first term on the right-hand side ¢f(2.4111) can be maderaryismall by choosingsufficiently
large. Moreover, for any fixed € N, the two other summands convergeltasn — oo by
dominated convergence. Hence the left-hand side in (2.4l%& converges td asn — oo, and

thus [2.4.4) holds. O

2.5 Asymptotic stationarity & MCMC integral estimation

Let . be a probability measure di$, B). In Markov chain Monte Carlo methods one is approx-
imating integrals.(f) = [ f du by ergodic averages of the form

b+n—1

Apf == 37 J(X0),
1=b

where(X,,, P) is a time-homogeneous Markov chain with a transition keprsaltisfyingu = up,
andb, n € N are sufficiently large integers. The constai called theburn-in time - it should

be chosen in such a way that the law of the Markov chain afs¢éeps is sufficiently close to the
stationary distribution:. A typical example of a Markov chain used in MCMC methods is the
Gibbs sampler that has been introduced in Se¢tion]1.5.4eabbive second important class of
Markov chains applied in MCMC are Metropolis-Hastings clsain
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Example (Metropolis-Hastings method. Let \ be a positive reference measure(éh53), e.qg.
Lebesgue measure @t or the counting measure on a countable space. Supposg ihaib-
solutely continuous w.r.tA, and denote the density hyx) as well. Then a Markov transition
kernelp with stationary distribution: can be constructed by proposing moves according to an
absolutely continuous proposal kernel

q(z, dy) = q(z,y) A(dy)
with strictly positive density)(z, y), and accepting a proposed move froro y with probability

u(y)Q(y,x)) .

p(x)q(z, y)
If a proposed move is not accepted then the Markov chain sthifs current positiorr. The

a(z,y) = min (1,

transition kernel is hence given by

p(x, dy) = a(z,y)q(x, dy) + r(x)d.(dy)

wherer(z) = 1— [ a(z,y)q(x, dy) is the rejection probability for the next move fram Typical
examples of Metropolis-Hastings methods are Random Walkdyetis algorithms where is
the transition kernel of a random walk. Note that i§ symmetric then the acceptance probability
simplifies to

a(z,y) = min (1, u(y)/pn(z)) .

Lemma 2.15(Detailed balancg. The transition kerneb of a Metropolis-Hastings chain satisfies
the detailed balance condition

p(dx)p(z, dy) = p(dy)p(y, dz). (2.5.1)
In particular, 1 is a stationary distribution fop.

Proof. On{(z,y) € S x S : x # y}, the measure(dx)p(z, dy) is absolutely continuous w.r.t.
A ® A\ with density

p(dz)o(z, y)q(z, y) = min (u(x)q(z, y), w(y)a(y, x)).

The detailed balance conditidn (2.5.1) follows, since éxigression is a symmetric function.of
andy. O

A central problem in the mathematical study of MCMC methoddtlie estimation of integrals
w.r.t. 12 is the derivation of bounds for the approximation error

Apnf — N(f) = Apnfo,
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wheref, = f — u(f). Typically, the initial distribution of the chain is not tis¢ationary distribu-
tion, and the numbet of steps is large but finite. Thus one is interested in botimasgtic and
non-asymptotic bounds for ergodic averages of non-statjollarkov chains.

2.5.1 Asymptotic bounds for ergodic averages

As above, we assume th@X,,, P) is a time-homogeneous Markov chain with transition kernel
p, stationary distribution, and initial distributiorv.

Theorem 2.16(Ergodic theorem and CLT for non-stationary Markov chains). Letb, n € N.

1) The bias of the estimatof; ,, f is bounded by

| B[Apnf] = 1(H)] < llvp” = pllrvll follsup

2) If ||vp" — pllv — 0 asn — oo then
Apnf — u(f) P-as. foranyf € £'(p), and

Vi (Apnf = p(f)) B N(0,0%) forany f € £L2(u) st.Gfo =Y _ p" fo converges irL?(ss),

n=0

whereaj% = 2(fo, G fo)r2(w) — (fo, fo)r2(w) is the asymptotic variance for the ergodic aver-
ages from the stationary case.

b+n—1

Proof. 1) SinceE[A,,f] =+ > (vp')(f), the bias is bounded by
i=b

|E[Avn f] = ()] = [E[Abnfo] — p(fo)]

b+n—1 b+n—1

1 . 1 .
< - > 1) (fo) = ulfo)l < - > lvp' = gl - [ follswe
i=b i=b

The assertion follows since the total variation distatieg’ — yu|ltv from the stationary
distributiony is a decreasing function of

2) If |vp™ — plltv — 0 then one can show that there is a coupling,, ;) of the Markov
chains with transition kernel and initial distributions, andu such that the coupling time

T=inf{n>0:X,=Y,forn>T}
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is almost surely finite (Exercise). We can then approximtg/ by ergodic averages for
the stationary Markov chait’, ):

b+n 1 b+n—1

Ab,nf— Z FO)+ = Y (F(X) = FY)) jsery.

i=b
The second sum is constant fo#-n > T, so% times the sum converges almost surely to
zero, whereas the ergodic theorem and the central limiréme@pply to the first term on
the right hand side. This proves the assertion.
O

To apply the theorem in practice, bounds for the asymptati@nce are required. One possibility
for deriving such bounds is to estimate the contractionfeneht of the transition kernels on the
orthogonal complement

Li(n) = {f € L*() = p(f) = 0}
of the constants in the Hilbert spaté(y). Indeed, let

prHL2(u
Y(p) = [IpllL2(u)—r2 AT
L3(m)—Lg(n) — f 1 Hf||L2

denote the operator norm pfon L2(p). If

= Zry(p”) < 00 (2.5.2)

n=0

thenG fy = E p" fo converges for any € £*(u), i.e., the asymptotic variance$ exist, and
n=0

07 = 2(fo, Gfo)rz(w — (for fo)rw (2.5.3)
< (2¢ = Dl follZ2 = (2¢ = 1) Var,(f).

A sufficient condition for[(2.5]2) to hold is(p) < 1; in that case

- W1
c< nzzov(p) =T ) <% (2.5.4)

by multiplicativity of the operator norm.
Remark (Relation to spectral gap. By definition,

(pf.2f) o (f,0*DF) o .
0) == = s = o)
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i.e., v(p) is the spectral radius of the linear operatop*p restricted toL2(x.). Now suppose
that p satisfies the detailed balance condition w.it. As remarked above, this is the case for
Metropolis-Hastings chains and random scan Gibbs samplEnenp is a self-adjoint linear
operator on the Hilbert spade(y.). Therefore,

* (fapf)LQ
1(p) = o(p"pluzn)"’* = o(plrg) = sup ==, and

s (F ez
B . (f?f _pf>L2(,u) -
1—7(p) = inf Fhrw Gap(£),

where thespectral gapGap L) of the generatof = p — I is defined by

Gap(L) = int D

= infspe¢—L|;2.,))-
fi1 (f7 f)L2(,LL) P ¢ ‘LO(M))

Gap £) is the gap in the spectrum efL between the eigenvallecorresponding to the constant
functions and the infimum of the spectrum on the complemethetonstants. By (2.5.2) and
(2.5.3),2Gap £) — 1 provides upper bound for the asymptotic variances in thensgtric case.

2.5.2 Non-asymptotic bounds for ergodic averages

For deriving non-asymptotic error bounds for estimatesrgp@ic averages we assume contrac-
tivity in an appropriate Kantorovich distance. Supposé thare exists a distancéon S, and
constantsy € (0, 1) anda € R, such that

(A1) Wi(vp,vp) < aWi(v,v) foranyv,v € P(S), and
(A2) Vary.(f) < @[ f|[Z foranyz € S and any Lipschitz continuous functigh: S — R.
Suppose thatX,,, P,) is a Markov chain with transition kerngl

Lemma 2.17(Decay of correlationg. If (Al) and (A2) hold, then the following non-asymptotic
bounds hold for any., £ € N and any Lipschitz continuous functign S — R:

1

Varp, [f(X,)] < > ™3| fIltpw, and (2.5.5)

3
|

b
Il
o

Oék

1—0a2

|Covp, [f(Xn), f(Xnwi)ll < 7N/ lEip)- (2.5.6)
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Proof. The inequality[(2.5]5) follows by induction an It holds true forn = 0, and if (2.5.5)
holds for some: > 0 then

Varp, [f(Xn41)] = B [ Varp, [f(Xn1)|F]] + Varp, [Ex[f(Xng1)| i ]]
= E,[Varyx, (/)] + Varp, [(pf)(X,)]

n—1

< TN fIlEipa) + Z o pfIipa)
}=0

n
< Za%ﬁszHfip(d)
k=0

by the Markov property and the assumptions (A1) and (A2).imdpthat

n—1
1
Y o< for anyn € N,
— 1—a?

the bound[(2.516) for the correlations follows from (2] sbjce

| Covp, [f(Xa), f(Xnsi)] | = | Covp, [f(Xa), (0" )(Xa)] |

< Varp, [f(X,)]"2 Varp, [(p£)(X)] "
1

1—0a2

Oék

WEQHJCHEip(d)

by Assumption (Al). n

<

7| flltipc@ 17" fltipca

IN

As a consequence of Lemrha 2.17 we obtain a non-asymptotier dgpund for variances of
ergodic averages.

Theorem 2.18(Quantitative bounds for bias and variance of ergodic averags of non sta-
tionary Markov chains). Suppose that (A1) and (A2) hold. Then the following upper dsun
hold for anyb, n € N, any initial distributionv € P(S), and any Lipschitz continuous function
f:8—=R:

ab

}Eu [Ab,nf] - M(f

~—

| < Wi (v, )| £ llip(a)s (2.5.7)

S|

1—a
, 1 ) azb

Varp, [Apnf] < = flliipe) - A—a2 <5 + . Var(l/)) (2.5.8)

wherey is a stationary distribution for the transition kerngl and

Var(v) := % / / d(z, y)?v(dz)v(dy).

S
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Proof. 1) By definition of the averaging operator,

b+n—1

1 .
E Ay, fl = — ! , dth
Aonf =7 2 09)(1). - and thus
1 b+n—1 '
B [Avnf] = p(H)l = —~ [(vp")(f) — n(f)]
i=b
1b+n 1 1b+n71 '
g Z VP 1) HfHLIp E Z O/Wc%(VaM)HfHLip(d)'
i=b i=b
2) By the correlation bound in Lemrba 2117,
b+n—1 1 b+n—1 O{'Zﬁj‘
Varp, Abnf Z COVPz f( )] < ﬁ Z 1 o’ ||f”ﬁlp
i,j=b i,j=b

1 &2 9 1 [ 9
= 1= o) 1 +2Za 1/ |Eip(a) = n0—ay [ f I Eip (a)-

Therefore, for an arbitrary initial distributian € P(.5),

Varp, [Ayn f] = E, [Varp, [Ayn f| Xo]] + Varp, [E, [Apn f]Xo]]

1 b+n—1 A
n Z pi]

1=b

/Varp [Apnflv(dx) + Var,

| btn—1 2
<t ) 1 o ( > VaryhW) .

The assertion now follows since

Var, (') < 516 e [] dlo.v(dav(ay)

< || fIIEip(a) Var(v).
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Chapter 3

Continuous time Markov processes,
generators and martingales

This chapter focuses on the connection between continuimesMarkov processes and their
generators. Throughout we assume that the state spaca Polish space with Borel-algebra
B. Recall that a right-continuous stochastic procgss ).cr, , P) that is adapted to a filtration
(Ft)ier, is called asolution of the martingale problem for a family (L, A),t € R, of linear
operators with domainA C F,(.S) if and only if

t
M = 50%) - [ (L)X ds (3.01)
0
is an(F;) martingale for any functiorf € A. Here functionsf : S — R are extended trivially
to S U {A} by settingf(A) := 0.
If ((X;), P) solves the martingale problem fo(L;), A) and the functior(t, z) — (L.f)(z) is,
for example, continuous and bounded foe A, then

f(Xien) — f(Xe)
h

(Lof) (X)) = l}%lE

]—“t} (3.0.2)
is the expected rate of changefdfx,) in the next instant of time given the previous information.

In general, solutions of a martingale problem are not necggsviarkov processes, but it can
be shown under appropriate assumptions, that the strongoMaroperty follows from unique-
ness of solutions of the martingale problem with a giveniahibw, cf. Theoreni_3.22. Now
suppose that for any > 0 andz € S, ((X;)s>¢, Pea) is an(F;) Markov process with initial
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value X; = x Py )-almost surely and transition functidp, ;)o<.<; that solves the martingale
problem above. Then for arty> 0 andx € S,

f(Xen) — [(X3)
h

— lim (ptenf)(x) — f(x)
h

(Lef)(x) = lim E, i .

provided(t, z) — (L. f)(z) is continuous and bounded. This indicates that the infinitaisgen-
erator of the Markov process at timés an extension of the operatof,, .A) - this fact will be
made precise in Sectidn 3.4.

In this chapter we will mostly restrict ourselves to the timamogeneous case. The time-
inhomogeneous case is nevertheless included implicitiyesive may apply most results to the
time space procesk; = (to + t, Xyy4e) that is always a time-homogeneous Markov process if
X is a Markov process w.r.t. some probability measure. IniSe@.3 we show how to realize
transition functions of time-homogeneous Markov processestrongly continuous contraction
semigroups on appropriate Banach space of functions, andstablish the relation between
such semigroups and their generators. The connection tnigele problems is made in Section
[3.4, and Section 3.5 indicates in a special situation howtsols of martingale problems can be
constructed from their generators by exploiting stabititythe martingale problem under weak
convergence. Before turning to the general setup, Sectibis3levoted mainly to an explicit
construction of jump processes with finite jump intensifresn their jump rates (i.e. from their
generators), and the derivation of forward and backwarcops and the martingale problem
in this more concrete context. Sectlonl3.2 briefly discutisespplication of Lyapunov function
techniques in continuous time.

3.1 Jump processes and diffusions

3.1.1 Jump processes with finite jump intensity

Letg: S x S — [0,00] be akernel of positive measure.e. x — ¢z, A) is measurable and
A — ¢(x, A) is a positive measure.

Aim: Construct a pure jump process with instantaneous jump ggtesly), i.e.

Poyin(z,B) =q(z,B)-h+o(h) Vt>0,2z€S5, BCS\{z} measurable
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(Xt)i>0 < (Yo, Jn)n>0 < (Ya, Sn) with J, holding times S,, jumping timesof X.
J, = >.8S; € (0,00] with jump time{J,, : n € N} point process oR", ( = supJ,
=1

explosion time

Construction of a process with initial distribution 1 € M;(S):

Ae(z) == qi(x, S\ {z}) intensity,total rate of jumping away from.x

Assumption: \(z) < oo Vx €S ,noinstantaneous jumps

Tz, A) = q;(:i;‘)‘) transition probability, where jumps from: at timet go ta

a) Time-homogeneous case:q,(z, dy) = q(x, dy) independent of, \,(z) = A(z), m(z, dy) =

7(x, dy).

Y, (n=0,1,2,...) Markov chain with transition kernel(z, dy) and initial distributionu

Sy = )\(5" 7 E, ~ Exp(1) independent and identically distributed random variables
n—1

independent oY, i.e.
Sn|(YE)7 e Yn—la El, e En—l) ~ EXp()\(Yn_l)),

S
=1

Y, for telJ,, Jui1), n>0

Xt::
A for t>(=supld,

whereA is an extra point, called theemetery

Example. 1)  Poisson process with intensityA > 0
S=40,1,2,...}, q(z,y) =A-0sp1y, ANz)=AVz, w(z,z+1)=1
S; ~ Exp()\) independent and identically distributed random varigablgés= n
Nt:n <~ JnStSJn-i-la

N, =#{i>1: J; <t} counting process of point proce§s, | n € N}.

Distribution at time t:

P[N, > n] = P[J, < 1] '

)

— - ~ n t _ e
J”—Z.;S:Z T )/ (As)™ 1)\€_>\s ¢ ifferentiate r.h.s.e_t)\z (tA)
(n—1)! s
0 =N

Ny ~ Poisson(At)
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2) Continuization of discrete time chain

Let (Y,).>0 be atime-homogeneous Markov chain®with transition function®(x, dy),

X; =Yy, N;Poisson(1)-process independentdf),
q(z, dy) = 7(z,dy), Nz)=1

e.g.compound Poisson procegsontinuous time random walk):

Ny
Xe=) 7
=1

Z;: Q1 — R¥independent and identically distributed random varighitetependent of V;).

3) Birth and death chains

S =1{0,1,2,...}.

b(z) ify=ax+1 "birthrate"
q(z,y) = {d(z) ify=2—1 "deathrate"
0 if ly—a|>2

rated(z) rateb(x)

:L‘I—l x xr+1

b) Time-inhomogeneous case:

Markov processes Andreas Eberle



3.1. JUMP PROCESSES AND DIFFUSIONS 121

Remark (Survival times) Suppose an event occurs in time interjat + h] with probability
At - b+ o(h) provided it has not occurred before:

PIT<t+h|T>t=\-h+oh)

P[T > t+ hj

—— = P[T>t+h|T >t|=1—-N\h h
& P> 1 [T >t+ h|T >t +h+ o(h)

survival rate

log P|T — log P|T

o log [T >t+ h] —log P| >t]:—/\t—|—0(h)
h

d

= alOgP[T>t]:—)\t

t
& PT>t]=exp —/)\Sdst
0

where the integral is theccumulated hazard rate up to time
t

fr(t) = Nexp | — / Asds | - To)(t) thesurvival distribution with hazard rate,

0

Simulation of T .
E~Exp(l), T:=if{t >0 : [A;ds > E}
0

¢
= P[T>t=P /)\Sds<E =e
0

t
—[Asds
0

Construction of time-inhomogeneous jump process:
Fix to > 0 andu € M, (S) (the initial distribution at time).
Suppose that with respect ¢, ),

Jo = tg, Y ~pu

and

tVt,
- fo)\s(Yo) ds
PoowlJi >t Yo] =e 'o

for all t > to, and(Y,,—1, J»)nen iS atime-homogeneouglarkov chain onS x [0, co) with
transition law

P(to,,u)[Yn € dy? Jn+1 >t ‘ YE]) J1> R 7Yn717 Jn] = 7-‘-Jn(anfbdy) e In
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tVJn

- [ X(y)ds

P(to,u)[Yn € A, Jn+1 >t ’YE), Jl, c. ,Ynfl, Jn] = / WJn(Ynfl,dy) e I
A

P-as.forallA e S, t > 0.

Explicit (algorithmic) construction:
o Jy:=tog, Yo~ p
Forn=1,2,...do
e F, ~ Exp(l)independento¥y,...,Y, 1, E1, ..., E, 4
o J, :=inf {t >0 [1 A (Yaoi)ds > En}
o V,|(Yo,....Y 1, Eo,...,Ey) ~ my (Yn_1, ) Wherer,(z,-) = d, (or other arbitrary

definition)

Example (Non-homogeneous Poisson process @&n).

S={0,1,2,...}, @(z,y) = A\ Opi1y,

Y, =n, Tnst |~ A - e 2o gy
Ny=#{n>1: J,<t} theassociated counting process
[ O

-+ L)
0
€ *—0
o—0
-+ ——9
high intensity low intensity

Claim:

n—1 :
(D). 1.0 = oy (Jy Aods) ner Jires
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(2). N, ~ Poisson (fg A ds)

Proof. (1). By induction:

Frn(t) = / Fin s () fon () dr
0

t r n—1
= /)\te_f:ASdS—(n_ll)l (/)\8 ds) )\re_fOTASdS d’l“ =

0

(2). P[N; > n] = P[J, <1]

Remark. In general(Y,,) is not a Markov chain. However:

(1). (Y,—1, J,) is a Markov chain with respect @, = o(Yo, ..., Y, 1, E1, ..., E,) with tran-
sition functions

p((z,s), dydt) = my(z, dy)A(y) - e @@Lty de

(2). (Jn,Y,) is a Markov chain with respect ® = o(Yo,...,Y,, Ey, ..., E,) with transition
functions
P ((w,s), dtdy) = N(w) - e 2O L ()i, dy)

Remark. (1). J, strictly increasing.
(2). J, = ocoVn,mis possible~ X; absorbed in stat¥, ;.
(3). sup J,, < oo ~~ explosion in finite time

4). {s < ¢} ={X # A} € F; ~» no explosion before time.

3.1.2 Markov property

K, :=min{n : J, > s} first jump after times. Stopping time with respect to
gn :O'(Elw"aEn;}/E]y"-;Ynfl)a

{Ks <oop ={s < (}
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Lemma (Memoryless property). Lets > t,. Then for allt > s,

Py {Jx, >t} N {s < (} | R = e :MX0d pas onfs < (}

Py Ik, >t} N {s <3 NAl = Ey, [6_ J2eXydr . An{s < ¢} VAeF,

Remark. The assertion is a restricted form of the Markov property antmuous time: The
conditional distribution with respect &g, ., of Jx, given F, coincides with the distribution of
J1 with respect ta”; ).

Proof.
AeF, (Eg) AN {KS = n} co (‘]Ovyba s Jn—layn—l) = gn—l
= PlJk >N AN{K, =n}] = B |[PlJ, > t| Gui]; AN {K, =n}|

where

t t

PlJ, >t | én,l] =exp | — / M (Y1) dr | =exp —/)\T(Ynl)dr P[], > s| ('jn,l],
——

Jn—1 S =X

hence we get

PlJ, >t|Gni1]=E [e—fiMXs)d’“ CAN{K, =nYN{J, > s}} Vn €N

whereAN{K, =n}Nn{J, > s} =AN{K; =n}.
Summing oven gives the assertion since

fs <} = J1K, = n}.

neN

Fory, € S, t, € [0, 00| strictly increasing define

z =D ((tn, Yn)n=012,.) € PC([ty,0), SU{A})

Y, for t,<t<t,y1,n>0

A for t>supt,
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Let

(Xt)izto = @ ((Jn, Ya)nz0)
FXi=0(X,|s€[to,t]), t>to

Theorem 3.1(Markov property ). Lets > ¢y, X0 := (Xt)t>s. Then
Eto ) [F(Xso0) - Its<ey | F5' | (W) = Es x, () [F(Xs00)]  P-as{s < ¢}

for all
F: PC([s,00), SU{A}) - R*

measurable with respect to(x — x; | t > s).

Proof. X;..o = ®(s,Yk.—1, Ik, Y. JKot1,--.) ON{s < (} = {K; < o0}

i.e. the process after timeis constructed in the same way fromYx, 1, Jk,, ... as the orig-
inal process is constructed froty, Yo, J1,.... By the Strong Markov property for the chain
(Yn—la Jn>1

Eto,0) [F(Xs:oo) i<y | ng]
=Eou [F o ®(s,Yie, 1, ks - ) - Tk, <00} | O]
= pakovehain 1o o & (s, (Yo, J1), (Y1, J2),...)]  as.on{K, < oo} = {s < (}.

(Yro—1,JKs)
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SinceF; C Gk, , we obtain by the projectivity of the conditional expeatati

Et,p) [F(Xsm) is<qy | ]:5}
=Bl [BESLS N 0 005, (1), )Ty | 7]

taking into account that the conditional distribution @iy, is0 on{s > (} and thatYx,_; =
X,.
Here the conditional distribution ofx ist (X, -), by Lemmd3. 12

k(x,dt) = \(x) - e A @d o () dt

hence
Efto ) [F(Xsoo) - Isecy | Fo] = BRIy [Fo®(...)]  as.on{s < (}
Herek(Xj, -) is the distribution of/; with respect taP; x,, hence we obtain

E(toyu) [F(XS:OO) ’ I{s<<} | fsj| = E(&Xs) [F((I)(S, Yo, Jl, .. ))]
= E(s,XS) [F(Xsoo>]

]

Example (Non-homogeneous Poisson procgsA non-homogeneous Poisson process);~
with intensity \; has independent increments with distribution

t
N; — N, ~ Poisson /)\T dr

S

Proof:
P[Nt_NsZk|‘FsN] I\EP(&NS)[Nt_NSZk]:P(S,Ns)[JkSt]
t
2 2% isson //\T dr | ({kk+1,...}).
HenceN; — N, independent ofFY andPoisson (f; Ar d?“) distributed. O
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3.1.3 Generator and backward equation

Definition. Theinfinitesimal generator(or intensity matrix, kernel) of a Markov jump process
at time tis defined by

Li(x,dy) = q(x,dy) — M\(x)d.(dy)

(Lef) (@) = (@ f)(x) = M(x) f ()
~ [ awdp) - (70) - fa)
for all bounded and measurable S — R.

Remark. (1). £, is a linear operator on functions S — R.

(2). If S'is discrete L, is a matrix,L(x,y) = ¢(x,y) — M(x)d(x,y). This matrix is called
Q-Matrix.

Theorem 3.2(Integrated backward equation). (1). UnderP, ., (X:):>¢, iS a Markov jump
process with initial distributionX,, ~ p and transition probabilities

Pst(2,B) = Pen[Xr€B] (0<s<t,zeS BeS)
satisfying the Chapman-Kolmogorov equationgp; , = ps., V0 <s <t <.

(2). Theintegrated backward equation

¢
psi(z, B) = e_fst A”(gc)dréx(B) + /e_fsr )‘“(x)d“(qrpm)(x, B)dr (3.1.1)

S

holdsforall0 < s<t, z € SandB € S.
(3). Ift — X(z) is continuous for alk: € S, then
(Ps,senf)(x) = (1= As(2) - ) f(2) + - (gsf)(2) + o(h) 3.1.2)

holds for alls > 0, = € S and bounded functiong: — R such thatt — (¢ f)(z) is
continuous.
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Remark. (1). (3.1.2) shows thatX;) is the continuous time Markov chain with intensities
() and transition rateg (x, dy).

(2). If ¢ = sup J, is finite with strictly positive probability, then there aoéher possible con-
tinuations ofX, after the explosion time.
~» NoN-uniqueness.
The constructed process is called thenimal chain for the given jump rates, since its

transition probabilitiep,(z, B) , B € S are minimal for all continuations, cf. below.

(3). The integrated backward equation extends to boundedibmsf: S — R

t

(posf)(x) = e~ M@ f(g) 4 / e @ e F) () dr (3.1.3)

S

Proof. (1). By the Markov property,
Puoy [Xi € B|IFX] = Pix,) [Xi € Bl = psy(Xs, B)  as.

since{X; € B} C{t<(}C{s<(}forall Be Sand0 <s <t.

Thus((Xt)tZtO , P(tw)) is a Markov jump process with transition kerngls. Since this
holds for any initial condition, the Chapman-Kolmogorov atjons

(pS,tpt,uf) (33) = (ps,uf) ('77)
are satisfiedforalt € S, 0 <s<t<wandf: S —R.

(2). First step analysisCondition onG; = o(Jo, Yo, J1, Y1):
SinceX; = ®,(Jo, Yo, J1, Y1, J2, Y, . . .), the Markov property of J,,, Y,,) implies

P(s7$) [Xt c B|av1} (w) = P(Jl(w)7y1(w)) [@t(s, Z, J(),Yo, Jl, Yi, .. ) c B]
On the right side, we see that

x if t < Jy(w)
(I)t(Jo,YE),Jl,ifl,...> |ft2 J1<w)

(I)t(saxa Jo,%, Jl?Y—l’ e ) -

and hence

Pls ) [Xt € B|@V1] (W) = 62(B) - Iti< s y}(W) + Py),viw) [ Xe € B] - Is g3 (W)
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P »-a.s. We conclude
ps7t($, B) = P(S,z)[Xt S B]
= 55E(B)P(37$)[‘]1 > ﬂ + E(S,m) [pfht(}/lvB);t Z Jl]

t

:wam-aﬁ“@w+/AA@KKMMM/%mn@wmwimm

J

s =(mrpr.t)(z,B)
t

= 6,(B) - e Ji @dr /ef; M (gp ) (2, B) dr

s

(3). This is a direct consequence lof (3]1.1).
Fix a bounded functiorf: S — R. Note that
0 S (QTpr,tf)(x) = )‘T(:B>(7rr’pr,tf)($) S /\T(I) sup |f|

forall0 < r <tandz € S. Hence ifr — \.(x) is continuous (and locally bounded) for
all z € S, then

(Pref) (@) — f(2) (3.1.4)
asr,t | sforallxz € S.

Thus by dominated convergence,
(QTpT,tf)(x) - (qsf) (:U>
— [ e d)af(6) = F) + (0:H)@) = (0.0) ) — 0

asr,t | s providedr — (¢.f)(z) is continuous. The assertion now follows frdm (311.3).
[l

Exercise(A first non-explosion criterion). Show that if\ := sup \,(z) < oo, then
t>0
z€S

(=00 P(to,#)-a.s.Vto, 7

Remark. In the time-homogeneous case,

is a sum of conditionally independent exponentially disttéd random variables givel, | £ >
0}. From this one can conclude that the events

—~ E =~ 1
{{ < oo} = {; Ve ) < oo} and {;0 A < oo}

coincide almost surely (apply Kolmogorov's 3-series Tleea).
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3.1.4 Forward equation and martingale problem

Theorem 3.3(Kolmogorov’s forward equation). Suppose that

A¢ = sup sup \(z) < oo
0<s<t z€S

forall ¢ > 0. Then thdorward equation

4 eal)@) = uLef) (@), peel)@) = f@)  (315)

holds for all0 < s <t, x € S and all bounded functiong: S — R such thatt — (¢ f)(z) and
t — \(z) are continuous for alk.

Proof. (1). Strong continuity: Fix ¢, > 0. Note that]| g f|lsup < A || flsup fOr all 0 < r < .
Hence by the assumption and the integrated backward equiib.3),

||ps,tf - ps,ersup - ||ps,r(pr,tf - f)”sup
<pref = fllsup < et —=7) - [ fllsup
forall0 < s <r <t <t,andsome function: R — R* with limj o (k) = 0.

(2). Differentiability: By 1.) and the assumption,

(T’, u, .I') = (QTpr,uf)(x)

is uniformly bounded fof < r < u <ty andz € S, and

GDrauf = %"(pr,ujt - f) +ar f — af
—————

—0 uniformly

pointwise as, u — t. Hence by the integrated backward equation (3.1.3) anddht-c
nuity of t — A\y(x),

pt,t+hf(52) — f(z) Mo —M(z)f(x) + g f (x) = Lo f ()

for all z € S, and the difference quotients are uniformly bounded.

Dominated convergence now implies

Pstth) — Psif _ pernf — f
- ps,t h

ot L
n — poilif
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pointwise ash | 0. A similar argument shows that also

ps,tf_Ps,t—hf _

pt—h,tf —f
h Pst—nh h

— ps,tﬁtf

pointwise.
n

Remark. (1). The assumptionimplies that the operatdrs) < s < t,, are uniformly bounded
with respect to the supremum norm:

HESfHSHP S /\t : ||f||sup V0 S S S t.

(2). Integrating ??) yields

t

ps,tf = f+/ps,rﬁrfdr (316)
In particular, the difference quotien@sﬂ;”s’”& converge uniformly forf as in the asser-
tion.
Notation:

<nf z=ulh)= [ £
€ Mi(S), s >0, py := pupss = Ps,00 X, ' mass distribution at time

Corollary (Fokker-Planck equation). Under the assumptions in the theorem,

d
I < g, [ >=<puy, Lof >

for all t > s and bounded functiong: S — R such thatt — ¢ f andt — ), are pointwise
continuous. Abusing notation, one sometimes writes

d *
%Mt = L7 g

Proof.

< f 5= s, 5= [ ulde) [ puate,dn) 1) =< popf >
hence we get

< prhs [ > — <, f >
h =< lu“ps,t

ash | 0 by dominated convergence. n

7% > < Mtaﬁtf>
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Remark. (Important!)

P(S,M)K < OO] >0
= <y, 1 >=u(S) <1 forlarget

hence the Fokker-Planck equation daeshold for f = 1:

t
<, 1> < <u,1>+/<us,£81> ds
1 1 0
< =

wherel;1 = 0.

Example. Birth process ort = {0,1,2,...}

o b(i) ifj=i+1
q(i,j) =
0 else

W(i7j) = Oi+1,55
Y, =n,
Sp = Jn — Jn_1 ~ Exp(b(n — 1)) independent,

CzsupJn:ZSn<oo = Zb(n)"‘1 < 0
n=1 n=1

In this case, Fokker-Planck does not hold.

The question whether one can extend the forward equationtiounded jump rates leads to the
martingale problem

Definition. A Markov procesg X, P, | 0 < s < t,x € S) is called non-explosive(or
conservativgif and only if( = oo P, )-a.s. for alls, z.

Now we consider again the minimal jump process, P, ,.)) constructed above. A function
f:]0,00) x S - R
(t,z) = fi(z)

is calledlocally boundedf and only if there exists an increasing sequence of opesetaB,, C
S such thats = | B, and
sup |fs(x)| < o0

CEEBn
0<s<t

forallt >0, n € N.
The following theorem gives a probabilistic form of Kolmagu's forward equation:
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Theorem 3.4(Time-dependent martingale problen). Suppose that — \;(z) is continuous
for all z. Then:

(1). The process

;o (2
Mt = ft(Xt> — / <E -+ L'r‘) f'r(Xr) dT, t Z to

to
is a local (F;*)-martingale up ta; with respect taP, ,, for any locally bounded function
f:RT x S — Rsuchthatt — fy(z)is C* forall z, (t,z) — 2 fi(z) is locally bounded,
andr — (¢, f:)(z) is continuous at = ¢ for all ¢, x.

(2). If \; < co and f and %f are bounded functions, thevi/ is a global martingale.

(3). More generally, if the process is non-explosive théhis a global martingale provided

0
sup (1401 + [0

' |(£sfs)(~’l?)!> <55 (3.1.7)

for all ¢ > t,.

Corollary. If the process is conservative then the forward equation

t

B
psife = fo+ /pr,t <E + £T) frdr, to<s<t (3.1.8)

S

holds for functionsf satisfying [3.117).

Proof of corollary. M/ being a martingale, we have

fs(Xs) + / (%%&) £ (X)) dr]

(ps,tfr>(x) = E(s,:c) [ft(Xt)] - E(s,x)

forallz € S. O

Remark. The theorem yields the Doob-Meyer decomposition

fi(X;) = local martingale+ bounded variation process
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Remark. (1). Time-homogeneous case:

If his an harmonic function, i.eCh = 0, thenh(X}) is a martingale

(2). In general:
If h; is space-time harmonjé.e. %ht+£tht = 0, thenh(X;) is a martingale. In particular,
(pstf)(Xe), (t > s)is a martingale for all bounded functiorfs

(3). If h; is superharmonic (@xcessivgi.e. %ht+£tht < 0, thenh,(X;) is a supermartingale.
In particular,E[h,(X,)] is decreasing
~» stochastic Lyapunov function, stability criteria
e.g.

hi(z) = e *“h(tc), Lih < ch
Proof of theorem. 2. Similarly to the derivation of the forward equation, om@ws that the

assumption implies

0

G0 = uf) @)+ (b)) (@) Vs,

or, in a integrated form,

t
0
psift:fs_{'/ps,r <a "’['T’) frdr
T

s

forall 0 < s < t. Hence by the Markov property, fog < s < t,

B [ft(Xt) — fo(X) | }—éx]
:E(&Xs)[ft(Xt) - fs(Xs)] = (ps,tft)(Xs) - fs(Xs)

=/Gm(%+£0ﬂ>@&w

t
0
:E(tO,M) [/ <E -+ Er) fr(X'r) dT | 'F;X

S

Y

because all the integrands are uniformly bounded.

1. Fork € N let
o (@, B) == (@) A k) - mi(, B)
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denote the jump rates for the procéég) with the same transition probabilities &5 and
jump rates cut off ak. By the construction above, the procéég), k € N, andX; can be
realized on the same probability space in such a way that

X" =X, as.onft<T;}

where
T :=inf{t >0 : \(Xy) >k, X; ¢ Bi}

for an increasing sequendg, of open subsets of such thatf and %f are bounded on
[0,t] x By forall t,k andS = |J Bx. Sincet — \(X}) is piecewise continuous and the
jump rates do not accumulate befarethe function is locally bounded df, ¢). Hence

T, /¢ as.ask — oo

By the theorem above,

t
0
M = f(x) - / (5 + ,cﬁ’“)> f(XE)dr, =zt

to

is a martingale with respect #;, ), which coincides a.s. with// for ¢ < 7. HenceM/
is a local martingale up t¢ = sup 7y.

3. If ¢ = sup T}, = oo a.s. andf satisfies[(3.1]7), thefi/; ).~ is a bounded local martingale,
and hence, by dominated convergence, a martingale.

]

3.1.5 Diffusion processes

A broad class of diffusion processes &% can be constructed by stochastic analysis meth-
ods. Suppose thdtB;);>o, P) is a Brownian motion with values iR" for somen € N, and
((Xi)i<c, P) is a solution to an I1té stochastic differential equationha torm

dXt = b(t, Xt)dt -+ O'(t, Xt)dBt7 X() = 2o, (319)

up to the explosion timé = sup 7} whereT} is the first exit time of X;) from the unit ball of
radiusk, cf. [7]. We assume that the coefficients are continuoustiong b : R, x R" — R",
o: Ry x R" — R™% Then((X;);<, P) solves thdocal martingale problem for the operator

n 2

1 N T
Et—b(t,z)vx+52aw(t,x)m, a:=oo0 ,

i,j=1
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in the following sense: For any functighe C*?(R, x R"),

Lo
M = f(t, X)) —/0 (a—f; +£sf> (s, X,) ds

is a local martingale up t¢. Indeed, by the It6-Doeblin formuIMtf is a stochastic integral w.r.t.
Brownian motion: .
Mtf = f(0, Xo) +/ (UTVf) (s, Xs) - dBs.
0

If the explosion time! is almost surely infinite thed// is even aglobal martingale provided
the functionos? V f is bounded.

In general, a solution of (3.1.9) is not necessarily a Manmcess. If, however, the coefficients
are Lipschitz continuous then by Itd’s existence and umesgs result there is a unique strong
solution for any given initial value, and it can be shown ttint strong Markov property holds,
cf. [9].

In Sectior 3.6 we sketch another construction of diffusicocpsses ifR™ that avoids stochastic
analysis technigues to some extent.

3.2 Lyapunov functions and stability

In this section we explain briefly how Lyapunov function nedk similar to those considered in
Sectiorl 1.B can be applied to Markov processes in contintimas An excellent reference is the
book by Khasminskii[[15] that focuses on diffusion processeR”. Most results in[[15] easily
carry over to more general Markov processes in continuowos. ti

We assume that we are given a right continuous progesg), P) with polish state spacs,
initial value X, = =, € S, and life time¢. Let A C C°(]0, c0) x S) be a linear subspace, and
let £ : A — F([0,00) x S) be a linear operator of the form

A 0
Eniea) = (G +a0) e
where£; acts only on the x-variable. Fgre A andt < ¢ we define

MY = F(t,X,) - / (Lf)(5,X,) ds

where it is implicitly assumed that the integral exists adinsurely and defines a measurable
function. We assume thaf,) is adapted to a filtratio.7;) and it solves the local martingale
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problem for(ﬁ,/l) up to the life-time(C in the following sense:

Assumption (A): There exists an increasing sequefBg),cn Of open sets irt such that

(i) S=UB:

(i) The exittimesTy := inf{t > 0: X, ¢ By} satisfy

Tr < ¢on{( < oo} foranyk € N, and¢ = sup 7}.

(i) The stopped process thfATk> _, are(F;) martingales for ang € Nandf € A.
>

Examples. 1) Minimal jump process: A minimal jump process as constructed in Section
[3.1 satisfies the assumption(iB;) is an increasing sequence exhausting the state space
such that the jump intensitieg(x) are uniformly bounded foft, z) € R, x By, and

A= {f e CH0 . f,g—{ bounded o0, t] x By for anyt > 0 ank ¢ N}.

2) Minimal diffusion process: A minimal 1t6 diffusion inR™ satisfies the assumption with
By, = B(0,k) andA = C2([0, 00) x R™).

3.2.1 Non-explosion criteria

A first important application of Lyapunov functions in camibus time are conditions for non-
explosiveness of a Markov process:

Theorem 3.5(Khasminskii). Suppose that Assumption (A) is satisfied and there existetdn
V € A such that

(i) V(t,z) > 0foranyt > 0andz € S,

(i) inf V(s,z) —» oo ask — oo foranyt > 0,

xeBg

s€[0,t]
(i) 2+ £,V <0.

ThenP[( = oo] = 1.
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Proof. SinceV/(t, X;) = MY + [ (2 + L,V) (s, X,) ds, optional stopping and Conditions (iii)
and (i) imply
V(0,29) > E[V(t ATk, Xiar,)] > P[T), < t]- inf V(s,y)
yEBg

s<t

foranyt > 0 andk € N. Therefore, for any > 0,
PT, <t]—-0 ask— o

by (i), and henceP[( < oo] = lim P[¢ < t] = 0. O

t—o00
Remark (Time-independent Lyapunov functiong. Suppose that is a continuous function on
S such that

U >0, (i) klim ing =0, (i) £,U < aU for somea > 0.
—oo Bf
The Theorem 315 can be applied with{¢, z) = e~**U(x) provided this function is contained in
A

Example (Time-dependent branching. Suppose a population consists initialty= 0) of one
particle, and particles die with time-dependent rakes 0 and divide into two with rateg, > 0
whered,b: R™ — R* are continuous functions, amds bounded. Then the total numh&f of
particles at time is a birth-death process with rates

n-by f m=n+1
@(n,m)=<n-d, if m=n—1, Ae(n)=n- (b + dy)

0 else

The generator is

0 0 0 0 0 0

dy —(dy +by) by 0 0 0
L;=1]0 2d,  —2(d, +by) 2b, 0 0
0 3d, —3(d, +b) 3b 0

Since the rates are unbounded, we have to test for explosiomosey(n) = n as Lyapunov
function. Then

(Lp)(n)=n-b;-(n+1-n)+n-d-(n—1-n)=n- (b —d) <nsupb

t>0
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Since the individual birth ratefs, ¢ > 0, are bounded, the process is non-explosive. To study
long-time survival of the population, we consider the gatiag functions

Gy(s) = E [s%] = is”P[Xt =n|, 0<s<l1

n=0
of the population size. Fof,;(n) = s™ we have
(Lefs) (n) = nbys" T — n(be + dy)s" + ndys" !
0
55 75(1)

Since the process is non-explosive afidand £, f, are bounded on finite time-intervals, the

= (bt52 — (bt -+ dt)S + dt) .

forward equation holds. We obtain

P B

9 (s) = LB = BI(L£)(X0)
= (bis® = (b +di)s +di) - E {%S&}
= (s~ d)ls 1) DGi(s)

Go(s) = E [s¥°] = s
The solution of this first order partial differential equuatifor s < 1 is

¢ -1
Gt(S) =1- ( e + /b ey dU)
1—s "

0

where
t

o = /(du—bu) du
0
is the accumulated death rate. In particular, we obtain ghcxformula for the extinction

probability:

sinceb = d — ¢'. Thus we have shown:
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Theorem 3.6. .
P[X; = 0 eventually] = 1 <— /duegu du = 0o
0

Remark. Informally, the mean and the variance ®f can be computed by differentiatirtg, at

s=1:

d

Bl Xt _ Xi—1 —

ds E |:S ] ol =F |:Xt5 ] ol = E[Xt]

d> _

@ E [SXt} 1 =F [Xt(Xt — 1)5Xt 2} - = Var(Xt)

3.2.2 Hitting times and recurrence
Next, we apply Lyapunov functions to prove upper bounds fomants of hitting times. Let
TAZIHf{tZOXtEA}

whereA is a closed subset ¢f.

Theorem 3.7(Lyapunov bound for hitting times). Suppose that Assumption A holds, and the
procesq X, P) is non-explosive. Furthermore, assume that there éxist.A and a measurable
functiona : R, — R, such that

(i) V(t,x) > 0foranyt > 0andzx € S,
(i) (2 +LV) (t,2) < —a(t) foranyt > 0andz € S\ 4,
(iiiy B(t) = fga(s) ds — oo ast — 0.

ThenP[T4 < oo] =1, and
E[B(T4)] < V(0,0). (3.2.1)

Proof. By Condition (ii),

V(t,X,) < M) — /Ota(s) ds = MY — B(t)
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holds fort < T4. For anyk € N, M%Tk is a martingale. Hence by (i),
0<EV({tANTANTy Xinronr,)] < V(0,20) — E[B(t ATa A Ty)].
As k — oo, T, — oo almost surely, and we obtain
Bt)Plt < Ta] < E[B(t A Ta)] < V(0,20
for anyt > 0. The assertion follows as— oc. n

Example (Moments of hitting times).
If a(s) = s~ for somec > 0 andn € N thenf(s) = £s™. In this case[(3.211) is the moment
bound

E[T}] < =V(0,0).

3.2.3 Occupation times and existence of stationary distributions

Similarly to the discrete time case, Lyapunov conditions aso be used in continuous time to
show the existence of stationary distributions. The follmyvexercise covers the case of diffu-
sions inR™:

Exercise (Explosion, occupation times and stationary distributions ér diffusions on R").
Consider a diffusion proces$<;, P,) onIR" solving the local martingale problem for the gener-
ator
l & O f - of 1,2 n
Lif = 3 > ai,j(t,x)axiaxj + Zlbi(t,x)axi, feCY Ry xR™).

ij=1

i=

We assume that the coefficients are continuous functiong®gdth = z| = 1.

a) Prove that the process is non-explosive if there exigefoonstants,, c,, r such that

tra(t,z) < ci|z* and z-b(t,z) < o) for |z| > 7.

b) Now suppose tha = oo almost surely, and that there exist € C'?*(R, x R") and
g,c € R, suchthat” > 0 and

ov
E—Fﬁtv < e+4clp 0nR+xR”,
whereB is a ball inR™. Prove that

E{%/gtlg(Xs)ds} > %-M.
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b) Conclude thatif X;, P,) is a time-homogeneous Markov process and the conditiongabo
hold then there exists a stationary distribution.

Again the results carry over with similar proofs to generalrkbv processes. Let

1

AB) = /0 15(X,) ds

denote the relative amount of time spent by the process isettfe during the time interval, ¢|.

Lemma 3.8(Lyapunov bound for occupation timeg. Suppose Assumption A holds, the process
is almost surely non-explosive, and there exist constant& R, and a non-negative function
V e A such that

%—Y+£tvg—e+c13 onR, x S.
Then
e V(0,x)
E[A,(B)] > - — )
4B) > S - 2

Now assume thatX;, P) is atime-homogeneoudMarkov process with transition semigroup
(pt)t>0, @and, correspondingly;; does not depend an Then by Fubini’s Theorem,

FIAB) = / pa(o, B) ds =: B (z0, B).

Theorem 3.9(Existence of stationary distributions). Suppose that the assumptions in Lemma
[3.8 hold, and moreover, assume tt$ais o-compact,V (¢, z) = U(x) for some continuous func-
tionU : S — [0, 00), and there exist, c € R, and a compact sek’ C S such that

LU S —5+61K.

Then there exists a stationary distributiprof (p;):>o.

Proof. The assumptions imply

lim inf p, (2o, K) > 0.
t—o0

The assertion now follows similarly as in discrete time,Tdieorem??. O
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3.3 Semigroups, generators and resolvents

In the discrete time case, there is a one-to-one correspoadeetween generatofs= p — I,
transition semigroups, = p’, and time-homogeneous canonical Markov chéifis, ),.cz. , (Py)zes)
solving the martingale problem f@ on bounded measurable functions. Our goal in this section
is to establish a counterpart to the correspondence betgeresrators and transition semigroups
in continuous time. Since the generator will usually be abpoumded operator, this requires the
realization of the transition semigroup and the generatoarm appropriate Banach space con-
sisting of measurable functions (or equivalence classésnaftions) on the state spa¢g, B).
Unfortunately, there is no Banach space that is adequatdl jourposes - so the realization on
a Banach space also leads to a partially more restrictivingetbupplementary reference: for
this section are Yosida: Functional Analysis|[39], Pazym&goups of Linear Operators [24],
Davies: One-parameter semigroups [5] and Ethier/Kurtk [11

We assume that we are given a time-homogeneous transitictida (p;):>o on (S, B), i.e.,
() p:(x,dy) is a sub-probability kernel ot B) for anyt > 0, and
(i) po(z,-) = 0, andp;ps = pis foranyt, s > 0 andx € S.

Remark (Inclusion of time-inhomogeneous cage Although we restrict ourselves to the time-
homogeneous case, the time-inhomogeneous case is inaopliéctly. Indeed, if((X;)i>s, Ps.2))

is a time-inhomogeneous Markov process with transitiorction p, ;(z, B) = Py .)[X; € B]
then the time-space proceé?s = (t + s, X;45) is a time-homogeneous Markov process W.r.t.
P ») withs state spac& x S and transition function

~

P ((Sv l’), dUdy) - 5t+8<du)ps,t+s (ZE, dy)

3.3.1 Sub-Markovian semigroups and resolvents

The transition kernelg; act as linear operators— p; f on bounded measurable functions®n
They also act orl.? spaces w.r.t. a measuudf y is sub-invariant for the transition kernels:

Definition. A positive measurg € M, (S) is calledsub-invariantw.r.t. the transition semigroup
(py) iff up, < pforanyt > 0in the sense that

/ptfd,u < /fdu forany f € F.(S) andt > 0.
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For processes with finite life-time, non-trivial invarianeasures often do not exist, but in many
cases non-trivial sub-invariant measures do exist.

Lemma 3.10(Sub-Markov semigroup and contraction propertie. 1) Any transition func-
tion (p;):>0 induces asub-Markovian semigroumn F,(S) or F.,(.S) respectively, i.e., for
anys,t >0

(i) Semigroup propertyp,p; = ps,
(i) Positivity preserving:f > 0= p.f > 0,
(i) p1 < 1.

2) The semigroup is contractive w.r.t. the supremum norm:

Ipefllsup < || fllsup  fOranyt >0 and f € F(S).

3) If u € M (S) is a sub-invariant measure thdmp,) is also contractive w.r.t. thé”(u)
norm for everyp € [1, ool

[t [\fpan toranys e £r(s.p)
In particular, the mapf — p, f respects:-classes.

Proof. Most of the statements are straightforward to prove andikeéin exercise. We only prove
the last statement fgr € [1, 00):

Fort > 0, the sub-Markov property implies f < p,|f| and—p,f < p;|f| forany f € LP(S, u).
Hence

IpfIP < (el F1)P < pel fIP

by Jensen’s inequality. Integration w.ntyields

[ s < [isran< [1rpan

by the sub-invariance ofi. Hencep;, is a contraction onC?(S, ). In particular,p;, respects
u-classes sinc¢g = g p-ae. = f—g = 0p-ae. = p(f —g) = 0p-ae. = pf = pyg
[-a.e. ]

The theorem shows th§t,) induces contraction semigroups of linear operatormsn the follow-
ing Banach spaces:

e F,(S) endowed with the supremum norm,
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o Cy(S) if p; is Feller for anyt > 0,

e C(S) = {f €C(S): Ve > 0 3K C S compact]f| < ¢ onS\K} if p, mapsC(S) to
C(S) (classical Feller property),

o LP(S,u),p € [1,00], if uis sub-invariant.

We will see below that for obtaining a densely defined geoerain additional property called
strong continuity is required for the semigroups. This wikclude some of the Banach spaces
above. Before discussing strong continuity, we introduagttear fundamental object that will
enable us to establish the connection between a semigralipsagenerator: the resolvent.

Definition (Resolvent kernel3. Theresolvent kernelgissociated to the transition functidp,);>o
are defined by

Jo(z, dy) :/ e_atpt(m,dy)dt for a € (0, 00),
0

i.e., forf e F.(S)or feF(9),

(gaf)(x) = /0 N e~ (pof) (x)dt.

Remark. For anya € (0,0), g, is a kernel of positive measures 0f ). Analytically, g, is
theLaplace transform of the transition semigrougp, ). Probabilistically, if( X;, P,) is a Markov
process with transition functiofp;) then by Fubini’'s Theorem,

(9af)(z) = E; [ /0 o f(Xt)dt] .

In particular,g, (z, B) is the average occupation time of a #etor the absorbed Markov process
with start inz and constanabsorption rate «.

Lemma 3.11(Sub-Markovian resolvent and contraction propertieg. 1) The family(ga)a>0
is asub-Markovian resolvenacting onF,(.S) or F..(S) respectively, i.e., forany, 8 > 0,

(i) Resolvent equationy, — g5 = (8 — @)ga9s
(i) Positivity preserving:f > 0= g.f >0

(i) ag,1 <1

2) Contractivity w.r.t. the supremum normEor any« > 0,

lagafllsup < || fllsup  foranyf e F(S).
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3) Contractivity w.r.t. LP norms: If ;. € M_ () is sub-invariant w.r.t(p,) then
lagafllrsy < I1flleeesy foranya > 0,p e [1,00], and f € LP(S, p).

Proof. 1) By Fubini’s Theorem and the semigroup property,
9a9pf = / / e e p,  fdsdt
0 0

/ / eB=tqt e=Bup,, f du
o Jo
1

m(gaf —95f)

foranya,8 > 0andf € F,(S). This proves (i). (ii) and (iii) follow easily from the
corresponding properties for the semigrapp.

2),3) Let|| - || be either the supremum norm or &h norm. Then contractivity ofp; );>o W.r.t.
|| - || implies that alsdag,, ) is contractive w.r.t]| - ||:

lagafll < / ae=tp.fldt < / ac='dt||f]| = | f|| foranya > o.
0

0

]

The lemma shows thay,, ).~ induces contraction resolvents of linear operat6fs),~, on the
Banach spaceg;(S), C,(S) if the semigroug(p,) is Feller,C'(S) if (p,) is Feller in the classical
sense, and” (S, i) if pis sub-invariant fo(p;). Furthermore, the resolvent equation implies that
the range of the operatofs, is independent odi:

(R) RangeG,) = RangéGp) foranya, g € (0, 00).

This property will be important below.

3.3.2 Strong continuity and Generator

We now assume thdt?;);>, is a semigroup of linear contractions on a Banach sgac®©ur
goal is to define the infinitesimal generatoof (P,) by Lf = ltlfél F(P.f — f) for a classD of
elementsf € FE that forms a dense linear subspacdfObviously, this can only be possible if
1]%1 \|P.f — f|l = 0forany f € D, and hence, by contractivity of the operatétsfor any f € E.

A semigroup with this property is called strongly contingou
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Definition (C° semigroup, Generato). 1) The semigroupP,);>, on the Banach spack is
calledstrongly continuous(C?) iff P, = I and

|\P.f — fll =0 astlOforanyf € E.

2) Thegeneratorof (F;);>¢ is the linear operatof L, Dom(L)) given by

L —tim P Pf—f
t40 t t

, Dom(L) = {f ekl lggl exists} :

Here the limits are taken w.r.t. the norm on the Banach space

Remark (Strong continuity). A contraction semigroupF;) is always strongly continuous on
the closure of the domain of its generator. IndeBd, — f ast | 0 for any f € Dom(L), and
hence for anyf € W(L) by ane/3 - argument. If the domain of the generator is dens&'in
then(P,) is strongly continuous o&'. Conversely, Theorem 3.115 below shows that the generator
of aC® contraction semigroup is densely defined.

Theorem 3.12(Forward and backward equation).
Suppose thatP; )~ is aC? contraction semigroup with generatér. Thent — P, f is continu-
ous for anyf € E. Moreover, iff € Dom(L) thenP,f € Dom(L) for anyt > 0, and

d
i = = L

where the derivative is a limit of difference quotients onBlamach spacé’.

The first statement explains why right continuitytof~ P,f att = 0 for any f € E is called
strong continuity: For contraction semigroups, this propes indeed equivalent to continuity of
t — P,f fort € [0, 00) w.r.t. the norm onF.

Proof. 1) Continuity oft — P, f follows from the semigroup property, strong continuity and
contractivity: For any > 0,

| Pevnf = Pofll = 1P(Puf = DI < |Puf = fl =0 ash |0,
and, similarly, for any > 0,

|Pnf = Pofll = |1P—n(f — Puf)I < ||f — Puf]| =0 ash 0.
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2) Similarly, the forward equatioﬁ;Ptf = P,Lf follows from the semigroup property, con-
tractivity, strong continuity and the definition of the geswer: For anyf € Dom(L) and

t>0,

1 Pof —

HPenf — Ry = P pp ash Lo
and, fort > 0,

1 Pof —

—(Pf = Pif) = Py hfh f—>Pth ash | 0

by strong continuity.

3) Finally, the backward equatioggPtf = LP,f is a consequence of the forward equation:
For f € Dom(L) andt > 0,

bof-hf 1

. = +(Penf = Pif) > PLf  ash |0,

HenceP, f is in the domain of the generator, ahd®, f = P,Lf = 4P, f.

3.3.3 Strong continuity of transition semigroups of Markov processes

Let us now assume again th@t);>, is the transition function of @ght-continuougime homo-
geneous Markov proces$tX:);>o, (P:).cs) defined for any initial value: € S. We have shown
above thatp;) induces contraction semigroups on different Banach spamesisting of func-
tions (or equivalence classes of functions) fr6rto R. The following example shows, however,
that these semigroups are not necessarily strongly canisiu

Example (Strong continuity of the heat semigroup). Let S = R!. The heat semigrouf;) is
the transition semigroup of Brownian motion Snlt is given explicitly by

(pef) (@) = (f *ou)(x /f y)e(z —y) dy,

whereyp,(z) = (27t)"/2 exp (—2%/(2t)) is the density of the normal distributiaN (0,¢). The
heat semigroup induces contraction semigroups on the Baspaates?,(R), C,(R), C(R) and
LP(R,dx) for p € [1,00]. However, the semigroups of,(R), C,(R) and L>*(R, dx) are not
strongly continuous. Indeed, singgf is a continuous function for any € F,(R),

1
1P:10,1) — Lio,1) [0 > 3 for anyt > 0.
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This shows that strong continuity fails of,(R) and onL>(R, dx). To see thatp;) is not

strongly continuous 06’ (RR) either, we may consider the functigi) = Z exp (—2"(z — n)?).
It can be verified thatimsup f(z) = 1 whereas for any > 0, hm (ptf)( ) = 0. Hence
lpef — fllsup > 1 for anyt > 0. Theoreni 3.14 below shows that the semigroups induceg,by
on the Banach spac€gR) and L*(R, dz) with p € [1, c0) are strongly continuous.

Lemma 3.13.
If (p¢)¢>0 IS the transition function of a right-continuous Markov pess((X;):>o, (P )zcs) then

(pef)(x) — f(x)ast L 0 foranyf € Cy(S)andz € S. (3.3.1)

Moreover, if the linear operators induced byare contractions w.r.t. the supremum norm or an
L? norm then
lpef — fll = 0ast L0 foranyf = g.h, (3.3.2)

wherea € (0, 00) andh is a function inF,(S) or in the corresponding?-space respectively.

Proof. For f € C,(95),t — f(X3) is right continuous and bounded. Therefore, by dominated
convergence,

(pef)(x) = B, [f(Xy)] = Eu [f(Xo)] = f(z) ast | 0.
Now suppose that = g,h = f0°° e *psh ds for somea > 0 and a functiorh in F,(S) or in the
L? space wheré¢p,) is contractive. Then fot > 0,

pef = / Ypsythds = e / e “p,hdu
t

—eMf — e / “Ypuhdu,
0
and hence .
Iocf = £ < € = DI+ [ bl
0
Since||p,h|| < ||k|| by assumption, the right-hand side converges ast | 0. O

Theorem 3.14(Strong continuity of transition functions). Suppose thatp,) is the transition
function of a right-continuous time-homogeneous Mark@cess oriS, B).

1) If p € M, (S) is a sub-invariant measure f@p,) then(p,;) induces a strongly continuous
contraction semigroup of linear operators @#i(S, 1) for everyp € [1, c0).

2) If Sis locally compact ang, <C*(S)> C C‘(S) for anyt > 0 then(p,) induces a strongly
continuous contraction semigroup of linear operators@ﬁ(rS).
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Proof. 1) We have to show that for any e LP(S, 1),

Ipef — flloesuy — 0 ast o, (3.3.3)

(i) We first show that[(3.3]3) holds fof € C,(S) N £'(S, ). To this end we may
assume w.l.o.g. thgt > 0. Thenp,f > 0 for all ¢, and hencép,f — f)~ < f. By
sub-invariance of:

[ = sidn= [oir = D+ 2 s = 1y du<2 [or - an

and hence by dominated convergence and (3.3.1),
1imsup/ pef — fldp < 0.
tl0
This proves[(3.313) fop = 1. Forp > 1, we now obtain

[ = svdn < [ s = - s = Flig >0 st Lo,

where we have used thatis a contraction w.r.t. the supremum norm. For an arbitrary
functionf € £P(S, u), (3.3.3) follows by arz /3 argument: Let f,,),.cn be a sequence
in Cy(S) N LY (u) such thatf,, — fin L?(S, u). Then, givere > 0,

1pef = fllee < pef = pefalle + lpefo — falle + 1 fa — fllze
< 2Hf - anLP + Hptfn - anLP <e€

if n is chosen sufficiently large and> ¢y(n).
2) We have to show that for anye C(9),

By Lemma[3.1B,[(3:314) holds if = g.h for somea > 0 andh € C(S). To complete
the proof we show by contradiction that (C(S)) is dense irC(S) for any fixeda > 0 -
then claim then follows once more by af3-argument. Hence suppose that the closure of
Jo (C(S)) does not agree with'(S). Then there exists a non-trivial finite signed measure
pon (S, B) such that

1(goah) =0 foranyh e C(S),

cf. [?]. By the resolvent equation,, (é(S)) = g3 (C(S)) for any 5 € (0,00). Hence
we even have
1(gsh) =0 foranys > 0andh € C(S).
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Moreover, [(3.3.11) implies thatgsh — h pointwise as5 — co. Therefore, by dominated
convergence,

wu(h) = (ﬂlim Bgﬂh) = ﬁlim Bu(ggh) =0 foranyh e C(S).
—00 —00

This contradicts the fact thatis a non-trivial measure.

3.3.4 One-to-one correspondence

Our next goal is to establish a 1-1 correspondence bet@éenntraction semigroups, generators
and resolvents. Suppose thi&t);>o is a strongly continuous contraction semigroup on a Banach
spaceF with generator L, Dom(L)). Sincet — P, f is a continuous function by Theorém 3.12,
a corresponding resolvent can be defined ag-aalued Riemann integral:

Gof = / e “P,fdt foranya >0andf € E. (3.3.5)
0

Exercise(Strongly continuous contraction resolveny.
Prove that the linear operatofs,, o € (0, 00), defined by[(3.3]5) form atrongly continuous
contraction resolvent i.e.,

() Gof —Gaf =(8—a)G,Gpf foranyf e Eanda, >0,
(i) [[aGofll < |Ifl] foranyf e Eanda > 0,

(i) ||aGof — f]| = 0 asa— cforanyf e E.

Theorem 3.15 (Connection between resolvent and generatdr For any o« > 0, G, =
(aI —L)~". In particular, the domain of the generator coincides witke ttange ofG,, and
itis dense ink.

Proof. Let f € E anda € (0,00). We first show thatz,, f is contained in the domain df.
Indeed, a3 | 0,
PGof — 1 ([ o
M:—(/ easPtJrSde—/ @O‘SPSde)
t t 0 0
et —1

(o) 1 t
= / e *P,fds — e~ / e “Pyfds
t 0 t Jo

—aGuf - f
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by strong continuity of 7;),~0. HenceG, f € Dom(L) and
LG.f =aG.f — f,

or, equivalently
(af = L)Gof = f.

In a similar way it can be shown that fgre Dom(L),
Golal — L)f = f.
The details are left as an exercise. Hefite= (oI — L)™', and, in particular,
Dom(L) = Dom(al — L) = RangéG,) foranya > 0.
By strong continuity of the resolvent,
aGof —f asa— oo foranyf e F,

so the domain of. is dense in&. O

The theorem above establishes a 1-1 correspondence begeseerators and resolvents. We now
want to include the semigroup: We know how to obtain the getieerfrom the semigroup but to
be able to go back we have to show that‘acontraction semigroup is uniquely determined by
its generator. This is one of the consequences of the faligwieorem:

Theorem 3.16(Duhamel’s perturbation formula). Suppose that?;):>, and (]5;),520 are C°
contraction semigroups of with generatorsL and L, and assume that Dam) C Dom(f).
Then

~ t ~ ~
Pf—Pf= / P(L—-L)P,_sfds foranyt>0andf c DomL). (3.3.6)
0

In particular, (7)o is the only C° contraction semigroup with a generator that extends

(L,Dom(L)).

Proof. For0 < s <tandf € Dom(L) we have

P,_f € Dom(L) C Dom(L)
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by Theoreni 3.12. By combining the forward and backward equoati Theoreni 3.12 we can
then show that

d ~ - ~ - -
d—PSB_Sf = P,LP, if — P;LP,_sf = Ps(L — L)P,_,f
S

where the derivative is as usual taken in the Banach spadde identity [[3.3.6) now follows by
the fundamental theorem of calculus for Banach-space vdiuetions, cf. e.g. Lang: Analysis
1 [17].

In particular, if the generator af, is an extension of. then [3.3.6) implies thab, f = Ef for
anyt > 0andf € Dom(L). SinceP, andﬁt are contractions and the domainiofs dense in®
by Theoreni3.15, this implies that the semigrops and(P,) coincide. O

The last theorem shows that’& contraction semigroup is uniquely determined if the getoera
and the full domain of the generator are known. The semigoaupthen be reconstructed from
the generator by solving the Kolmogorov equations. We sunz@dhe correspondences in a
picture:

Laplace
transformation

(Ga)a>0

Example (Bounded generator$. Suppose thak is a bounded linear operator @n In partic-
ular, this is the case if. is the generator of a jump process with bounded jump intiessiEor
bounded linear operators the semigroup can be obtainectlgliees an operator exponential

= (tL)" tL\"
pm =3 (12

n=0

where the series and the limit converge w.r.t. the operaionnAlternatively,

tL\ " n
P, = lim (1— —) — lim (ﬁGﬂ) .
n—00 n n—oo \t ¢

The last expression makes sense for unbounded generateed asd tells us how to recover the
semigroup from the resolvent.
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3.3.5 Hille-Yosida-Theorem

We conclude this section with an important theoretical lteswowing which linear operators are
generators of’? contraction semigroups. The proof will be sketched, cf.. &thier & Kurtz
[11] for a detailed proof.

Theorem 3.17(Hille-Yosida). A linear operator(L,Dom(L)) on the Banach spacg is the
generator of a strongly continuous contraction semigrdgnd only if the following conditions
hold

(i) Dom(L) is dense inZ,
(i) Rangdal — L) = E for somex > 0 (or, equivalently, for anyx > 0),
(i) L isdissipativei.e.,

laf — Lfll = allf| foranya >0, f € Dom(L).

Proof. “=": If L generates &° contraction semigroup then by Theorem 3.6 — L)' = G,
where(G,,) is the corresponding® contraction resolvent. In particular, the domain/ofs the
range ofGG,,, and the range ot/ — L is the domain of7,. This shows that properties (i) and (ii)
hold. Furthermore, any € Dom(L) can be represented #s= G,g for someg € E. Hence

allfll = llaGagll < llgll = llaf = Lf|

by contractivity ofaG,,.
“<". We only sketch this part of the proof. The key idea is to ‘regize” the possibly un-
bounded linear operatdr via the resolvent. By properties (ii) and (iii), the operatdr— L is
invertible for anya > 0, and the inversé&, := (ol — L)™' is one-to-one froni onto the domain
of L. Furthermore, it can be shown th@t,).-o is aC® contraction resolvent. Therefore, for
any f € Dom(L),

Lf = lim aG,Lf = lim L

a—0o0

whereL(® is theboundedlinear operator defined by

L@ =aLlG, = a’Gy —al  fora € (0,00).
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Here we have used théatandG, commute andal — L)G, = I. The approximation by the
bounded linear operators'® is called theYosida approximation of L. One verifies now that
the operator exponentials

[e.e]

o - S L o o
n=0

form aC® contraction semigroup with generatf for everya > 0. Moreover, sinceﬁL(‘” f)
is a Cauchy sequence for afiye Dom(L), Duhamel’s formuld(3.316) shows that aléBf“f)
is a Cauchy sequence for any 0 andf € Dom(L). We can hence define

aeN

aeN

P.f=lim Pf foranyt>0andf e Dom(L). (3.3.7)

SincePt(a) is a contraction for everyanda, P, is a contraction, too. Since the domainiofs
dense inE' by Assumption (i), eacl?, can be extended to a linear contractionfonand (3.3.17)
extends tof € E. Now it can be verified that the limiting operatafs form a C? contraction
semigroup with generatar. ]

Exercise(Semigroups generated by self-adjoint operators on Hilberspace$. Show that ifE
is a Hilbert space (for example drt space) with normi| f|| = (f, f)'/?, andL is aself-adjoint
linear operator, i.e.,

(L,Dom(L)) = (L*,Dom(L")),

thenL is the generator of &° contraction semigroup of if and only if L is negative definite
ie.,
(f,Lf) <0 foranyf e Dom(L).

In this case, th€® semigroup generated lyis given by
P, =€t foranyt >0,

where the exponential is defined by spectral theory, cf. Repd& Simon:Methods of modern
mathematical physics|[28], IL[26], IL[29], IVL[27].

3.4 Martingale problems for Markov processes

In the last section we have seen that there is a one-to-omespandence between strongly
continuous contraction semigroups on Banach spaces andgémerators. The connection to
Markov processes can be made via the martingale problem sgveree at first that we are given
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aright-continuous time-homogeneous Markov procgss ):cj.«), (Fr)zcs)) With state space
(S, B) andtransition semigrougp;):>o. Suppose moreover that is either a closed linear sub-
space ofF,(S) endowed with the supremum norm such that

(Al) py(E) C E foranyt> 0, and
(A2) p,veP(S)with [ fdu= [ fdNf e E= u=v,

or £ = LP(S, ) for somep € [1, 00) and a(p;)-sub-invariant measune € M (.5).

3.4.1 From Martingale problem to Generator

In many situations it is known that for anyc S, the proces$(X;):>o, P.) solves the martingale
problem for some linear operator defined on “nice” functionss. Hence letd C F be a dense
linear subspace of the Banach spatend let

L:-ACFE—SFE

be a linear operator.

Theorem 3.18(From the martingale problem to Cy, semigroups and generators Suppose
that for anyx € S and f € A, the random variableg(X,) and (Lf)(X;) are integrable w.r.t.
P, for anyt > 0, and the process

MI = F(X,) - / (LF)(X.)ds

0

is an (F7X) martingale w.r.t. P,. Then the transition functiofp;);>, induces a strongly contin-
uous contraction semigrou®; );>, of linear operators or¥, and the generatofL, Dom(L)) of
(P:):>o is an extension ofL, A).

Remark. In the case of Markov processes with finite life-time theestagnt is still valid if func-
tions f : S — R are extended trivially t& U {A} by settingf(A) := 0. This convention is
always tacitly assumed below.
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Proof. The martingale property fab// w.r.t. P, implies that the transition functiofp,) satisfies
the forward equation

() (@) — f() = Blf (X)) — F(X0)] = E. [ / (Ef)(Xs)ds]

_ / EL(Lf)(X.)]ds = / (L) (@)ds (3.4.1)

foranyt > 0,z € S andf € A. By the assumptions and Lemina 3.20is contractive w.r.t. the
norm onk for anyt > 0. Therefore, by((3.4]1),

t
lef — flis < / IpLflleds < t|Lf|ls —0 ast L0
0

for any f € A. Since A is a dense linear subspace Bf anc/3 argument shows that the

implies that

contraction semigroupF;) induced by(p;) on E is strongly continuous. Furthermoré, (314.1)
pef = f —Cf

t
‘ < 1/ IpsLf — Lf||pds — 0 ast |0 (3.4.2)
t st

for any f € A. Here we have used thh'glpsﬁf = Lf by the strong continuity. By (3.4.2),

the functions in4 are contained in the domain of the generdiaf (P,), andLf = Lf for any
feA O

3.4.2 ldentification of the generator

We now assume thdt is the generator of a strongly continuous contraction sesaig(P;):>o

on E, and that L, Dom(L)) is an extension ofL, .A). We have seen above that this is what can
usually be deduced from knowing that the Markov processesdlve martingale problem for any
initial valuez € S. The next important question is whether the generatand (hence) thé”
semigroup P,) are already uniquely determined by the fact thaxtendg £, A). In general the
answer is negative - even thoughis a dense subspace bt

Example (Brownian motion with reflection and Brownian motion with absorption).

Let S = [0,00) and E = L*(S,dz). We consider the linear operatdr = %j—; with dense

domainA = C5°(0,00) C L?(S,dxr). Suppose that(B;);>o, (P.).cr) iS @ canonical Brownian
motion onR. Then we can construct several Markov processe$which induceC? contraction

semigroups oty with generators that extends, .4). In particular:

e Brownian motion on R, with reflection at O is defined by

X, = | By for anyt > 0.
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e Brownian motion on R, with absorption at O is defined by

~ By fort < TP,
Xt: B
A fort > 1Ty,

whereT,? = inf{t > 0 : B; = 0} is the first hitting time of) for (B;).

Exercise. Prove that boti{ X,, P,) and(X,, P,) are right-continuous Markov processes that in-
duce C° contraction semigroups o = L*(R,,dr). Moreover, show that both generators

extend the operatc(%;;—i, Cs°(0,00)). In which sense do the generators differ from each other?

The example above shows that it is not always enough to knevgémerator on a dense sub-
space of the corresponding Banach spacdnstead, what is really required for identifying the
generatorl, is to know its values on a subspace that is dense in the davhdinv.r.t. the graph
norm

1Al = flle + LS 2

Definition (Closability and closure of linear operators, operator cores). 1) A linear oper-
ator (L, A) is calledclosableiff it has a closed extension.

2) In this case, the smallest closed extengiBnDom(£)) is called theclosureof (£, A). It
Is given explicitly by

Dom(£) = completion of4 w.r.t. the graph nornj| - ||,
Lf = lim Lf, foranysequencéf,),cy in A such thatf,, — fin E (3.4.3)

and (L f,)nen is a Cauchy sequence.

3) Suppose that is a linear operator ont’ with A C Dom(L). ThenA is called acorefor
L iff Ais dense in DoitY.) w.r.t. the graph norm| - || .

It is easy to verify that if an operator is closable then thiersion defined by (3.4.3) is indeed
the smallest closed extension. Since the graph norm isgardhan the norm o#’, the domain

of the closure is a linear subspacefof The graph of the closure is exactly the closure of the
graph of the original operator il x E. There are operators that are not closable, but in the
setup considered above we already know that there is a céodedsion of( £, .A) given by the
generato L, Dom(L)). The subspacgl C Dom(L) is a core forL if and only if (L, Dom(L))

is the closure of L, A).
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Theorem 3.19(Strong uniquenes$. Suppose that is a dense subspace of the domain of the
generatorL. Then the following statements are equivalent:

(i) Ais acore forL.

(i) P.f is contained in the completion of w.r.t. the graph nornj| - ||, for any f € Dom(L)
andt € (0, 00).

If (2) or (ii) hold then

(i) (P;)+>0 is the only strongly continuous contraction semigroupfwith a generator that
extends L, A).

Proof. (i) = (ii) holds since by Theorein 3.1L2, f is contained in the domain df for anyt > 0
andf € Dom(L).

(i) = (i): Let f € Dom(L). We have to prove that can be approximated by functions in the
closureA” of A w.rt. the graph norm oL. If (ii) holds this can be done by regularizirnfgvia
the semigroup: For any> 0, P, f is contained in the closure of w.r.t. the graph norm by (ii).
Moreover,P, f converges tg ast | 0 by strong continuity, and

LPf=PLf—Lf astl0
by strong continuity and Theordm 3112. So
|P:f — fll. =0 ast]o,

and thusf is also contained in the closure dfw.r.t. the graph norm.

(i) = (iii): If (i) holds and (ﬁ)tzo is aC? contraction semigroup with a generaifmextending

(L, A) thenL is also an extension df, because it is a closed operator by Theorem|3.15. Hence
the semigroupsF,) and(P,) agree by Theore 3.116. O

We now apply Theorein 3.19 to identify exactly the domain efglenerator of Brownian motion
onR". The transition semigroup of Brownian motion is the heat geouip given by

(pef)(w) = (f * ¢1)(w) = . fW)ei(x —y)dy foranyt >0,

wherey, (r) = (27t) /2 exp (—|z|?/(2t)).
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Corollary 3.20 (Generator of Brownian motion). The transition functiorip;);>o of Brownian
motion induces strongly continuous contraction semigsoap C'(R") and on L?(R", dz) for
everyp € [1,00). The generators of these semigroups are given by

1 -
L=3A,  Dom(L)= O (R,

Wherngo(R”)A stands for the completion @f5°(R™) w.r.t. the graph norm of the Laplacian
on the underlying Banach spaéHR”), LP(R™, dx) respectively. In particular, the domain éf
contains allC’? functions with derivatives up to second ordel(itiR"), L?(R", dz) respectively.

Example (Generator of Brownian motion on R). In the one-dimensional case, the generators
are given explicitly by

Lf— % ", Dom(L) = { FeCR)NCHR) : f" € O(R)} , (3.4.4)
Lf= %f”, Dom(L) = {f € L*(R,dz) N C*(R) : f" absolutely continuous,” € L*(R, dz)}

(3.4.5)
respectively.

Remark (Domain in multi-dimensional case, Sobolev spacgsin dimensions: > 2, the do-
mains of the generators contain functions that are not tdiiferentiable in the classical sense.
The domain of thel.? generator is the Sobolev spa&&?(R", dx) consisting ofweaklytwice
differentiable functions with derivatives up to secondesrith L?(R", dx), cf. e.g. X X X].

Proof. By Ité’s formula, Brownian motior B;, P,)) solves the martingale problem for the opera-
tor 1A with domainC§°(R™). Moreover, Lebesgue measure is invariant for the tramskénels
p; Since by Fubini’s theorem,

/ pifda = / / ole — ) fw)dyde = | f(y)dy foranyf € F.(R").
Rn n n R™

Hence by Theorem 318, ), inducesC® contraction semigroups afi(S) and onL?(R", dz)
for p € [1,00), and the generators are extensiongph, Cs°(R")). A standard approximation
argument shows that the completioWA w.r.t. the graph norms contain all functions
in C2(R™) with derivatives up to second order @#(R"), L?(R", dz) respectively. Therefore,
pf = [ * ¢, is contained irfwA for any f € C3°(R") andt > 0. Hence, by Theorem
B.19, the generators @i(S) and L?(R", dx) coincide with the closures d A, C5°(R™)). O
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Exercise(Generators of Brownian motions with absorption and reflection). 1) Show that
Brownian motion with absorption atinduces a strongly continuous contraction semigroup
(P:)t>0 on the Banach spade = {f € C'(0,00) : lim, o f(x) = 0 = lim,1 f(z)}. Prove
that

A={flow) : [ € Cg°(R) with f(0) = 0}
is a core for the generatdrwhich is given byL f = %f” for f € A. Moreover, show that
C3°(0, 00) isnot a corefor L.

2) Show that Brownian motion with reflection @induces a strongly continuous contraction
semigroup on the Banach spaEe= C([0, c0)), and prove that a core for the generator is
given by

A={flo) : [ € C°(R) with f'(0) = 0}.

3.4.3 Uniqueness of martingale problems

From now on we assume thatis a closed linear subspace Bf(S) satisfying (A2). LetL be
the generator of a strongly continuous contraction semjg(®’;):>, on E, and letA be a linear
subspace of the domain &f The next theorem shows that a solution to the martingalel@no
for (L,.A) with given initial distribution is unique if4 is a core forL.

Theorem 3.21(Markov property and uniqueness for solutions of martingale poblem). Sup-
pose thatA is a core forL. Then any solutioif(X;):>o, P) of the martingale problem faiL, .A)
is a Markov process with transition function determined ueig by

pef =F,f foranyt>0andf € E. (3.4.6)

In particular, all right-continuous solutions of the margale problem for(L, A) with given
initial distribution p € P(.S) coincide in law.

Proof. We only sketch the main steps in the proof. For a detailedffge® Ethier/Kurtz, Chapter
4, Theorem 4.1 [11].

Step 1 If the procesg X, P) solves the martingale problem f6f,, .4) then an approximation
based on the assumption thdtis dense in Dorfl) w.r.t. the graph norm shows that
(X;, P) also solves the martingale problem fdr, Dom(L)). Therefore, we may assume
w.l.0.g. thatA = Dom(L).
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Step 2 (Extended martingale problem).The fact that(.X;, P) solves the martingale problem
for (L,.A) implies that the process

M= et p(X) + / t e (af — Lf)(X,)ds
0

Is a martingale for anyg > 0 andf € A. The proof can be carried out directly by Fubini’s
Theorem or via the product rule from Stieltjes calculus. Ht&r shows that

e F(XY) — f(Xo) = / e (Lf — af)(X,)ds + / e~ dMU)
0 0

where [ e=*dMY is an Itd integral w.r.t. the martingale; = f(X,) — [i(Lf)(X,)ds,
and hence a martingale, cf. [9].

Step 3 (Markov property in resolvent form). Applying the martingale property to the martin-
galesM /2l shows that for any > 0 andg € E,

E { /0 T eetg(X, )

Indeed, letf = G,g. Thenf is contained in the domain @f, andg = of — L f. Therefore,
fors,t > 0,

]-“SX} = (Ga.9)(Xs) P-as. (3.4.7)

0= B | MLy — ppe

FX ]

7]

t
= e B [f(Xo )| FX] — e f(X,) + E [ /0 et g(Xip)dr

holds almost surely. The identity (3.4.7) followstas oc.

Step 4 (Markov property in semigroup form). One can now conclude that
E[g<Xs+t)“FsX] = (Psg)(Xs) P-as. (348)
holds for anys, ¢t > 0 andg € E. The proof is based on the approximation

P,g = lim <2G2>ng

n—oo \ § s

of the semigroup by the resolvent, see the exercise below.

Step 5 (Conclusion).By Step 4 and Assumption (A2), the procééX,), P) is a Markov pro-
cess with transition semigroup;):>o satisfying [(3.4.6). In particular, the transition semi-
group and (hence) the law of the process with given initisirdbution are uniquely deter-

mined.
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]

Exercise(Approximation of semigroups by resolvent3. Suppose thatP; ) is a Feller semi-
group with resolventG,,),~o. Prove that for any > 0,n € Nandz € S,

(EG%)”Q(@ =F [Pwtg(x)

where (Ey)ren IS @ sequence of independent exponentially distributedanvariables with
parameteil. Hence conclude that

(%G%)ng — P,g uniformly asn — oo. (3.4.9)
How could you derive (3.419) more directly when the statecspa finite?

Remark (Other uniqueness results for martingale problems. It is often not easy to verify
the assumption thatl is a core forL in Theorem3.21. Further uniqueness results for mar-
tingale problems with assumptions that may be easier tdyvieriapplications can be found in
Stroock/Varadhan [35] and Ethier/Kurtz J11].

3.4.4 Strong Markov property

In Theoreni_3.21 we have used the Markov property to estabh#lueness. The next theorem
shows conversely that under modest additional condititresstrong Markov property for solu-
tions is a consequence of unigueness of martingale problems

Let D(R,,S) denote the space of all cadlag (right continuous with leftité) functions
w: [0,00) — S. If Sisapolish space theR(RR, , S) is again a polish space w.r.t. tB&orokhod
topology, see e.g. Billingsley [2]. Furthermore, the Bosehlgebra orD(R,, S) is generated
by the evaluation mapX;(w) = w(t), t € [0, o).

Theorem 3.22(Uniqueness of martingale problem=- Strong Markov property ). Suppose
that the following conditions are satisfied:

(i) Ais a linear subspace af,(S), andL : A — F,(S) is a linear operator such thatl is
separable w.r.t]| - ||..

(ii) For everyxz € S there is a unique probability measute, on D(R.,S) such that the
canonical proces§(X;):>o, P.) solves the martingale problem fo€, .4) with initial value
Xy =1 P,-a.s.
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(iii) The mapz — P.[A] is measurable for any Borel set C D(R., S).

Then((X})i>0, (Pr)zes) is astrong Markov process.e.,
E, [F(Xr4.)|FY] = Exp[F] Ps-as.

foranyz € S, F € F,(D(R,,S)), and any finitg F;*) stopping time".

Remark (Non-uniqueness$. If uniqueness does not hold then one can not expect that dury so
tion of a martingale problem is a Markov process, becauserdiit solutions can be combined in
a non-Markovian way (e.g. by switching from one to the othbewa certain state is reached).

Sketch of proof of Theordm 3]2Bix = € S. SinceD(R,,.S) is again a polish space there is a
regular versiorfw, A) — Q. (A) of the conditional distributio®, | - | Fr]. Suppose we can prove
the following statement:

Claim: For P,-almost everyv, the proces$Xr, ., (),,) solves the martingale problem fof, A)
w.r.t. the filtration( 5%, , ) >o.

Then we are done, because of the martingale problem witalin@ndition X (w) now implies

(X714, Qu) ~ (X, Pxpw)) for P-ae.w,

which is the strong Markov property.

The reason why we can expect the claim to be true is that fogagn 0 < s < t,f € A
andA € 75,

Eq. [f(Xm) - fCre) - [ en ) A]

T+s
= B, [(Mi, - M) 1] 7] (@)

=F, [Ex [Mj[“fj-t - M, ]:fis} 1A‘ fﬂ (W) =0

holds for P,-a.e. w by the optional sampling theorem and the tower property oiddemnal
expectations. However, this is not yet a proof since the gxaeal set depends on ¢, f and
A. To turn the sketch into a proof one has to use the sepayabsgumptions to show that
the exceptional set can be chosen independently of thegseteppf. Stroock/Varadhan [35],
Roger/Williams [31]+[32] or Ethier/Kurz [11]. O
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3.5 Feller processes and their generators

In this section we restrict ourselvesReller processesThese are cadlag Markov processes with
a locally compact separable state spdoghose transition semigroup preserv(éSS). We will
establish a one-to-one correspondence between sub-Mank6¥ semigroups or@(S), their
generators, and Feller processes. Moreover, we will shattiie generatok of a Feller process
with continuous paths oR™ acts as a second order differential operator on functiol%igR")

if this is a subspace of the domain bf We start with a definition:

Definition (Feller semigroup). A Feller semigroupis a sub-MarkoviarC® semigroup( P;);>o of
linear operators orﬁ(S), I.e., a Feller semigroup has the following properties thaldhfor any
fed(s):

(i) Strong continuity: || P, f — f|lsup— 0 ast {0,
(i) Sub-Markov: f>0= F,f>0, f<1= Pf<I1,
(i) Semigroup: Py f = f, P.P,f = P,.sf foranys,t > 0.
Remark. Property (ii) implies thaf’, is a contraction w.r.t. the supremum norm for any 0.

Lemma 3.23(Feller processes, generators and martingal@sSuppose thafp; );>¢ is the tran-
sition function of a right-continuous time-homogeneouskda process (X;):>o, (P.)zecs) Such
that pt(é'(S)) C C(S) for anyt > 0. Then(p):>o induces a Feller semigroupP;),>, on

C(S). If L denotes the generator then the procé&ss;), P,) solves the martingale problem for
(L,Dom(L)) foranyz € S.

Proof. Strong continuity holds by 3.11. Filling in the other miggitetails is left as an exercise.
0

3.5.1 Existence of Feller processes

In the framework of Feller semigroups, the one-to-one apoadence between generators and
semigroups can be extended to a correspondence betweeatgesnesemigroups and canonical
Markov processes. Lef2 = D(R, S U {A}), Xi(w) = w(t), and A = o(X; : t > 0).
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Theorem 3.24(Existence and uniqueness of canonical Feller proces3eSuppose thatF; )~

is a Feller semigroup oﬁ?(S) with generatorL. Then there exist unique probability measukes
(x € S) on (€2,2() such that the canonical proce§gX;);>o, P.) is a Markov process satisfying
P.[Xo =2z =1and

E.[f(X)|FX] = (P_.f)(X,) P.,-almost surely (3.5.1)

foranyz € 5,0 < s < tandf € C(S), where we sef(A) := 0. Moreover,((X;);>o, P,) is a
solution of the martingale problem fdr., Dom(L)) for anyx € S.

Remark (Strong Markov property ). In a similar way as for Brownian motion it can be shown
that ((X:):>0, (P:)zes) IS a strong Markov process, cf. e.g. Liggeétt/[19].

Sketch of proof We only mention the main steps in the proof, details can baddor instance
in Rogers& Williams, [32]:

1) One can show that the sub-Markov property implies thatafrt > 0 there exists a sub-
probability kernel,(x, dy) on (S, B) such that

(Pif)(x) = /pt(aj,dy)f(y) forany f € C'(S)andz € S.

By the semigroup property dff;);>o, the kernelgp;):>o form a transition function on
(5, B).

2) Now theKolmogorov extension theoremshows that for any: € S there is a unique
probability measuré®? on the product spac@[AO"’o) with marginals

P, o (ti th, cee ,th)il = ptl(xa dyl)ptg—tl(y:l? d?/Q) .- -ptn—tn_l(yn—b d?/n)

foranyn € Nand0 < t; < t, < --- < t,. Note that consistency of the given marginal
laws follows from the semigroup property.

3) Path regularisation: To obtain a modification of the process with cadlag samplagat
martingale theory can be applied. Suppose fhat G;¢ for some non-negative function
g€ C(S). Then
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and hence the process' f(X;) is a supermartingale w.r.EY for anyz. The supermartin-
gale convergence theorems now imply tidtalmost surely, the limits
lime™* f(Xy)

slt
seQ

exist and define a cadlag functionin Applying this simultaneously for all functiong
in a countable dense subset of the non-negative functio§$f), one can prove that the
process
X;:ngg(tekg
s€Q

existsPP-almost surely and defines a cadlag modificatiofiaf,), P?) for anyx € S. We
can then choosg, as the law of X;) underP?.

4) Uniqueness:Finally, the measureg, (z € S) are uniquely determined since the finite-
dimensional marginals are determined by (3.5.1) and thi@ligiondition.

]

We remark that alternatively it is possible to construct Beffg@rocess as a limit of jump pro-
cesses, cf. Chapter 4, Theorem 5.4. in Ethier&Kurtz [11]ebd] the Yosida approximation

Lf = lim aG,Lf = lim LWf, L@f .= a(aGaf — f),

P, f = lim etL(ﬂ)f,

a—00

is an approximation of the generator by bounded linear apesa(®) that can be represented in
the form

L@ = / (F(9) — F(z))aga(z. dy)

with sub-Markov kernelsyg,. For anya € (0,00), L@ is the generator of a canonical jump
process (X¢)i>o0, (Pé“))xes) with bounded jump intensities. By using that for afig Dom(L),

L@ f — Lf uniformly asa — oo,

one can prove that the famiI&P;,g“) : a € N} of probability measures oP(R., S U {A}) is
tight, i.e., there exists a weakly convergent subsequdderoting byP, the limit, ((X;), P,) is
a Markov process that solves the martingale problem for émeator( L, Dom(L)). We return
to this approximation approach for constructing solutiohsartingale problems in Sectign B.6.
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3.5.2 Generators of Feller semigroups

It is possible to classify all generators of Feller procesiseR? that containCi°(R?) in the
domain of their generator. The key observation is that tireMarkov property of the semigroup
implies a maximum principle for the generator. Indeed, ti®iving variant of the Hille-Yosida
theorem holds:

Theorem 3.25(Characterization of Feller generatorg. A linear operator(L,Dom(L)) on

C'(S) is the generator of a Feller semigroup;);>, if and only if the following conditions hold:

(i) Dom(L) is a dense subspace 61 5).

(i) Range(al — L) = C(S) for somex > 0.
(i) L satisfies thgositive maximum principle:If f is a function in the domain of. and
f(zo) = sup f for somez, € S then(Lf)(z) < 0.

Proof. “="If L is the generator of a Feller semigroup then (i) and (ii) holdhz Hille-Yosida
Theoreni-3.14. Furthermore, suppose that f(x,) for somef € Dom(L) andz, € S. Then
0< % < 1, and hence by the sub-Markov propefty< Pt% < 1 foranyt > 0. Thus
P f < Pf* < f(xo), and

(Pf) (o) = f(mo)

<0.
n =

(L) (o) = lim

“«<" Conversely, if (iii) holds thenL is dissipative. Indeed, for any functioh € C(S) there
existszy € S such that| f||sup = | f(20)|. Assuming w.l.0.9.f(x¢) > 0, we obtain

af fllsp < af(wo) = (Lf)(x0) < |lof = Lfllsup ~ foranya >0

by (iii). The Hille-Yosida Theorern 3.14 now shows tHagenerates &° contraction semigroup
(P:)i>o ON O(S) provided (i),(ii) and (iii) are satisfied. It only remainsyerify the sub-Markov
property. This is done in two steps:

a) aG, is sub-Markov foranyp > 0: 0 < f < 1 = 0 < aG,f < 1. This follows
from the maximum principle by contradiction. Suppose fatamce thay := oG, f < 1,
and letz, € S such thaty(xy) = maxg > 1. Then by (iii), (Lg)(z¢) < 0, and hence

f(@o) = 5 (ag(wo) — (Lg)(z0)) > 1.
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b) P, is sub-Markov forany > 0 : 0 < f <1 = 0 < P.f < 1. This follows from a)
by Yosida approximation: LeL(®) := LaG, = a’G, — ol. If 0 < f < 1 then the
sub-Markov property fonGG,, implies

[e.e]

(i — eSO 0G ) e 0,1) foranyt > 0.
n:

n=0

Hence alsaP,f = lim !X f € [0, 1] for anyt > 0.
a—r00

]

For diffusion processes di?, the maximum principle combined with a Taylor expansiorveo

that the generatak is a second order differential operator providegt (R¢) is contained in the
domain ofL:

Theorem 3.26(Dynkin). Suppose thatP,);>, is a Feller semigroup ofR? such thatCg°(R¢)
is a subspace of the domain of the generator If (F,);>o is the transition semigroup of a
Markov process(X;):>o, (P:).cra) With continuous paths then there exist functiensb;, c €
C(R?) (i,j =1,...,d) such that for any, a;;(z) is non-negative definite(x) < 0, and
02 f d of
b:

i=1

(Lf)(z) = Z ai;(x) () +c(z)f(z) VfeCERY. (35.2)

Furthermore, if the proces§ X;):>o, (P:)zcs) iS non-explosive then= 0.

Proof. 1) Lis alocal operator: We show that
f,9 € Dom(L), f = g in a neighbourhood of = (Lf)(z) = (Lg)(x).

For the proof we apply optional stopping to the martingale = f(X,) — fOt(Lf)(Xs)ds.
For an arbitrary bounded stopping tirfieandz € R¢, we obtainDynkin’s formula

T
BT ()] = 1)+ B | [ (s
0
By applying the formula to the stopping times

T.=min{t >0: X; ¢ B(z,e)} A1, >0,
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we can conclude that

B, [ WHXds] g - 1)
(Lf)(=) = lim BT = lim LT . (3.5.3)

Here we have used thatf is bounded andzgl(Lf)(Xs) = (Lf)(z) P,-almost surely by
right-continuity. The expression on the right-hand sid€35.3) is known asDynkin’s
characteristic operator’. Assuming continuity of the paths, we obtai;, € m
Hence if f,g € Dom(L) coincide in a neighbourhood of then f(Xr.) = ¢g(X7.) for

e > 0 sufficiently small, and thuéL f)(x) = (Lg)(z) by (3.5.3).

2) Local maximum principle: Locality of L implies the following extension of the positive
maximum principle: Iff is a function inC5°(R¢) that has docal maximum atz then
(Lf)(z) < 0. Indeed, in this case we can find a functipre C3°(R?) that has a global
maximum atr such thatf = f in a neighbourhood aof. SincelL is a local operator by
Step 1, we can conclude that

(Lf)(@) = (Lf)(z) <0

3) Taylor expansion: For proving thatl is a differential operator of the forrh (3.5.2) we fix
z € R? and functionsp, ¢y, . .., 1, € C5°(R?) such thato(y) = 1, ¥;(y) = y; — z; ina
neighbourhood’ of z. Let f € C5°(R?). Then by Taylor’s formula there exists a function
R € C5°(R?) such thatR(y) = o(Jy — =|*) and

) = Fel) + 3 5 ) Py o L @n )+ R6) - (354

Z]—

in a neighbourhood of. Sincel is a local linear operator, we obtain

(Lf)(z) =c<:c)f<:v)+z iz )gi( )+ %Zaij(x)%(x)ﬂm)(x) (3.5.5)

B,=
with ¢(x) := (Le)(z), bi(z) := (Ly;)(z), anda;;(z) = L(¥:;)(x). Sincep has a local
maximum atr, ¢(x) < 0. Similarly, for any¢ € R4, the function

2

Z &€ ()i (y

2,j=1

iy

equals¢ - (y — z)|? in a neighbourhood of, so it has a local minimum at Hence

d
Z &i&jaij(x) = L (Z fifj%’%’) >0,

2,j=1
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e., the matrix(a;;(z)) is non-negative definite. By (3.5.5), it only remains to show
(LR)(z) = 0. To this end consider

R.(y) == R(y) — €Z¢z(y)2

SinceR(y) = o(|y — z|?), the functionR. has a local maximum atfor ¢ > 0. Hence
d
0> (LR.)(z) = (LR)(z) — e Y _au(z) Ve>0.
i=1

Letting ¢ tend to0, we obtain(LR)(x) < 0. On the other handz. has a local minimum at
x for e < 0, and in this case the local maximum principle implies

0 < (LR.)(z) = (LR)(z) — 52%@) Ve <0,

and hencg LR)(xz) > 0. Thus(LR)(x) = 0.

4) Vanishing of c: If the process is non-explosive thefl = 1 for anyt > 0. Informally this
should implyc = L1 = %ptlhzo+ = 0. However, the constant functidnis not contained
in the Banach spaoé(Rd). To make the argument rigorous, one can approxinéaig
C§° functions that are equal tbon balls of increasing radius. The details are left as an
exercise.
O

Theoreni 3.26 has an extension to generators of generat Beitegroups including those corre-
sponding to processes with discontinuous paths. We stategult without proof:

Theorem (Courrége).
Suppose that is the generator of a Feller semigroup @&, and C5°(R?) € Dom(L). Then
there exist functions;;, b;, c € C(R%) and a kernel of positive Radon measures such that

d

Z (9x 3% ; bi( 8@ + (@) f(@)

+ / (F0) ~ £(2) ~ Laiy v — 2) - V() vl dy)
RN {z}

holds for anyr € R? and f € Ci°(R?). The associated Markov process has continuous paths if
and only ifv = 0.
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For transition semigroups of Lévy processes (i.e., praesgdth independent and stationary
increments), the coefficients,, b;, c, and the measure do not depend om. In this case, the
theorem is a consequence of the Lévy-Khinchin representdtiat is derived in the Stochastic
Analysis course [9].

3.6 Limits of martingale problems

Limits of martingale problems occur frequently in theacatiand applied probability. Exam-
ples include the approximation of Brownian motion by randoaiks and, more generally, the
convergence of Markov chains to diffusion limits, the apgpmaation of Feller processes by jump
processes, the approximation of solutions of stochadterdntial equations by solutions to more
elementary SDEs or by processes in discrete time, the cmtisin of processes on infinite-
dimensional or singular state spaces as limits of processéaite-dimensional or more regular
state spaces etc. A general and frequently applied apptoatths type of problems can be
summarized in the following scheme:

1. Write down generators,, of the approximating processes and identify a limit gerugrat
(on an appropriate collection of test functions) such fhat— £ in an appropriate sense.

2. Prove tightness for the sequeriég) of laws of the solutions to the approximating martin-
gale problems. Then extract a weakly convergent subsequenc

3. Prove that the limit solves the martingale problem forlitm& generator.

4. ldentify the limit process.

The technically most demanding steps are usually 2 and 4cé\titat Step 4 involves a unique-
ness statement. Since uniqueness for solutions of maldipgablems is often difficult to estab-

lish (and may not hold!), the last step can not always beedwut. In this case, there may be
different subsequential limits of the sequeriég).

3.6.1 Weak convergence of stochastic processes

An excellent reference on this subject is the book by Billlag$2]. Let .S be a polish space. We
fix a metricd on S such that S, d) is complete and separable. We consider the laws of stochasti
processes either on the spate- C(]0,c0),.S) of continuous functions : [0,00) — S or on
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the spaceD = D([0, o0), S) consisting of all cadlag functions : [0, c0) — S. The spac€ is
again a polish space w.r.t. the topology of uniform conviecgeon compact time intervals:

tn S a e VT € R} : 2, — x uniformly on|[0, 7).

On cadlag functions, uniform convergence is too restictor our purposes. For example, the
indicator functionsly ; ,,-1) do not converge uniformly tad;, ;) asn — oo. Instead, we endow
the spacéD with the Skorokhod topology:

Definition (Skorokhod topology). A sequence of functions, € D is said toconverge to a
limit x € D in the Skorokhod topologyf and only if for anyT" € R there exist continuous and
strictly increasing maps,, : [0, 7] — [0,7] (n € N) such that

Tn(An(t)) — x(t) and A, (t) — t uniformly on[0, 7.

It can be shown that the Skorokhod spdeés again a polish space, ci.|[2]. Furthermore, the
Borel s-algebras on botti andD are generated by the projectioNs(z) = z(t), t € R,.

Let (P,).en be a sequence of probability measures (laws of stochasitepses) o@, D re-
spectively. By Prokhorov’s Theorem, every subsequen¢@ofhas a weakly convergent subse-
quence providedP, ) is tight. Here tightness means that for every 0 there exists a relatively
compact subse’ C C, K C D respectively, such that

sup P, [K¢] < e.

neN
To verify tightness we need a characterization of the redhticompact subsets of the function
spaceg andD. In the case of such a characterization is the content of the classicalla+ze
Ascoli Theorem. This result has been extended to the spabg Skorokhod. To state both
results we define the modulus of continuity of a functioa C on the interval0, 7] by

wsr(z) = tsgﬂpﬂ d(x(s),z(t)).
|s—t|<6

Forz € D we define a modification af; by

ws () = inf max sup d(z(s),z(t)).
) O=tg<t] <<ty _1<T<tn 7 S7t€[t1__17t1_)
‘ti7t¢71|>5 ) )

Asd | 0, wsr(z) — 0foranyz € C andT > 0. For a discontinuous functian € D, ws 7 (x)
does not converge . However, the modified quantity; ,-(z) again converges o, since the
partition in the infimum can be chosen in such a way that junipize greater than some constant
£ occur only at partition points and are not taken into accauttie inner maximum.
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Exercise(Modulus of continuity and Skorokhod modulus). Letz € D.
1) Show thaﬂgg)l wsr(z) = 0foranyT € R, if and only if z is continuous.

2) Prove thatgig wsr(r) =0foranyT € R,.

Theorem 3.27(Arzela-Ascoli, Skorokhod). 1) A subsefs C C is relatively compact if and
only if
(i) {z(0) : z € K} is relatively compact irb, and

(i) supwsr(z) — 0asd | 0forany? > 0.
zeK

2) A subsefl C D is relatively compact if and only if
() {z(t) : x € K} is relatively compact for any € Q. , and

(i) supws(z) — 0asé | 0foranyT > 0.
zeK

The proofs can be found in Billingsley![2] or Ethier/Kurfz [J11By combining Theorem 3.27
with Prokhorov’s Theorem, one obtains:

Corollary 3.28 (Tightness of probability measures on function spaces
1) Asubse{P, : n € N} of P(C) is relatively compact w.r.t. weak convergence if and only if
(i) Foranye > 0, there exists a compact skt C S such that

sup P,[Xo ¢ K] <e, and

neN

(i) ForanyT € R,

sup P,lwsr >¢] — 0 asd 0.
neN

2) Asubse{P, : n € N} of P(D) is relatively compact w.r.t. weak convergence if and only if

(i) Foranye > 0 andt € R, there exists a compact skt C S such that

sup P,[X; ¢ K] <e, and

neN
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(i) Forany T e R,,

sup P lwsr >¢l =0 asd 0.
neN

In the sequel we restrict ourselves to convergence of sstichiarocesses with continuous paths.
We point out, however, that many of the arguments can beschonit (with additional difficulties)
for processes with jumps if the space of continuous funstismeplaced by the Skorokhod space.
A detailed study of convergence of martingale problems fecahtinuous Markov processes can
be found in Ethier/Kurtz [11].

To apply the tightness criterion we need upper bounds foptbeabilities P, [wsr > |. To
this end we observe that ; < ¢ if

sup d(Xgsse, Xs) <
t€[0,4]

foranyk € Z, such thatto < T.

w| ™

Therefore, we can estimate

Plwsy >l < Y P,
k=0

sup d(Xys1e, Xis) > /3] . (3.6.1)

t<é

LT/4] l

Furthermore, orR™ we can bound the distancdéX;s.,, Xis) by the sum of the differences
[ Xksrr — Xis
plying a semimartingale decomposition and the maximaluadity to the component processes.

of the componentX?, i = 1,...,d. The suprema can then be controlled by ap-

3.6.2 From Random Walks to Brownian motion

As a first application of the tightness criterion we prove Bk®r’s invariance principle stating
that rescaled random walks with square integrable incré&snammverge in law to a Brownian
motion. In particular, this is a way (although not the easie®) to prove that Brownian motion
exists. Let(Y;),en be a sequence of i.i.d. square-integrable random variailess probability
space(2, 2, P) with E]Y;] = 0 andVar[Y;] = 1, and consider the random walk

Sn:i;Yi (n € N).

We rescale diffusively, i.e., by a facterin time and a factox/n in space, and define

1
—S,; fort e R, suchthatt € Z.

vn

In between the partition points= k/n, k € Z., the proces$Xt(”)) is defined by linear interpo-
lation so thatX (™ has continuous paths.

Xt(n) =
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Figure 3.1: Rescaling of a Random Walk.

The diffusive rescaling guarantees that the variance"ét(?))f converge to a finite limit as — oo
for any fixedt € R,. Indeed, the central limit theorem even shows that for any N and
0<ty <t <ty <<ty

to t1 s

k
(X - x xm—xt o x -xM ) B ® ti—t (3.6.2)

This shows that the marginals of the proces¥&8 converge weakly to the marginals of a Brow-
nian motion. Using tightness of the laws of the rescaled samdalks onC, we can prove that
not only marginals but the whole processes converge inloligion to a Brownian motion:

Theorem 3.29(Invariance principle, functional central limit theorem ). Let P, denote the
law of the rescaled random walk™ onC = C([0, >), R). Then(P,),cy converges weakly to
Wiener measure, i.e., to the law of a Brownian motion starahg

Proof. Since by [[3.6.2), the marginals converge to the right limisuffices to prove tightness
of the sequencéP,),cn of probability measures of. Then by Prokhorov’'s Theorem, every
subsequence has a weakly convergent subsequence, anthssbgantial limits are equal to
Wiener measure because the marginals coincide. TRysalso converges weakly to Wiener
measure.

For proving tightness note that Hy (3.6.1) and time-homedggn

T
P, lwsr > €] < <{—J + 1) - P {sup Xt(”) — Xt(o)‘ > f]
0 <8 3

T €
< - . > =
< (LJ +1) P LI;I(%] |Sk| > 3\/5}
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foranye, 6 > 0,7 € R, andn € N. By Corollary[3.28, tightness holds if the probability on the
right hand side is of order(®) uniformly inn, i.e., if

hznﬁs;ipp [max\Sk] > — 3 \/\/j] = 0(9). (3.6.3)

For the simple random walk, this follows from the reflectiagimpiple and the central limit theo-
rem as

> 28] s 28] o e 7).

cf. e.g. [8]. For general random walks one can show with satdéianal arguments thdt (3.6.3)
also holds, see e.g. Billingsley [2]. n

In the proof of Donsker’s Theorem, convergence of the maitgiwas a direct consequence of the
central limit theorem. In more general situations, othethods are required to identify the limit
process. Therefore, we observe that instead of the cemtiattheorem, we could have also used
the martingale problem to identify the limit as a Brownian oot Indeed, the rescaled random
walk ( k/)>keZ+ is a Markov chain (in discrete time) with generator

@)@ = [ (1 (o4 2=) - s@)) viaa

wherev is the distribution of the incremeni$ = S; — S;_;. It follows that w.r.t. P,,, the process
nt—1

FX0) = (L™ f)(Xipm) - % t= %With kelZ,,

=0
is a martingale for any functiofi € C;°(R). Asn — oo,
d " 22 d -1
o+ ) - @ / (@) + 5 1"@) [ S vlde) + o)
= /(&) + ofn™)

by Taylor, and
(nL™ f)(z) — % f"(x)  uniformly.

Therefore, one can conclude that the process

Fx0 = [ 5rxas

is a martingale undeP,, for any weak limit point of the sequencé,). Uniqueness of the
martingale problem then implies th&t, is the law of a Brownian motion.

Exercise (Martingale problem proof of Donsker’'s Theorem). Carry out carefully the argu-
ments sketched above and give an alternative proof of Dosskeeorem that avoids application
of the central limit theorem.
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3.6.3 Regqularity and tightness for solutions of martingale problems

We will now extend the martingale argument for proving Dar&k Theorem that has been
sketched above to limits of general martingale problemsherspac&€ = ([0, c0), .S) where
S is a polish space. We first introduce a more general framewkallows to include non-
Markovian processes. The reason is that it is sometimeseoiemt to approximate Markov
processes by processes with a delay, see the proof of Th&b&&nelow.

Suppose that is a linear subspace d@i,(.S), and

f= (Lef)ezo
is a linear map defined oA such that
(t,x) = (L:f)(x) isafunctioninl?([0,T] x C,\ ® P)

foranyT € R, andf € A. The main example is still the one of time-homogeneous Marko
processes with generat6rwhere we set

Lif = (Lf)(Xy).

We say that the canonical proce’¥g(w) = w(t) solves the martingale problemMP (L, A)
w.r.t. a probability measur® on iff

Aﬁszn—ﬂxw—/ch~

0

is a martingale undeP for any f € A. Note that for0 < s < ¢,
t
F00) = 7)< ~ Ml + [ Lo (3.6.4)

Therefore, martingale inequalities can be used to cortteotegularity of the procesg X;). As a

first step in this direction we compute the angle-bracket@se(M /), i.e., the martingale part in
the Doob-Meyer decomposition ¢#//)2. Since we are considering processes with continuous
paths, the angle-bracket process coincides with the gtiadeaiation[M/]. The next theorem,
however, is also valid for processes with jumps whev€') £ [M7]:
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Theorem 3.30(Angle-bracket process for solutions of martingale problers). Let f,g € A
such thatf - g € A. Then

t
M} Mf = N9 + / T, (f,g)dr foranyt >0,
0
whereN /9 is a martingale, and

Li(f,9) = Li(f - g9) — f(Xe)Lrg — 9(Xi) Lo f-

Thus .
(M?, M9), = / T'(f,q) dr
0

Example (Time-homogeneous Markov processes, Carré du champ operafor
Herel,f = (Lf)(X;), and therefore

Ft(fa g) = F(f? g)(Xt)7

wherel' : A x A — F(95) is theCarré du champ operator defined by

I'(f,9)=L(f-9)— fLg—gL].
If S =R? Aisasubsetof>(R?), and

(EN@w =5 3 sz 2+ 3 b(e)

2,0=1 =1

Vie A

with measurable coefficients;, b; then

d ag
Z: axl a—j(ﬂf) Vf,ge A

In particular, fora;; = 6,5, T'(f, f) = |V f]* which explains the name “carré du champ” (= square

field) operator. For general symmetric coefficiemgswith det(a;;) > 0, the carré du champ is
the square of the gradient w.r.t. the intrinsic metrig) = (a;;) "

L(f, f) = Il grad, fIl5.

Proof of Theorerh 3.30We may assumg = g, the general case follows by polarization. We
write “X ~, Y"if E[X|F| = E[Y|F,| almost surely. To prove the claim we have to show that
for0 < s <tandf € A,

TN RIY
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SinceM7 is a square-integrable martingale, we have
t 2
(ME)? = (I ~, (M = M) = (f<Xt> 1)~ [ ear)

— (F(X0) — FOX))? = 2(f( /Efdr+</ Efdr>
=TI+ 1T+ 1II+1V

where

I:= f(Xt)2 - f(Xs)2 ~s /t ‘Cer d’f’,

1= =216 (£060 - 100 - [ Lf ir) ~.o.

1T = —2f(X,) /t Cofdr = —Z/tf(Xt)Erfdr, and

1V = </:£der)2:2/:/Tt/lrf/lufdudr.

Noting thatf (X)L, f ~, (f(Xr) + f: L.f du) L. f, we see that fos < r < ¢ also the condi-
tional expectations giveit, of these terms agree, and therefore

t t t
II] ~, —2/ f(XT)Lder—Q/ / L.f Lof dudr.

Hence in total we obtain

- 0l ~, [ Lo -2 / X)L f dr = / T fdr
]

We can now derive a bound for the modulus of continuity 0k,) for a functionf € A. Let
w({T = wé,T(f © X)7 ‘/sj,ct = Sl[lp] ‘f(Xr) - f(Xs)|
rels,t
Lemma 3.31(Modulus of continuity of solutions to martingale problems). For p € [2, )
there exist universal constan€s,,C, € (0,00) such that the following bounds hold for any
solution (X;, P) of a martingale problem as above and for any functjore A such that the
processf(X;) has continuous paths:

1) Forany0 < s <'t,

IV llzogry < Gyt = )72 sup [Tu(f, Pl py + (6= ) sup L0 f|lunr)

rée(s,t] r€(s,t]
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2) Foranyd,e, T € (0,00),

~ T
Plofrze] <Ge (14 [ 5] ) (925 I8 DLy + 07500 Ul )

Proof. 1) By (3.6.3),
t
Vi< sup (] - 0|+ [ 12 du

- r€(s,t]

Since f(X,) is continuous M/ is a continuous martingale. Therefore, Byrkholder’s

inequality,
f_ f £y ||1/2
Sup |M <C H (M7 )y — (M) HLP/2
ré€ls,t] Lr(P)
t 1/2
= Cp / Fr(fa f) dr
s LP/2(P)

< Cylt — )72 sup Lo (f, DI

rE(s,t]

Forp = 2, Burkholder’s inequality reduces to the usual maximal irsdityifor martingales
- a proof forp > 2 can be found in many stochastic analysis textbooks, cf.[@]g.

2) We have already remarked above that the modulus of ccitycimQT can be controlled by
bounds foer{ct on intervalgs, t] of lengthd. Here we obtain

P [w({T > 5] < Z P [V;c];,(k-i-l)é = 5/3}

p

ké (D3| Ly

The estimate in 2) now follows from 1).
O

Remark. 1) The right-hand side in 2) convergesta@soé | 0 if the suprema are finite and

p > 2.

2) If f(X,) is not continuous then the assertion still holds o= 2 but not forp > 2.
The reason is that Burkholder’s inequality for discontinsiauartingalesV/; is a bound in
terms of the quadratic variatigd/], and not in terms of the angle bracket procésg),.

For continuous martingale§)/); = [M];.
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Example (Stationary Markov process).
If (X;, P) is a stationary Markov process with generator extendifigd) and stationary distri-
bution X; ~ pthenl,f = (Lf)(X,), Ti(f, f) = T(f, f)(X;), and therefore

1L flley = 1L oys  WTe(fs llperzpy = T, )l por2ge  foranyt > 0.

3.6.4 Construction of diffusion processes

The results above can be applied to prove the existencefo$uih processes generated by second
order differential operators with continuous coefficiem®R?. The idea is to obtain the law of the
process as a weak limit of laws of processes with piecewisstaat coefficients. The latter can
be constructed from Brownian motion in an elementary way. Kéestep is again to establish
tightness of the approximating laws.

Theorem 3.32(Existence of diffusions inR?). For 1 < 4,5 < dleta;;,b; € Co(Ry x R?) such
thata;; = a;;. Then for anyr € R? there exists a probability measufe on C([0, o), R?) such
that the canonical procegs;, P,) solves the martingale problem for the operator

d d

Lof = 1S at, %) -2y + e x) 2 (x,)
t _2”:1@” ) taxﬁa?j t £ i\l t@xi t
with domain .

A:{fEOOO(Rd):aj GC,;’O(Rd)forizl,...,d}

and initial conditionP,[X, = z| = 1.

Remark (Connections to SDE results 1) If the coefficients are locally Lipschitz continu-
ous then the existence of a diffusion process follows maosédyeiaom the Itd existence and
uniqueness result for stochastic differential equatidie point is, however, that variants
of the general approach presented here can be applied inotizeysituations as well.

2) The approximations used in the proof below corresponduierEdiscretizations of the
associated SDE.

Proof. 1) We first define the approximating generators and conspnaxtesses solving the
corresponding martingale problems. Foe N let

a(t, X) = ai([th Xpap)s 0P X) = bi( [0y X(),)
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where|t], := max {s € 1Z:s < t},ie., fort € [£ E1) we freeze the coefficients at
their value at timef;. Then the martingale problem for

W LN~ of ~ of

ij=1

can be solved explicitly. Indeed 1éB;) be a Brownian motion oiR? defined on a prob-
ability space(2, 2, P), and leto : R, x R? — R%*? be measurable such that” = a.
Then the proceth(”) defined recursively by

. . ; k E oo k 1
XM=z x™= X,g/;w (n X,g/g) (Bt—Bk/n)er( Xfc/ﬁb) - forte {0, 5] :

solves the martingale problem f@fﬁ”), A) with initial conditioné,. Hence the canonical
procesg X;) on C([0, ), RY) solves the same martingale problem w.r.t.

P = po(xm)™"

2) Next we prove tightness of the sequedd®™ : n € N}. Fori = 1,...,d let fi(z) := ;.
Sincelz —y| < 0, |fi(x) — fi(y)| for anyz,y € R?, we have

d
wir <Y wly  foranys, T € (0,00).

Furthermore, the functions

V=0t x) and T{(f, fi) = o’ (t, X)
are uniformly bounded since the coefficienfsandd; are bounded functions. Therefore,
foranye, T € (0, 00),

d
P(”) [wsT > €] SZ [w5T>5/d] —0

uniformly inn asé | 0 by Lemmd3.31.
Hence by Theorern 3.29, the sequedd®™ : n ¢ N} is relatively compact, i.e., there
exists a subsequential limit* w.r.t. weak convergence.

3) Itonly remains to show thafX;, P*) solves the limiting martingale problem. We know that
(X,, P™) solves the martingale problem fo£{™, 4) with initial law §,. In particular,

£ [(700) - 506 = [ 2005 ar) o x,0] =0
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forany0 < s; < sy < .-+ < s, < s < tandg € C,(R¥4). The assumptions imply that
£ f — £, f pointwise asy — oo, and£™ f is uniformly bounded. This can be used
to show that X, P*) solves the martingale problem fa£,, f) - the details are left as an

exercise.
Il

Remark (Uniquenes$. The assumptions in Theorém 3.32 are too weak to guarantgeamess

of the solution. For example, the ordinary differential agon dx = b(z)dt does not have a
unigue solution withcy = 0 whenb(z) = /z. As a consequence, one can show that the trivial
solution to the martingale problem for the operalt@t)% onR! is not the only solution with
initial law 9. A uniqueness theorem of Stroock and Varadhan states #hatatingale problem
has a unique solution for every initial law if the matrixz) is strictly positive definite for each

z, and the growth of the coefficients &8 — oo is at most of ordern;;(z) = O(]x|*) and
bi(z) = O(]z|), cf. (24.1) in Roger&Williams II[[31] for a sketch of the praof

3.6.5 The general case

We finally state a general result on limits of martingale peais for processes with continuous
paths. Let P(™), .y be a sequence of probability measure<io, co), S) wheres is a polish
space. Suppose that the canonical pro¢&ssP™) solves the martingale problem f()tﬁt”), A)
whereA is a dense subspace@f(S) such thatf* € A wheneverf € A.

Theorem 3.33.Suppose that the following conditions hold:

(i) Compact containmentFor any7 € R, and~y > 0 there exists a compact skt C S such
that
PM[3te0,T): X, ¢ K] <~ foranyn e N.

(i) Uniform LP bound: There exist® > 2 such that for anyl’ € R,

< 0
LP(P(")))

o (f, f) 7

sup sup <’ Lo/2(p(m) ’

neN t<T

Then{P™ : n € N} is relatively compact. Furthermore, if

(iii) Convergence of initial law:There existg € P(S) such that

P™oX;t %y asn — oo, and
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(iv) Convergence of generators:

L£M¥ = £,f  uniformly for anyf € A,
then any subsequential limit 6P(™),,c is a solution of the martingale problem fo£,, A) with

initial distribution .

The proof, including extensions to processes with disomotis paths, can be found in Ethier
and Kurtz [11].
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Chapter 4
Convergence to equilibrium

Additional references for this chapter: Royerl|[33], Malr[2di], Bakry, Gentil, Ledoux [1]

Our goal in the following sections is to relate the long tingyraptotics(t T oo) of a time-
homogeneous Markov process (respectively its transigomigroup) to its infinitesimal charac-
teristics which describe the short-time behayioj 0):

Asymptotic properties < Infinitesimal behavior, generator

t1 oo tlo0

Although this is usually limited to the time-homogeneouse;aome of the results can be applied
to time-inhomogeneous Markov processes by consideringghee-time process, X;), which

is always time-homogeneous. On the other hand, we woulddikeke into account processes
that jump instantaneously (as e.g. interacting particééesyis orZ?) or have continuous trajecto-
ries (diffusion-processes). In this case it is not strdaiaard to describe the process completely
in terms of infinitesimal characteristics, as we did for jupnpcesses. A convenient general setup
that can be applied to all these types of Markov processé®imartingale problem of Stroock
and Varadhan.

Let S be a Polish space endowed with its BaredlgebraS. By F,(.S) we denote the linear space
of all bounded measurable functiofis S — R. Suppose thatl is a linear subspace of,(.5)
such that

(AO) If n is a signed measure ghwith finite variation and
/ fdu=0 VfeA,
theny =0

186
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Let
L:ACF(S) — F(9)

be a linear operator.

From now on we assume that we are given a right continuoushimn@geneous Markov process
((X¢)e>0, (F1)i>0, (Pr)zes) With transition semigrougp, )0 such that for any: € S, (X;);>o is
underP, a solution of the martingale problem fof, A) with P, [ X, = z] = 1.

Let A denote the closure ofl with respect to the supremum norm. For most results derived
below, we will impose two additional assumptions:

Assumptions:
(A1) If f € A, thenlf € A.

(A2) There exists a linear subspadg C A such that iff € A, thenp,f € Aforallt > 0, and
Ay is dense ind with respect to the supremum norm.

Example. (1). For a diffusion process iR? with continuous non-degenerated coefficients sat-
isfying an appropriate growth constraint at infinity, (ADa(A2) hold withA, = C5°(R9),
A=S8R?% andB = A = C,(R?).

(2). In general, it can be difficult to determine explicitlyspaceA, such that (A2) holds. In
this case, a common procedure is to approximate the Markoseps and its transition
semigroup by more regular processes (e.g. non-degendifatahs inR?), and to derive
asymptotic properties from corresponding properties efapproximands.

(3). For an interacting particle system ®#" with bounded transition rates(z, n), the condi-
tions (Al) and (A2) hold with

Ag= A= {f; T SR |f| <oo}
where

IF1=" " Agla), Ag(x) =sup [f(n™") — f(n)],

zezd €T

cf. Liggett [18].
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Theorem (From the martingale problem to the Kolmogorov equationg.

Suppose (A1) and (A2) hold. Thém),>, induces aCj, contraction semigroup?;);>o on the
Banach space = A = A, and the generator is an extension (@, .4). In particular, the
forward and backward equations

d
d—tptf:ptﬁf VieA

and
d
d_tptf =Lpf VfeA

hold.

Proof. SinceMtf Is a bounded martingale with respectRp, we obtain the integrated forward
equation by Fubini:

(pef) () = f(z) = Eu[f(Xe) = f(Xo)] = Ex |:/(£f)(Xs> ds

t (4.0.1)
= / (psLf)(x) ds

forall f € Aandx € S. In particular,

t
Hptf - f”sup S / Hpsﬁstup dS S t- H‘Cstup — O
0

ast | 0 for any f € A. This implies strong continuity o8 = A since eachp, is a contraction
with respect to the sup-norm. Hence by (A1) and (4.0.1),

t

—£f=%/<pscf—£f>dwo

0

pef — f
t

uniformly for all f € A, i.e. A is contained in the domain of the generator L of the semigroup
(P;)i>0 induced onB, andLf = Lf for all f € A. Now the forward and the backward equations
follow from the corresponding equations fa@¥,),~, and Assumption (A2). O
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4.1 Stationary distributions and reversibility

4.1.1 Stationary distributions

Theorem 4.1(Infinitesimal characterization of stationary distributio ns). Suppose (A1) and
(A2) hold. Then foy, € M;(S) the following assertions are equivalent:

(i) The processX,, P,) is stationary, i.e.
(Xstt)ez0 ~ (Xe)ezo
with respect taP, for all s > 0.
(i) w is a stationary distribution fofp; );>¢

(i) [Lfdu=0 VfeA (i.e. p is infinitesimally invariantL* i = 0).

Proof. (i)=-(ii) If (i) holds then in particular
pps =P, 0o X' =P, 0 X, =p
forall s > 0, i.e. p is a stationary initial distribution.
(i)=-(i) By the Markov property, for any measurable subBet D(R*, S),
P,[(Xstt)i>0 € B | Fs| = Px,[(Xt)i>0 € B] P,-a.s., and thus
Pu[(Xsit)i=0 € Bl = E,[Px,((X¢)iz0 € B)] = Pup,[(Xi)i0 € B] = P,[X € B]

(i)=-(iif) By the theorem above, fof € A,

1@ — Lf uniformly ast | 0,
S0
tl0 t £10 /

providedy is stationary with respect t@; );>o.
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(iif) =(ii) By the backward equation and (iii),

d

Ezwwszszo

sincep, f € Afor f € Ay and hence

[ rdwwo = [wrau= [ sa (4.1.1)

forall f € Ay andt > 0. SinceA, is dense ind with respect to the supremum norm,
(4.1.1) extends to alf € A. Henceup, = p for all t > 0 by (AO0).
O

Applicaton to It6 diffusions:

Suppose that we are given non-explosive weak solutioghsP,),» € R¢, of the stochastic
differential equation

dX, = o(X,)dB, + b(X,)dt, Xo=x P,-as,

where(B;)>o is a Brownian motion irR¢, and the functions: R* — R™*¢ andb: R” — R"
are locally Lipschitz continuous. Then by Ité’s formyl&;, P,) solves the martingale problem
for the operator

1 0* T
L= 3 ”ZI aij(x)—axiaxj +b(x)-V, a=o0",
with domainA = C3°(R™). Moreover, the local Lipschitz condition implies uniques®f strong

solutions, and hence, by the Theorem of Yamade-Watanaigamess in distribution of weak
solutions and uniqueness of the martingale problen{fotd), cf. e.g. Rogers/Williams [32].

Therefore by the remark abovey;, P, ) is a Markov process.

Theorem 4.2. Suppose: is a stationary distribution of X;, P, ) that has a smooth densitywith
respect to the Lebesgue measure. Then

1 — 02

£ 0 = 5 ~ m(amg) — le(bQ) = O

17]_
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Proof. Sincey is a stationary distribution,
O:/,Cfd,u: /Efgdx: /fﬁ*gdx vV fe (R (4.1.2)
R™ R™

Here the last equation follows by integration by parts, heed has compact support. n
Remark. In generaly is a distributional solution of*p = 0.

Example (One-dimensional diffusiong. In the one-dimensional case,

a

Lf=5f"+vf

and

* ]‘ i /
Lo = §(a@) — (bo)

wherea(z) = o(x)%. Assumen(x) > 0 for all z € R.

a) Harmonic functions and recurrence:

[ 20
/Lf:gf”erf/IO & f’zCleXp—/;d:ﬁ, CieR
0

& [f=040C1-s, (C1,05€eR

where

_ y2b(1)d
82:/6 o atey M dy

0
is a strictly increasing harmonic function that is called shale functionor natural scale of the

diffusion. In particular,s(X;) is a martingale with respect #,. The stopping theorem implies

Pm[Ta<Tb]:8( Va<xz<b

As a consequence,

(i) If s(oc0) < o0 0Or s(—o0) > —oo thenP,[|X;| — oo] = 1forall z € R, i.e., (X, P,)is
transient

(i) If s(R) = RthenP,[T, < ] = 1forall z,a € R, i.e., (X3, P,) is irreducible and
recurrent

b) Stationary distributions:
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() s(R) # R: Inthis case, by the transience Y, P,), a stationary distribution does not
exist. In fact, ifu is a finite stationary measure, then forzalt > 0,

p{z = ol <r}) = (up)({z = o] <r}) = PuIX| <],

SinceX, is transient, the right hand side converges &st 1 co. Hence

pfe o |z <rp) =0

forallr > 0,i.e.,u = 0.
(i) s(R) =R: We can solve the ordinary differential equatibio = 0 explicitly:

1, !
Lo= (5(%)) —b@> =0

& %(ag)' — gag = with C; € R

& % <e’ i %bdxag>/ =Cy el T

& slap=Cy +2C, - s with C;,C, e R
& o(y) = ¢, = o iy 2 with Cy > 0

€
a(y)s'(y)  aly)
Here the last equivalence holds sincep > 0 ands(R) = R imply C;, = 0. Hence a
stationary distribution, can only exist if the measure

1 Y 20
m(dy) := — el T dy
W=
is finite, and in this casg = %. The measuren is called thespeed measuref the

diffusion.

Concrete examples:

(1). Brownian motion: a =1,b =0, s(y) = y. There is no stationary distribution. Lebesgue
measure is an infinite stationary measure.

(2). Ornstein-Uhlenbeck process:

dXt = dBt — "}/Xt dt, v > O,
1 d? d )
== — VT a=
2dz?  dr’ ’
Y Y
N _ JY 2yz da _ yy?
b(z) = —vz, s(y) —/60 dy—/e dy recurrent
0 0
2\ . . . e
m(dy) = e dy, p= —mTR) =N (O, ;) is the unique stationary distribution
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(3).
1
dX, = dB; + b(X,) dt, be C? b(x) = — for |z| > 1
i

transient, two independent non-negative solution§*ef = 0 with [ o dz = .

(Exercise: stationary distributions fod.X; = dB; — ﬁ dt)
Example (Deterministic diffusions).

dX, = b(X,) dt, be C*(R™)

Lf=b-Vf

L0 = —div(gb) = —pdivb — b- Vo, oeCt
Lemma 4.3.

L0=0 & div(ob) =0
& (L, Cg°(R™)) anti-symmetric or.?(y)

Proof. First equivalence: cf. above

Second equivalence:
/fﬁgdu:/fb-Vggda:: —/div(fbg)gda:
— [ £rgdn~ [ divien)foda VfgeCy

Hencel is anti-symmetric if and only ifliv(ob) = 0
4.1.2 Reversibility

Theorem 4.4. Suppose (Al) and (A2) hold. Then forc M, (S) the following assertions are
equivalent:

(i) The processX;, P,) is invariant with respect to time reversai.e.,

(Xs)Ogsgt ~ (Xt—s)Ogsgt with respect tQDM Vt>0
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(ii)
p(dz)py(z, dy) = p(dy)p(y,dz) Vi =0

(i) p; is u-symmetric, i.e.,
/fptgduz /ptfgdu V£, 9 € Fp(S)
(iv) (£, A)is yu-symmetric, i.e.,

[ teadu= [ £igdn vi.ge A

Remark. (1). Areversible processX,, P,) is stationary, since for all, u > 0,

(Xstt)o<t<u ~ (Xu—t)o<t<u ~ (Xt)o<i<u With respect taP,

(2). Similarly (i) implies thatu is a stationary distribution:
/ p(dz)p(x, dy) = / pe(y, do)p(dy) = p(dy)
Proof of the Theorem(i)=-(ii):
plda)pi(z, dy) = Py o (Xo, X;) ™ = Py o (Xe, Xo) ™ = p(dy)pe(y, d)
(ii)=-(i): By induction, (ii) implies
p(dxo)pe, —to (To, dx1)Dry—ty (1, dxo) -+ - Py, 4, (T, dTy,)
=p(dzn)pey—to(Tns dTp1) - Pt —t,_, (21, dT0)
forneNand0=t, <t <---<t,=t, andthus
E, [ f(Xo, Xu,, Xty X, Xo)| = EL[f( Xy, o, Xey, X))

for all measurable functiong > 0. Hence the time-reversed distribution coincides with
the original one on cylinder sets, and thus everywhere.

(i) < (iii): By Fubini,
/ foigdp = // f(@)g(y)u(dz)p(z, dy)

is symmetric for allf, g € F,(S) if and only if u ® p, is a symmetric measure ¢hix S.

(iif) < (iv): Exercise.
O

Markov processes Andreas Eberle



4.1. STATIONARY DISTRIBUTIONS AND REVERSIBILITY 195

4.1.3 Application to diffusions inIR”

1 ¢ 0
= — .. - . — OoRn
L 2”2:1“”@)8@8%% V., A=CERY)

1 probability measure oR™ (more generally locally finite positive measure)

Question For which process ig stationary?

Theorem 4.5. Supposg. = g dz with g;a;; € C*,b € C,p > 0. Then

(). We have
‘Cg = *ng + *Cag
for all g € C5°(R™) where

1 10 dg
Lo=33 4 (3

L.g=pB-Vg, Bj=0b;— 21: Qig% (0ai;)
(2). The operato( L, C5°) is symmetric with respect {o.
(3). The following assertions are equivalent:
(i) L'u=0 (ile. [Lfdp=0forall f e C).
(i) Lipn=0
(i) div(e8) =0

(iv) (L4, C§°) is anti-symmetric with respect fo

Proof. Let

E(frg) = — / fLodp  (f.g€CF)
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denote the bilinear form of the operatat, C;°(R")) on the Hilbert spacé?(R", ;). We decom-
posef into a symmetric part and a remainder. An explicit compatabased on the integration
by parts formula irR™ shows that foy € C5°(R") andf € C*°(R"):

1 D?g
5(f,9)=—/f —ZaijWer'Vg odt
/ Za 0a;f) 5 99 dx—/fb Vgodax
af
:/52 wsgrgede— [ £8-Vapde  VigeCy
1,7
and set

E(f.9): / Zaugi % dx:—/fﬁsgd,u

E(f.9) 3:/fﬁ'vg£)d£l?:—/f£agdu
This proves 1) and, sincg, is a symmetric bilinear form, also 2). Moreover, the aseaHi(i)

and (i) of 3) are equivalent, since

—/Egdu=5(1,g) =&(1,9) + &(1,9) Z—/Eagdu

for all g € C§°(R™) since&y(1,g) = 0. Finally, the equivalence of (ii),(iii) and (iv) has been
shown in the example above. O

Example. L£=1A+b-V,be CR",R"),

. 1
(L,C5°) u-symmetric < [f=0b— Q—QVQ =0

Vo 1
o — Y _ vyl
b 20 2 08C

wherelog o = —H if = e da.
L symmetrizable < bis a gradient
Ln=0 & b= %Vlogg—l—ﬁ
whendiv(g3) = 0.

Remark. Probabilistic proof of reversibility fob := —%VH, H e Ch:
t 1
Xi=z+ B+ /b(Xs) ds, non-explosive, b = —§Vh

0
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HenceP, o X7 < PEM with density

wp( ;ﬂBO——Hl% i(VH2—AH)()d%

0
which shows thatX,, P,) is reversible.

4.2 Poincaré inequalities and convergence to equilibrium

Suppose now that is a stationary distribution fofp;);>o. Thenp; is a contraction ori.?(.S, u)
forall p € [1, oo] since

[nsrans [pisran= [1opan w5 e )
by Jensen’s inequality and the stationarity:0fAs before, we assume that we are given a Markov

process with transition semigroyp: ):>, solving the martingale problem for the operatsr .A).
The assumptions ad, and.A can be relaxed in the following way:

(AO) as above

(AL) f, Lf e LP(S,p)foralll <p < oo

(A2) A is dense ind with respect to thd.?(S, ) norms,1 < p < oo, andp,f € A for all
feA

In addition, we assume for simplicity

A3) 1€ A

Remark. Condition (AO) implies that4, and henced,, is dense in.?(S, ) for all p € [1, c0).
Infact, if g € L9(S, ), ; +; = L, with [ fgdu = 0forall f € A, thengdu = 0 by (A0) and
henceg = 0 u-a.e. Similarly as above, the conditions (AO), (A1’) and YABply that (p:)i>o
induces aC; semigroup onL?(S, ;1) for all p € [1,00), and the generatqL® Dom(L®))
extendg L, A), i.e.,

ACDom(LP) and LPf=rf p-ae. forallfe A
In particular, the Kolmogorov forward equation
Cnf=pLf VieA
and the backward equation

d
Eptf =Lpef V[feEA
hold with the derivative taken in the Banach spa€és, ).
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4.2.1 Decay of variances and correlations

We first restrict ourselves to the case- 2. For f,g € £%(S, ) let

(f,g)MZ/fgdu

denote the.? inner product.

Definition. The bilinear form

d
8(f7 g) = _(fa [g)u = _E<faptg>,u t—O’

f,g € A, is called theDirichlet form associated td.L, .4) on L?(u).

1

is thesymmetrized Dirichlet form

Remark. More generallyg(f, g) is defined for allf € L?(S, 1) andg € Dom(L(?) by

d <f7 ptg)u

E(f.9)=~(f,LPg)u=—— -

Theorem 4.6.For all f € Ay andt > 0

d d
E\/ar#(ptf) == /(ptf)2 dp = =2E(pef,pef) = —2Es(pef, 0ef)

Remark. (1). In particular,

1d

Var,(pef)|

1
&N =5 [P =35 y

infinitesimal change of variance

(2). The assertion extends to dlic Dom (L) if the Dirichlet form is defined with respect to
the L? generator. In the symmetric case the assertion even halddl fb € L2(S, u).

Proof. By the backward equation,

d

at (ptf>2 dp =2 /ptﬁptf dp = =2E(pof,pef) = —2E(pof, pef)
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Moreover, since

/ptfduz/fd(ﬂpt)=/fdu

d d
Vo) = 5 [

iS constant,

Remark. (1). In particular,

E(f, f) = —%% (ptf)Qdu‘ = —%%Varu(ptf)
d
E5,0) = 3 (ET +9.F+0) +ET — 9.7~ 9) = —5 o Covulnf. pug)

Dirichlet form = infinitesimal change of (co)variance.

(2). Sincep; is a contraction or£?(11), the operatofL, A) is negative-definite, and the bilinear
form (€, .A) is positive definite:

(~F, L) = €(7.1) = —3 lim ( [waran- [ r du) >0

Corollary 4.7 (Decay of variancg. For A > 0 the following assertions are equivalent:

(i) Poincaré inequality

Var,(f) < <€ (f.f) VfeA

> =

(i) Exponential decay of variance

Var,(pf) < e M Var,(f) Vfe L*S,u) (4.2.1)

span{1}+ )

Remark. Optimizing over\, the corollary says that(4.2.1) holds with

(i) Spectral gap
Rea >\ Va € spec <—L(2)

_ e (fs —Lf)u
VRN B U,
fLllin L2(w)
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Proof. (i) = (ii)
E(f,f) = A-Var,(f) VfeA

By the theorem above,

d
Evafu(ptf) = _2g(ptf>ptf) < =27 Var#(ptf)
forallt >0, f € Ay,. Hence

Var,(pif) < e~ M Var,(pof) = e~ M Var,(f)

forall f € A,. Since the right hand side is continuous with respect td fifg) norm, and
Ay is dense inL? (1) by (A0) and (A2), the inequality extends to dlle L?(u).

(ii) = (i3i) For f € Dom(L®),
& Vo, )|, = ~26(7.1)
Hence if [Z:Z1) holds then
Var, (pif) < e Var,(f) V>0
which is equivalent to
Var, (f) — 2HE(f, f) + olt) < Var,(f) — 2Xt Var, (f) + oft) V¢ >0
Hence
E(f, f) = AVar,(f)
and thus
@O Puz A [ P forpLy
which is equivalent to (ii).

(1i1) = (i) Follows by the equivalence above.
[]

Remark. Since(L, A) is negative definite) > 0. In order to obtain exponential decay, however,
we need\ > 0, which is not always the case.
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Example. (1). Finite state space: Suppose:(z) > O0forallxz € S.

Generator.
(E0(e) = 2 L) = 3 £l 0) = 0)
Adjoint
£ ) = 4 2
Proof.

Symmetric part:

Ly(r,y) =
() Lo(z,y) =

Dirichlet form :

Efr9) = —(Lafr9) = = > @) Lol y) (f(y) — f(2)) g(x)

Hence

where
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(2). Diffusions in R™; Let
1 0?
N 5 izjaij 3351895] * b V7
andA = C5°, u = odx, g,a;; € C*, be Cp>0,
/ Z of 89
= Y o, axj

E(f9) = Efrg) — (f.5- V), sz—iﬁﬂwm

4.2.2 Divergences

Definition ("Distances" of probability measures). u, v probability measures o, © — v
signed measure.

(i) Total variation distance
[V = pillrv = sup [v(A) — u(A)]
AeS

(i) x3-divergence:

XQ(uv){f(%lyduf(%) dp—1 ifv<p

+00 else

(i) Relative entropy (Kullback-Leibler divergence):

) = fg” log g/’: dp = flog qy ifv<p
+o0 else

(whereOlog 0 := 0).

Remark. By Jensen’s inequality,

H(v|p) > /—d,ulog/—du—o

Lemma 4.8(Variational characterizations).

0
| v = pll = 55?>(/jdw—/fm0

If1<1

Markov processes Andreas Eberle



4.2. POINCARE INEQUALITIES AND CONVERGENCE TO EQUILIBRIUM 203

(ii)

X(vlp) = S (/fdv—/fdu>

[ f?du<it

and by replacingf by f — [ fdp,

X (vlp) = S ( / f dV)

[ f2du<i
J fdu=0

(iii)

H(v|p) = sup /fdy— sup /fdu—log/efd,u
fEFH(S f [ Fo(S)

Jef du<1

Remark. [e/du <1, hencef fdu < 0by Jensen and we also have
sup (/fdu—/fdu) < H(v|p)
Jef du<i

Proof. (i) 7 <”

V(A) = u(A) = £ ((A) = (A) + u(A%) - v(4%)) =§(/ sav— [ fdu)

N | —

and settingf := I, — I 4 leads to

v — pllrv = sup (v(A) —u(A)) < 5 Sup </fdv—/fdu>

2 p<1

7 >7f | f| < 1then

[taw-w=[raw-p+ [ saw-p

< (W =w(Sy) = (v—p)(S-)
=2(v—p)(Sy)  (since(v — p)(Sy) + (v —p)(S-) = (v — p)(S) =0)
<2[lv — plfrv

where S = S+US_, v—pu >0onS,, v—pu < 0onS_ isthe Hahn-Jordan
decomposition of the measure- .
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(i) If v < p with densityp then

1
(w2 =llo—1r2q = sup /f(@—l)duz sup </fdv—/fdu)
FEL2 (1) JEF(S)
”f”LQ(N)Sl Hf”LZ(H)SI

by the Cauchy-Schwarz inequality and a density argument.

If v £ pthen there existsl € S with u(A) = 0 andv(A) # 0. Choosingf = A - 14 with

A T oo we see that
2
sup (/fdv—/fdu> — 00 = 2(vln).
FEFH(S)

”f”L?(M)Sl

This proves the first equation. The second equation follopueplacingf by f — [ f dpu.
(i) First equation:

7 >7 By Young’s inequality,

uwv < ulogu —u +e*

forallu > 0 andv € R, and hence for < u with densityp,

/fdvz/f@du
S/@loggdu—/@du+/6fdu

:H(V|ﬂ)—1+/efdu VfeF(S)
< H(v|p) if /efdugl

7 <7 v < uwith densityo:

a) ¢ < p < £ for somes > 0: Choosingf = log o we have

H(u|u):/1oggdy:/fdy

/efd,u:/gd,uzl

b) General case by an approximation argument.

and

Second equation: cf. Deuschel, Stroack [6].
O
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Remark. If v < u with densityp then

1
v =l = 5 sup [ Fle = 1)die = 3o = s
2111 2

However,||v — ul|tv is finite even whew £ .

4.2.3 Decay ofy? divergence

Corollary 4.9. The assertion$:) — (iii) in the corollary above are also equivalent to

(iv) Exponential decay ofy? distance to equilibrium:

X vpdp) < e (v|p) Vv e M(S)

Proof. We show(ii) < (iv).

7 =7 Letf e L*(p) with [ fdu=0. Then

[ rdwm [ ran= [ ) = [ s

1

< |lpefllzzqu - X*(v|p)?
_ 1
< e M| fllzzge - X (v|p)2

where we have used thtp, f du = [ f dp = 0. By taking the supremum over aflwith

J f*du < 1 we obtain

7)\t 2(

1 1
X (vpp)z < v|p)?

L Forf c £2(M> with ffdlu =0, (IV) Imp|IeS

/ptfgdu = /fd(th) < |1l 2o (vpeli) 2

— 1
< e fllzzgox(vln)?

= e M| f 2o lgll 220

forall g € L?(u1),g > 0. Hence

Ipefllz2g) < eI f |2

Example:d = 1!
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Example (Gradient type diffusions in R™).
dX; = dB; + b(X,) dt, be C(R",R")
Generator:
Lf= %Af+be, f e CE (R

symmetric with respect tp = pdz, o€ C' < b= 1Vliogo.
Corresponding Dirichlet form oh?(o dz):

&(.9) = [ thgods = [ VrVgeds
Poincaré inequality:
Vargas(f) < 51+ [ 94Pods
The one-dimensional case: n = 1,b = $(log )’ and hence
o(z) = const.els 260) dv

e.g.b(z) = —ax, o(x) = const.e " ;i = Gauss measure.
Bounds on the variation norm:
Lemma4.10. (i)

v~ By < )

(i) Pinsker’s inequality:

1
lv = pliry < SHw|) Vv € Mi(S)

Proof. If v £« p, thenH (v|u) = x*(v|p) = oco.
Now letr < pu:

(i)
1 1 1 1
v = pllv = §HQ — Uz < §HQ — U2 = §X2(VW2
(i) We have the inequality

3z -1 < (d+2z)(vlogr —x+1) Y>>0
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and hence

NG

V3lz —1] < (4+2:U)%(a:logx—:c+ 1)

and with the Cauchy Schwarz inequality

\/g/le—llduﬁ </(4+20)du)% (/(010g9—9+1)61/~b)é

= V6 H(v|u)?
N
Remark. If S is finite andu(z) > 0 for all x € S then conversely
3 () o < B0
X \V = — — ) > ;
: — \u() : mingeg ()
_ Ally = plfy
min g
Corollary 4.11. (i) If the Poincaré inequality
1
Var,(f) < E(f.]) V[€A
holds then
I _ 1
lvpe — nllrv < Se S EUME (4.2.2)
(ii) In particular, if S is finite then
1

lvpe — pllrv < — e Mv — pllwv

mincs 1()

N

where||v — uljtv < 1. This leads to a bound for tHeobrushin coefficient(contraction

coefficient with respect th- ||1v).

Proof.

e M — pllrv

2
e X (V‘N)% < B

| —

1 1
[vpe — pllrv < §X2(th|u)2 <

if S is finite. [
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Consequence: Total variation mixing timez € (0, 1),

Tmix(e) =inf{t >0 : |lvp; — pllv < eforallv € M, (S5)}

where the first summand is tHe? relaxation time and the second is an upper bound for the
burn-in time, i.e. the time needed to make up for a bad initial distributio

Remark. On high or infinite-dimensional state spaces the bounddyig.often problematic
sincex?(v|u) can be very large (whereds — u|lv < 1). For example for product measures,

i [ (&) e ([ (5 )

2
where [ (j—;) dp > 1 grows exponentially in n.
Are there improved estimates?
[otav= [ ran= [ ps e < loufllon I = v
Analysis: From the Sobolev inequality follows

e fllsup < ¢~ (1 f 1o

However, Sobolev constants are dimension dependent! &adslto a replacement by the log
Sobolev inequality.

4.3 Central Limit theorem for Markov processes

When are stationary Markov processes ergodic?
Let (L, Dom(L)) denote the generator ¢f;):~o on L*(p).

Theorem 4.12.The following assertions are equivalent:
(i) P, is ergodic
(i) ker L = span{l},i.e.

h € L£*(g)harmonic = h = const.u-a.s.
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(i) p, is p-irreducible, i.e.
B e Ssuchthap,lp =Ip p-asvVt>0 = pu(B)e{0,1}
If reversibility holds then (i)-(iii) are also equivalent:t
(iv) p:is L?(u)-ergodic, i.e.

—0 VfeL*u)

pi = [ fau

L2 ()

Let (M;);>0 be a continuous square-integrablg ) martingale andF; a filtration satisfying the
usual conditions. Thei/? is a submartingale and there exists a unique natural (emgincous)
increasing process\/); such that

M? = martingale+ (M),
(Doob-Meyer decomposition, cf. e.g. Karatzas, Shreve)[14]
Example. If N, is a Poisson process then
M; = Ny — At

is a martingale and
(M), = Xt

almost sure.

Note: For discontinuous martingale§)/), is not the quadratic variation of the paths!

(X,, P,) stationary Markov procesd,”, L) generator orL?(z1), L'(u), f € Dom(LY) D

Dom(L®). Hence
t

ﬂ@=W+ﬂWMM@Em&

andM/ is a martingale. Fof € Dom(L®) with f2 € Dom(L"),
t

mﬂﬁ:/mﬂnug@ P-as.

0
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where

I(f,9)=LY(f g)— fLPg—gL®f e L'(n)
is theCarré du champ (square field) operator.

Example. Diffusion in R,

1 0?

Z’?j

Hence

() @) = S a@) 2L (1) 2 () = o7 (@) V1 ()|

i &cl &cj
forall f, g € C5°(R™). Results for gradient diffusions d&i* (e.g. criteria for log Sobolev) extend
to general state spaceg¥ f|? is replaced by'(f, g)!

Connection to Dirichlet form:

)= [ 119 s (5 [ 1972 an) =5 [0

N

v~

=0

4.3.1 CLT for continuous-time martingales

Theorem 4.13(Central limit theorem for martingales). (M,) square-integrable martingale on
(Q, F, P) with stationary increments (i.e\/,,, — M, ~ My — M), o > 0. If

1 )
¥<M>t —o? in LY(P)
then

M,
=t B N(0,0?)
Vit

4.3.2 CLT for Markov processes

Corollary 4.14 (Central limit theorem for Markov processes (elementary verson)). Let
(X, P,) be a stationary ergodic Markov process. Then fo Range(L), f = Lg:

1 D )
ﬁo/f(Xs)ds 2 N(0,0%)
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where
0% = 2/9(—L)9 dp =2E(g,9)

Remark. (1). If i is stationary then

/fdu:/Lgdu:()

i.e. the random variable§ X ) are centered.

(2). ker(L) = span{1} by ergodicity

wert = { e ) s [ an=0} = 130

If L: L3(n) — L*(u) is bijective withG = (—L)~! then the Central limit theorem holds
forall f € L?(u) with

0t =2(Gf, (=L)Gf) 2wy = 2(f, G )2
(H~! norm if symmetric).
Example. (X;, P,) reversible, spectral gap i.e.,
spec(—L) C {0} U [\, o0)

hence thereis & = (—L ( ))*1, spec(G) C [0, 1] and hence
Lg I

2
o7 < 12
is a bound for asymptotic variance.

Proof of corollary.

Sl=
S —
=
£
S
I
Y
Y

t
(M9, = / (g.g)(X.)ds Pr-as.
0
and hence by the ergodic theorem

1 tToo
;(Mg% — /F(g,g) dp = o}
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The central limit theorem for martingales gives
g D 2
M = N(0,07%)

Moreover
75 (0050 — g(X0)) =0
in L?(P,), hence in distribution. This gives the claim since
th,u, Y}g() = Xt+Y}2>,u
O

Extension: Range(L) # L?, replace—L by a — L (bijective), them | 0. Cf. Landim [16].

4.4 Logarithmic Sobolev inequalities and entropy bouds

We consider the setup from section 4.3. In addition, we nau@e that L, .4) is symmetric on
L?(S, ).

4.4.1 Logarithmic Sobolev inequalities and hypercontractivity

Theorem 4.15.With assumptions (A0)-(A3) ard> 0, the following statements are equivalent:

(i) Logarithmic Sobolev inequality (LSI)

2
[ Frog—du < 208(£.4) V€A
s L2(p)

(i) Hypercontractivity For1 <p < g < oo,
qg—1
p—1

0]
\oefllagy < ([ flleeqy YV f € LP(w), t > §1Og

(iif) Assertion (ii) holds forp = 2.

Remark. Hypercontractivity and Spectral gap implies

1pef | Lagn) = ”ptopt—tofHLq(u) < ”pt—topr(u) = e_A(t_tO)Hf”LQ(M)

forallt > ty(q) :=  log(q — 1).
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Proof. (i)=-(ii) Idea: WLOG f € Ay, f > 9 > 0 (which implies thap, f > § V¢ > 0).

Compute
d + .
%HptfHLq(n(u), q: RT — (1,00) smooth:
(1). Kolmogorov:

d o .
—pf = Lpf derivation with respect to sup-norm

dt
implies that
d !
y (pef)* dp = q(2) / Pef)* O Ly f dp+ ¢ (t) / (pef)* D log pi f dps
where

/(ptf)q“)‘lﬁptf dp = —& ((pef)" ™, pof)

(2). Stroock estimate:
4(¢—1)
q2

E(fr 1) 2 &4 r4)

Proof.

E(Ff) = — (L), = lim = (f7 F —pif),

tlo ¢

—tim ] (5 0) = 17 @) ()~ 1@ e, dy) ()
> M Dy ] (54000 - 75@) o) et
- wg (f% f%)

¢ ’

where we have used that

g q\? ¢’ -1 39-1 _
(a —b§> §4(q—1) (a? b ) (a—b) Va,b>0,¢g>1

Remark.

— The estimate justifies the use of functional inequalitieghwespect t& to bound
LP norms.

— For generators of diffusions, equality holds, e.g.:

/qu1Vfdu:ZJL((1(]—;1)/‘Vf3

by the chain rule.

2
dp
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(3). Combining the estimates:

1 d d )
«wwmﬂﬂgyﬁwﬁmm—iﬁ/@ﬁwwmwﬂuw/@Jw@bmmﬂmmm

where
t
/@JV”@F=WJM8

This leads to the estimate
d
t)—1
a(t) - el = oS e

GO D) g (1, ) 1 L[ 0010 PP
o) £ ((Ptf) , (pef) >+ o) /(ptf) 1 gf(ptf)q“) i du

(4). Applying the logarithmic Sobolev inequality: Fixe (1, c0). Choose(t) such that

aq'(t) =2(q(t) = 1), q(0)=p

a(t) =14 (p— L=

Then by the logarithmic Sobolev inequality, the right hart $n the estimate above
is negative, and hend, f ||, is decreasing. Thus

Ipefllaey < Mfllao) = 11l ¥t =0

Other implication: Exercise. (Hint: considép. f || L ,,))- O

Theorem 4.16(Rothaus). A logarithmic Sobolev inequality with constanimplies a Poincaré
inequality with constank = 2.

Proof. Apply the logarithmic Sobolev-inequality b= 1+ g where [ gdu = 0. Then consider
the limite — 0 and use thatlogz = 2 — 1+ 3(z — 1)® + O(|z — 1*). O

4.4.2 Decay of relative entropy

Theorem 4.17(Exponential decay of relative entropy. (1). H (vpi|u) < H(v|p) forall t >
0andv € M,(S).
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(2). If a logarithmic Sobolev inequality with constant> 0 holds then

H(vp|p) < e a'H(v|p)

Proof for gradient diffusions£ = 1A + bV, b = $Vlego € C(R"),n = odx probability
measured, = span{C{°(R"), 1}
. The Logarithmic Sobolev Inequality implies that

[ 708 g an < [ 197 dn =g (7.0

(i) Supposer = g-pu, 0 < e < g < %for somees > 0. Hencevp, < p with density

mg, € <pg < 1 (sincef fd(vp) = [pf dv = [pfgdp = [ fpug dp by symmetry).
This implies that

d d
7 H(vpe|p) = dt/ptglogptgdﬂz /Cptg(1+logptg) dp

by Kolmogorov and sincér log )’ = 1 + log x. We get

d 1
ZH (vpelp) = —E(peg,log prg) = —3 / Vpig - Viogpg dp

wherevV log p,g = Vp%;g. Hence

d
S mle) =2 [ 19 Al du (4.4.1)

@). —2 [ |VyBeg|” du<0
(2). The Logarithmic Sobolev Inequality yields that

4
_2/|v\/pt | dp < _—/Ptglogf dp

prgdp
where [ p,gdu = [ gdp =1 and hence

4
—2/ IV/pegl” du < —EH(VZ%W)

(i) Now foragenerab. If v « u, H(v|u) = oo and we have the assertion. et g-u, g €
L'(p) and

Gap =(gVa)Nb, 0<a<b,

Vab = YGab * K-
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Then by (i),
H(vappilp) < =5 H(vap|p)

The claim now follows for | 0 andb 1 oo by dominated and monotone convergence.
0

Remark. (1). The proof in the general case is analogous, just refffadel) by inequality
AEWf V) < E(flog f)

(2). An advantage of the entropy over th&distance is the good behavior in high dimensions.
E.g. for product measures,

H(v'|u") = d- H(v|u)

grows only linearly in dimension.

Corollary 4.18 (Total variation bound). Forall t > 0 andv € M;(S),

1 e 1
lvpe — pllrv < —=e =« H(v|p)?

( < Lot ot ifsis finite)
min p(x)

S5

Proof.

1 ¢

1 1 1
vp: — v 2 < —e aH(v|p)?2
|| Pt M”TV = \/§ ( ptl:u) \/5 ( |p’)

where we use Pinsker’s Theorem for the first inequality anebfénm 4,117 for the second inequal-
ity. SincesS is finite,

1 1
H(d,|p) = log < log — Vzels
(@) = % miny
which leads to
) < H(5,p) <1 v
(Wli) < w(x)H(0|p) < log o 7
sincev = > v(x)d, is a convex combination. O

Consequence for mixing time:(S finite)

Tmix(e) =inf {t >0 : |lvp: — pllrv < eforallv € M(S)}

1
< a-log — +loglog

V2e

Hence we havébg log instead oflog !

minges ()
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4.4.3 LSl on product spaces

Example. Two-point space. S = {0, 1}. Consider a Markov chain with generator

c= 11 , p,qg€ (0,1),p+qg=1
p —p

which is symmetric with respect to the Bernoulli measure,

1(0) =p, pu(l)=gq

0 O O 1

Dirichlet form:

E0F ) = 5 32 (Flw) — F@))? ()Ll v)

:E,y

=pq-|f(1) = FO)* = Var,(f)

Spectral gap:

-0 ,
Ap) = fnétncgnst.\/ar#(f) =1 independent op !
Optimal Log Sobolev constant:
() J flog fPdu )1 if p =1
« = Ssu —_— =
P fllil) 25(f, f) 1logg—logp else
[ f?dp=1 2 q-p

goes to infinitya® L 0 orp 1 oo!
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Spectral gap and Logarithmic Sobolev Inequality for product measures:

Ent,,(f) ::/flogfd,u, f>0

Theorem 4.19(Factorization property). (.S;, S;, i;) probability spacesy = ®!, ;. Then

(1).
Var,(f) <3 B, [var(f)]

where on the right hand side the variance is taken with respeittd i-th variable.

(2).
Ent,(f) <> B, [Entﬁff(f)]

Proof. (1). Exercise.

).

Ent,(f)= sup E,[fg], cf. above

g : Euled]=1
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Fix g: S™ — R such thatt, [¢’] = 1. Decompose:

g(‘rh s ,l’n) = 1Og eg(xl ..... @)
= log G J edtwztn) iy (dy, )
f 9(y1,e2,0-7n) 1) dy1 ff e9Wry2.@,mn) 1y (dyy ) o (dyo)

and hence

Corollary 4.20. (1). If the Poincaré inequalities

Var, (f) < TEULf) VS EA

hold for eachyu; then

Var,(f) g%g Vie@)A
=1
where .
IEDIALNI]
i=1
and

A= min )\
1<i<n

(2). The corresponding assertion holds for Logarithmic &eb Inequalities withy = max «;

Proof.

Var(f) < 32 B [V ()] < L)

since

Varl)(f) < —&(f, f)

1
Y
]
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Example. S = {0,1}", ™ product ofBernoulli(p),
Ent» ()

S 2a<p)pq2/ ’f(xla ey Ti—1, 17xi+17 s 7-1'71) - f(xlv tee >xi71707$i+17 s 7xn)‘2 ,Un(dx)
i=1

independent of..

Example. Standard normal distribution= N (0, 1),
Dica (T —3)

n

4

9071: {O’ 1}n — R7 §0n<x> -

The Central Limit Theorem yields that= Bernoulli(5) and hence

2
prop,t =y

Hence for allf € C3°(R),
Ent,(f*) = lim Ent,(f* 0 )

1

S---SQ-/If’IQd’V

4.4.4 LSl for log-concave probability measures

Stochastic gradient flow iR":
dX,=dB, — (VH)(X,)dt, H € C*{R")
Generator:
1
L= §A —-VH -V
p(dx) = e 1@ dy satisfiesC* = 0
Assumption: There exists & > 0 such that

82H(93)2/4-[ VreR"
ie. OfH>rk-[(? VEER"
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Remark. The assumption implies the inequalities
rv-VH(z) > k- |2]* — ¢, (4.4.2)

H(z) > g|x|2 7 (4.4.3)

with constants, ¢ € R. By (4.4.2) and a Lyapunov argument it can be shown ihatoes not ex-
plode in finite time and tha;(Ay) C A where A, = span (CZ(R"), 1), A = span (S(R"), 1).
By (4.4.3), the measurg is finite, hence by our results above, the normalized measuae
stationary distribution fop;.

Lemma 4.21.If Hess H > kI then
\Vpif| < e p |V feC(RY)
Remark. (1). Actually, both statements are equivalent.

(2). If we replaceR™ by an arbitrary Riemannian manifold the same assertion hoidsr the
assumption
Ric+HessH > k-1

(Bochner-Lichnerowicz-Weitzenbdck).

Informal analytic proof:

VLf=V(A—VH-V)f
— (A-VH -V -8H)Vf

:Z operator on one-forms (vector fields)

This yields the evolution equation f&rp, f:

0

) -
antf = vaptf =VLpf =L Vpif

and hence

%thf) -V f

0 0 1
B Vpf| = B (Vpef -V f)? = (

|thf|
(EVnI) VB ronr s VP
Ve f| N Ve f| Ve f|

< S LIVpef| = K|V f]
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We get that(¢) := e p,_; [Vp, f| with 0 < ¢ < s satisfies
V'(t) < Ku(t) = pst LV f| + pst L |V f| — kps—i [V f| = 0
and hence
" [Vpsf| = v(s) <0(0) = ps [V f]
[

e The proof can be made rigorous by approximating by a smooth function, and using
regularity results fop;, cf. e.g. Deuschel, Strooc¢K[6].

e The assertion extends to general diffusion operators.

Probabilistic proof: p, f(xz) = E[f(X})] whereX} is the solution flow of the stochastic differ-
ential equation

dX, =V2dB, — (VH)(X,)dt, i.e.,
t
X =2+ V2B, — /(VH)(Xj) ds
0
By the assumption o/ one can show that — X7 is smooth and the derivative floW® =

V. X, satisfies the differentiated stochastic differential eigua
A = —(0PH)(XP)Y;E dt,
Yy =1
which is an ordinary differential equation. Hencé#H > I then forv € R”,

o <26 V-0

SNVl = —2(Y v, (PH)(X)Y,-0)
whereY; - v is the derivative of the flow in direction. Hence
Vol < eyl
= [V <ey|
This implies that forf € C}(R"), p,f is differentiable and
v Vpf(x) = E[(VA(XT) - Y- v)]
SEVAXON-e™ o] YveR"

IVpuf ()| < e 'pi| Vf|(2)
O
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Theorem 4.22(Bakry-Emery). Suppose that
O*H > k-1 withs >0

Then

2 2
[ Pos—dn< 2 [1viPan vreczm)
”f”Lz(H) &

Remark. The inequality extends tp € H?(u) whereH (1) is the closure of5° with respect

Iz = [ 172+ 19 1P an)’

Proof. g € span(C§°, 1), g > 6 > 0.
Aim:

to the norm

|
/gloggdus E/!V\/EIQ du+/gdulog/gdu

Theng = f? and we get the assertion.
Idea: Consider

u(t) = / prglogprg dp

Claim:
(i) u(0) = [ gloggdu
(i) limeoo u(t) = [ gdulog [ gdp
(i) —u/(t) < 4e72 [V /g]" du

By (i), (i) and (iii) we then obtain:

/gloggdu—/gdulog/gdﬂztlggo (w(0) = u(t))

t

= lim [ —u/(¢)ds

t—o00

0
2
<> [ 1Vl d

since2 [ e " ds = .

Proof of claim:
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(i) Obvious.

(i) Ergodicity yields to
peg () —>/ng vV
fort 1 oo.

In fact:
Vg < e "'py|Vg| < e ™| Vg
and hence

peg(@) — peg(y)| < e sup Vgl - |z —y|

which leads to

py(@) — / gdu' = ‘ / (peg(@) — peg(y)) u(dy)'

< e sup|Vgl - / |z =yl pu(dy) =0

Sincep,g > 6 > 0, dominated convergence implies that

/ptglogptédu% /gdulog/gdu

(i) Key Step! By the computation above (decay of entropy) and the lemma,

v 2
—u'(t) = / Vg - Vogpigdp = / %du
t
2 2
6—2575/ (pt’v-g‘) dlu<€—2mf/pt’vj‘ d,u

DPeg -

\V4 2
:eQHt/’ ;| du:462nt/|v\/§|2 dILL

IN

Example. An Ising model with real spin: (Reference: Royer [33])
S =RA= {<$i)i€A | x; € R}, AC 7 finite.

u(dz) = + exp(—H(x)) de

Z
1 . o
H(z)= ZV(%) —3 Z V(i — j) zixy — Z V(i — j)wiz;,
€A potential 4.JEA interactions USHWISZViN
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whereV: R — R is a non-constant polynomial, bounded from below, andZ — R is a
function such that’(0) = 0, ¥(:) = ¥(—i) Vi, (Symmetric interactions))(i) = 0 V|i| > R
(finite range) 2 € RZ"\* fixed boundary condition.

Glauber-Langevin dynamics:

dX} = —g—H(Xt) dt +dB!, i€cA (4.4.4)
€
Dirichletform:
Z/ of 89
ox; 8%
Corollary 4.23. If
//
inf V'(x) > 3 [0(0)

€L
then€& satisfies a log Sobolev inequality with constant indepenaiefit

Proof.
aij;cj (2) = V"(x1) - 8, — 0i — j)
= 0*H> (infv” - Zw(z)\) 1
in the sense oP?? l [

Consequence: There is a unique Gibbs measureZhcorresponding td7, cf. Royer [33].
What can be said iV is not convex?

4.4.5 Stability under bounded perturbations

Theorem 4.24(Bounded perturbations). p, v € M;(R™) absolut continuous,

dv 1 _U@)
d,u(x) = ¢ .
If
f? 2
/f210g||f||2 duﬁZa-/]Vf\ du VfeCy
L2 (n)
then
/f2 log ||f|| dv < 2a- e>¢U) . /|Vf]2 dv VfeCy
L2(v)
where

osc(U) :=supU — inf U
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Proof.

2
[ Foe f'|‘|’;'2( v < [ (Frogf = Plog g~ 2+ 1flRegy) dv - (445)

since

2
/f210g |f2| dyg/leong—f2logt2—f2+t2du Vt>0
11720
Note that in[(4.4.5) the integrand on the right hand side ismegative. Hence

2
/ #log ‘f‘ <l / (/2108 12 = f108 | f132 = /2 + 1/ 32()

“171%0,
2
infU~/f210g f2 d,u
111220

'G_infUOé/|Vf|2d,u
supU—infUa/|vf|2dU

R N Nl'ﬂ NI

IN

<

Example. We consider the Gibbs measuyrefrom the example above

(1). No interactions:
2
H(z)=> (x— + V(xi)> . V:R — R bounded

Hence

M:®Mv

icA
where
py (dz) o< eV "y (dx)

and~(dz) is the standard normal distribution. Heneesatisfies the logarithmic Sobolev
inequality with constant

a(p) = a(py) <e = ¢oV)

by the factorization property. Hence we have independehdarension!
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(2). Weak interactions:

H(x):Z(;—FVxZ) 0wy —9 Y miz,

INISHN 1EA
li—j|=1 JEA
li—jl=1

¥ € R. One can show:

Theorem 4.25.1f V is bounded then there exists > 0 such that ford € [—f,/] a
logarithmic Sobolev inequality with constant independédnit bolds.

The proof is based on the exponential decay of correlations,(z;, z;) for Gibbs mea-
sure, cf.??7 Course???

(3). Discrete Ising model: One can show that fos < [, a logarithmic Sobolev inequality
holds o{ —N, ..., N}¢ with constant of Orde©(N?) independent of the boundary con-
ditions, whereas fof > (. and periodic boundary conditions the spectral gap, andehenc
the log Sobolev constant, grows exponentiallyNincf. [??7.

4.5 Concentration of measure

(Q2, A, P) probability spaceX;: Q — R? independent identically distributed, /.
Law of large numbers:

Cramér:

%ZU(X»—/U@

= sup (tr — log eV du) LD rate function
teR

Z T] S 2- eiNI(T)u

Hence we have

e Exponential concentration around mean value provitegl > 0 Vr # 0
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2

P > r] < e ¢ providedI(r) >

ol

N
1
NZU(Xi)—/Udu
=1

Gaussian concentration

When does this hold? Extension to non independent identidadtributed case? This leads to:
Bounds forlog [ €'V dy!

Theorem 4.26(Herbst). If 1 satisfies a logarithmic Sobolev inequality with constarnhen for
any function € C}(R?) with ||U]|uip < 1:

(i)
1 U «
glog e dp < §t + [ Udp Vt>0 (4.5.1)

where% log [ €'V du can be seen as tHeee energy at inverse temperatutes as abound
for entropyand [ U du as theaverage energy

7‘2
#(UZ/Ud,u—i-r) <e

Gaussian concentration inequality

(ii)

In particular,

(iif)

1
/e”'“”"'2 duy<oo Vy< —
2a

Remark. Statistical mechanics:

whereF; is thefree energy, ¢ theinverse temperature S theentropy and(U) the potential.

Proof. WLOG,0 <e<U < % Logarithmic Sobolev inequality applied fo= e’

2
/tU@tUd[LSQOé/ (%) \VU|2etUdu+/etUdulog/etUd,u
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ForA(t) := log [ €'V dy this implies

_ftUetUd,u<
- JetUdp T 2 [etUdu

since|VU| < 1. Hence

2 [IVU|*eV d t?
at® [[VUPe™ dp FAMG) <A@

tA(1) :

dA(t) tN({Ht)—Alt)  «
— = < — VYt
dt t t2 - 2 V>0
Since
A(t) = A0) +t-N(0)+0@F) =t / Udp+ O(t?),
we obtain
A(t) a
N < _
.S /Ud,u+ 275,
i.e. (i).

(ii) follows from (i) by the Markov inequality, and (iii) fébws from (i) with U (x) = |x|. O

Corollary 4.27 (Concentration of empirical measure3. X; independent identically distributed,
~ u. If u satisfies a logarithmic Sobolev inequality with constanhen

P

N U - Bl

Nr2
>r| <2-e 2o

for any function/ € C}(R?) with ||U]||ip < 1, N € Nandr > 0.

Proof. By the factorization property;" satisfies a logarithmic Sobolev inequality with constant
a as well. Now apply the theorem to

noting that

hence sincé’/ is Lipschitz,

V)| - — (i |VU<xi>|2>2 <1

=1

]
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Appendix

Let (2, A, P) be a probability space, we denote£Y((2, A, P) (L'(P)) the space of measurable
random variables( : Q — R with E[X "] < co andL!(P) := L!(P)/ ~ where two random
variables a in relation to each other, if they are equal alreesrywhere.

A.1 Conditional expectation

For more details and proofs of the following statements Ebelfle:Stochastic processes]|[10].

Definition (Conditional expectationg. Let X € £'(Q, A, P) (or non-negative) andF C A a
o-algebra. A random variable € £1(Q, F, P) is calledconditional expectatiorof X givenF
(written Z = E[X|F]), if

e 7 is F-measurable, and

e forall B € F,

/ZdP:/XdP.
B B

The random variablé”[ X | F] is P-a.s. unique. For a measurable Spgce S) and an abritatry
random variableY” : @ — S we defineZ[ X |Y] := E[X]|o(Y)] and there exists &-a.s. unique
measurable functiog : S — R such thatE[X|o(Y)] = g(Y). One also sometimes defines
E[X|Y =y] = g(y) py-a.e. (y law of Y).

Theorem A.1. Let X, Y and X,,(n € N) be non-negative or integrable random variables on
(Q, A, P)andF,G C Atwoo-algebras. The following statements hold:
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A.2. MARTINGALES 231

(1). Linearity: E]AX + pY |F] = \E[X|F] + pE[Y|F] P-almost surely for all\, z € R.
(2). Monotonicity: X > 0 P-almost surely implies that[X |F]| > 0 P-almost surely.
(3). X =Y P-almost surely implies that' | X |F| = E[Y|F| P-almost surely.

(4). Monotone convergence: (IX,,) is growing monotone witkx; > 0, then

E[sup X, |F] = sup E[X,|F] P-almost surely.

(5). Projectivity / Tower property: 1§ C F, then
E[E[X|F]|G] = E[X|G] P-almost surely.

In particular:
E[EX|Y, Z]||Y] = E[X]|Y] P-almost surely.

(6). LetY be F-measurable with” - X € £ or > 0. This implies that

ElY - X|F] =Y - E[X|F] P-almost surely.

(7). Independence: X is independent of, thenE[X|F] = E[X]| P-almost surely.

(8). Let(S,S) and(7,T) be two measurable spacesYif: 2 — S is F-measurable,
X : Q — T independentaF and f : S x T" — [0, 00) a product measurable map, then it
holds that
E[f(X,Y)|F](w) = E[f(X,Y (w))] for P-almost allw

Definition (Conditional probability ). Let(€2, .4, P) be a probability spaceF a o-algebra. The
conditional probabilityis defined as

P[A|F](w) := E[14|F](w) VA € F,w € Q.

A.2 Martingales

Classical analysis starts with studying convergence of esacps of real numbers. Similarly,
stochastic analysis relies on basic statements about iseggief real-valued random variables.
Any such sequence can be decomposed uniquely into a maetjinga, a real.valued stochastic
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process that is “constant on average”, and a predictabte pherefore, estimates and conver-
gence theorems for martingales are crucial in stochasélysis.

A.2.1 Filtrations

We fix a probability spacé?, .4, P). Moreover, we assume that we are given an increasing
sequenceF, (n = 0,1,2,...) of subw-algebras ofA. Intuitively, we often think ofF,, as
describing the information available to us at timeFormally, we define:

Definition (Filtration, adapted process. (1). Afiltration on(£2,.A) is an increasing sequence
JFo € FL C F C ...
of o-algebras?, C A.
(2). Astochastic process(,,).>o is adapted to a filtrationi.F,, ),.>o iff each.X,, is F,,-measurable.

Example. (1). Thecanonical filtration(F-X) generated by a stochastic procéss,) is given
by
FX = 0(Xo, X1,..., Xn).

n

If the filtration is not specified explicitly, we will usuallgonsider the canonical filtration.

(2). Alternatively, filtrations containing additional mimation are of interest, for example the
filtration
fn == O'(Z,Xo,Xl,...,Xn)

generated by the proce&X,,) and an additional random variable or the filtration
fn - O-(Xoy}/b?Xl)}/la s 7X7L7Yn)

generated by the proce$X,,) and a further proces&’,). Clearly, the procestX,,) is
adapted to any of these filtrations. In genef&,,) is adapted to a filtratiof.7,,) if and
only if FX C F, for anyn > 0.

A.2.2 Martingales and supermartingales

We can now formalize the notion of a real-valued stochasticgss that is constant (respectively
decreasing or increasing) on average:

Definition (Martingale, supermartingale, submartingale).
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(1). A sequence of real-valued random variabhlds : @ — R (n = 0,1,...) on the proba-
bility space(2, A, P) is called a martingale w.r.t. the filtratioiF,,) if and only if

(@) (M,) is adapted w.rt(F,),
(b) M, is integrable for any. > 0, and
(c) E[M,, | Fnq] = M,y foranyn € N,
(2). Similarly,(M,,) is called a supermartingale (resp. a submartingale) WA, ), if and only

if (@) holds, the positive pat/;" (resp. the negative pait/") is integrable for any: > 0,
and (c) holds with =" replaced by “<”, “ >" respectively.

Condition (c) in the martingale definition can equivalent®y\ritten as
(¢) EMpy1— M, | F,] =0 foranyn € Z,
and correspondingly with=" replaced by <” or “ >" for super- or submartingales.

Intuitively, a martingale is a "fair game%ﬁ&%, l.e., M,,_, is the best prediction (w.r.t. the mean
square error) for the next valud,, given the information up to time — 1. A supermartingale
is “decreasingpn average”, a submartingale‘isicreasingon average”, and a martingale is both
“decreasing” and “increasing”, i.e'¢constanton average”. In particular, by induction aon a
martingale satisfies

E[M,] = E[M,] for anyn > 0.

Similarly, for a supermartingale, the expectation valdgs/,| are decreasing. More generally,
we have:

Lemma A.2. If (M,) is a martingale (respectively a supermartingale) w.r.t. ladtion (F,,)
then
E[Mx | Fol © M, P-almost surely for any, & > 0.

A.2.3 Doob Decomposition

We will show now that any adapted sequence of real-valuadbrarvariables can be decomposed
into a martingale and a predictable process. In partictharyariance process of a martingale
(M,,) is the predictable part in the corresponding Doob decortipasif the proces$M?). The
Doob decomposition for functions of Markov chains impliee Martingale Problem characteri-
zation of Markov chains.

Let (2, A, P) be a probability space ar{dF,,),,>o a filtration on(Q2, A).
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Definition (Predictable proces$. A stochastic process,,),>o is called predictable w.r.t(F,,)
if and only if Aj is constant and4,, is measurable w.r.t7,_, for anyn € N.

Intuitively, the valueA,, (w) of a predictable process can be predicted by the informatraitable
attimen — 1.

Theorem A.3(Doob decompositiof). Every(F,) adapted sequence of integrable random vari-
ablesY;, (n > 0) has a unique decomposition (up to modification on null sets)

Y, = M, + A4, (A.2.1)

into an (F,,) martingale(),,) and a predictable processd,) such that4, = 0. Explicitly, the
decomposition is given by

A, = Y EYi— Y| Fel, and M, =Y, — A, (A.2.2)

k=1

Remark. (1). Theincrement&[Y) — Y;_1 | Fr_1] Of the process$A,,) are the predicted incre-
ments of(Y,,) given the previous information.

(2). The processY,,) is a supermartingale (resp. a submartingale) if and onheifiredictable
part(A, ) is decreasing (resp. increasing).

Proof of Theorerh Al3. Uniquened3or any decomposition as in (A.2.1) we have
Yi—-Yi, = M,— M, 1+ A, — A, foranyk € N.
If (M,,) is a martingale an@A,,) is predictable then
ElYye —Ye1 | Ficl] = E[Ac— A | Fe] = An—A,  P-as.

This implies that[(A.ZR) holds almost surelyAf, = 0.

Existence:Conversely, if(A,,) and (M,,) are defined by[(A.2]2) the(4,,) is predictable with
Ay = 0 and(M,,) is a martingale, since

E[My — M1 | Fr1] = 0 P-a.s. for anyk € N.

]
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A.3 Gambling strategies and stopping times

Throughout this section, we fix a filtratiddF,, ),,>o on a probability spac&?, A, P).

A.3.1 Martingale transforms

Suppose that),),>o is @ martingale w.r.t(F,,), and(C,,),cn is a predictable sequence of real-
valued random variables. For example, we may think’pfas the stake in the-th round of

a fair game, and of the martingale incremént — M,,_; as the net gain (resp. loss) per unit
stake. In this case, the capitigl of a player with gambling strategy”,,) aftern rounds is given
recursively by

I, = I1,,.+C,-(M,— M,_) foranyn € N,
ie.,
L = Ip+> Ci-(My— M)
k=1

Definition (Martingale transform ). The stochastic process, M defined by

(CM), = > Ci- (Mg — My_y)  foranyn >0,

k=1

is called the martingale transform of the martingdl®/,,),~, w.r.t. the predictable sequence
(Cx)k>1, Or the discrete stochastic integral @f),) w.r.t. (M,,).

t
The process’, M is a time-discrete version of the stochastic integré!s dM, for continuous-

0
time processe§' and M, cf. [Introduction to Stochastic Analysis].

Example (Martingale strategy). One origin of the word “martingale” is the name of a well-
known gambling strategy: In a standard coin-tossing gaheestake is doubled each time a loss
occurs, and the player stops the game after the first time i Withe net gain im rounds with
unit stake is given by a standard Random Walk

then the stake in the-th round is

C, = 21 ifg=...=n,_1 =—1,and C, = 0 otherwise.
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Clearly, with probability one, the game terminates in finited, and at that time the player has
always won one unit, i.e.,

P[(C,M), =1 eventually = 1.

At first glance this looks like a safe winning strategy, butotirse this would only be the case,
if the player had unlimited capital and time available.

Theorem A.4(You can't beat the system). (1). If (M,).>o is an (F,) martingale, and
(Ch)n>1 is predictable withC,, - (M,, — M,,_1) € L}(Q, A, P) foranyn > 1, thenC, M is
again an(F,) martingale.

(2). If (M,,) is an (F,) supermartingale andC,),>1 iS non-negative and predictable with
C, - (M, — M,_,) € L' for anyn, thenC, M is again a supermartingale.
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Proof. Forn > 1 we have

E[(COM)n - (CQM)n—l ‘ «Fn—l] = E[Cn : (Mn - Mn—l) ‘ «Fn—l]
= Cn . E[Mn — M, | -Fn—l] = 0 P-a.s.
This proves the first part of the claim. The proof of the segoad is similar. O

The theorem shows that a fair game (a martingale) can nothsformed by choice of a clever
gambling strategy into an unfair (or “superfair”) game. Inahels of financial markets this fact is
crucial to exclude the existence of arbitrage possikditieskless profit).

Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain
E[(CM),] = E[(CeM)] = 0 for anyn > 0
by the martingale property, although

lim (CeM), = 1 P-a.s.

n—o0

This is a classical example showing that the assertion afdhginated convergence theorem may
not hold if the assumptions are violated.

Remark. The integrability assumption in Theorém A.4 is always $ieiikif the random variables
C,, are bounded, or if both',, and M, are square-integrable for any

A.3.2 Stopped Martingales

One possible strategy for controlling a fair game is to teate the game at a time depending on
the previous development. Recall that a random variablé2? — {0,1,2,...} U {co} is called
astopping timew.r.t. the filtration(F,,) if and only if the even{T" = n} is contained inF,, for
anyn > 0, or equivalently, iff{7" < n} € F, foranyn > 0.

We consider arf.F,,)-adapted stochastic proces¥.,,),>o, and an(F,,)-stopping timel” on the
probability spacé€?, A, P). The process stopped at tirfids defined agMrn,,).>0 Where

M, (w) forn <7T(w),
MT/\n(w> = MT(w)/\n(w) =
MT(w) (w) forn > T(w)

For example, the process stopped at a hitting timeets stuck at the first time it enters the set
A.
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Theorem A.5(Optional Stopping Theorem,Version 3. If (M,,),>o is @ martingale (resp. a su-
permartingale) w.r.t(¥,), andT is an(F,,)-stopping time, then the stopped procéts-,,,),>o
is again an(.F,, )-martingale (resp. supermartingale). In particular, we eav

E[Mrpn) = E[M,) for anyn > 0.

Proof. Consider the following strategy:

Cn = Iirsny = 1= Iir<n_y,

i.e., we put a unit stake in each round before timand quit playing at tim&". SinceT is a
stopping time, the sequen¢€,,) is predictable. Moreover,

Mppy — My = (CoM),, foranyn > 0. (A.3.1)

In fact, for the increments of the stopped process we have

= Cn : (Mn - Mn—l)a

M, —-M, , T >n
My, — MT/\(nfl) =

0 if 7T <n-—1

and [A.3.1) follows by summing over. Since the sequend€,) is predictable, bounded and
non-negative, the proces§ M is a martingale, supermartingale respectively, provithedsame
holds forM. ]

Remark (IMPORTANT ). (1). In general, it i;NOT TRUE under the assumptions in Theorem
[A.5l that

E[Mr] = E[M,], FE[Mr] < E[M,] respectively (A.3.2)
Suppose for example that/,, ) is the classical Random Walk startingleeind?” = T3 is

the first hitting time of the point. Then, by recurrence of the Random Walk< oo and
My = 1 hold almost surely althought/, = 0.

(2). If, on the other hand]" is a bounded stopping timehen there exista € N such that
T(w) < nforanyw. In this case, the optional stopping theorem implies

—~

<)

E[Mr] = E[Mrp,] = E[My].
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Example (Classical Ruin Problem). Leta, b, x € Z with a < = < b. We consider the classical
Random Walk

n N _ 1
Xy =a+> m,  npidd owith Pl = £1] = o
i=1

with initial value X, = . We now show how to apply the optional stopping theorem topmamn
the distributions of the exit time

T(w) = min{n >0 : X,(w) & (a,b)},

and the exit pointX;. These distributions can also be computed by more traditiorethods
(first step analysis, reflection principle), but martingajesld an elegant and general approach.

(1). Ruin probabilityr(x) = P[ Xt = a].
The processX,,) is a martingale w.r.t. the filtratiotF,, = o(n1,...,7,), andT < oo
almost surely holds by elementary arguments. As the stoppmzkssX ., IS bounded
(a < Xran << b), we obtain

t = E[Xo] = E[Xrna] "=° E[X7] = a-r(x)+b- (1 —7r(z))

by the Optional Stopping Theorem and the Dominated Convesy&heorem. Hence

rp) = 2% (A.3.3)

a—1x

(2). Mean exit time fronfa, b).
To compute the expectation valdgT|, we apply the Optional Stopping Theorem to the
(F,) martingale
M, = X2 —n.

By monotone and dominated convergence, we obtain

2 = E[M] = E[Mrp) = E[X2,,] — E[T An]
% E[XZ] - E[T).

Therefore, byl[(A.3.13),

E[T] = E[X2]—2* = d* r(2) +0*- (1 —r(x)) — 22
= (b—2) (z—a). (A.3.4)
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(3). Mean passage time ofis infinite.
The first passage timB, = min{n > 0 : X,, = b} is greater or equal than the exit time
from the interval(a, b) for anya < z. Thus by [[A.3.4), we have
E[T,) > lim (b—2x)-(x —a) = oo,
a——00
l.e., T, is not integrablé These and some other related passage times are important ex
ples of random variables with a heavy-tailed distributiod afinite first moment.
(4). Distribution of passage times.

We now compute the distribution of the first passage tithexplicitly in the caser = 0
andb = 1. Hence letl’ = T;. As shown above, the process

M) = e /(cosh \)", n >0,

n

Is a martingale for each € R. Now suppose > 0. By the Optional Stopping Theorem,
1 = E[My] = E[M3,] = E[e*7™"/(cosh A\)"""] (A.3.5)

foranyn € N. Asn — oo, the integrands on the right hand side converge teosh \) =7 -
Itr<ooy. Moreover, they are uniformly bounded by, sinceX;,, < 1 for anyn. Hence
by the Dominated Convergence Theorem, the expectation argthtehand side of (A.3]5)
converges td’[e* /(cosh \)T; T' < oc], and we obtain the identity

El(cosh\) ™" T < o0] = e for any\ > 0. (A.3.6)

Taking the limit as\ \, 0, we see tha’|T" < oo] = 1. Taking this into account, and
substitutings = 1/ cosh A in (A.3.6), we can now compute the generating functior"of
explicitly:

Es"] =e*=(1-V1-5%)/s  foranysec (0,1). (A.3.7)

Developing both sides into a power series finally yields
- n - m+1 1/2 2m—1
d s"-P[T=n] => (-1) st
n=0 m=1 m
Therefore, the distribution of the first passage timé of given byP[T" = 2m| = 0 and

P[T=2m—1] = (—1)m+1(1n/12> = (—1)m+1é- (—%) (%—mﬂ) /m)

foranym > 1.
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A.3.3 Optional Stopping Theorems

Stopping times occurring in applications are typically hounded, see the example above.
Therefore, we need more general conditions guaranteeatg(#h3.2) holds nevertheless. A
first general criterion is obtained by applying the Domida@®nvergence Theorem:

Theorem A.6 (Optional Stopping Theorem, Version 3. Suppose that)/,,) is a martingale
w.r.t. (F,), T is an (F,)-stopping time withP?[T" < oo] = 1, and there exists a random variable
Y € LY, A, P) such that

|Mpan| < Y P-almost surely for any, € N.

Then
E[M7] = E[M,).

Proof. SinceP|[T" < oo] = 1, we have

Mpr = lim Mqp, P-almost surely.

n—oo

By TheoremA.bE[M,| = E[Mr.,], and by the Dominated Convergence Theorem,
E[MT/\n] — E[MT} asn — oQ. ]

Remark (Weakening the assumptionk Instead of the existence of an integrable random vari-
ableY dominating the random variablég;.,., n € N, it is enough to assume that these random
variables arainiformly integrablei.e.,

sup E[|Mrpn|; [Mrpan) >¢]  — 0 asc — 0.
neN

For non-negative supermartingales, we can apply Fatoursha instead of the Dominated Con-
vergence Theorem to pass to the limitras—+ oo in the Stopping Theorem. The advantage is
that no integrability assumption is required. Of course,fhice to pay is that we only obtain an
inequality:

Theorem A.7(Optional Stopping Theorem, Version 3. If (),,) is a non-negative supermartin-
gale w.r.t.(F,), then

holds for any(.F,,) stopping timer".
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Proof. SinceM7 = lim Mgy, on{T < oo}, andMy > 0, Theorenhi A.b combined with Fatou’s
n—oo
Lemma implies

E[Mo] > liminf E[Mrp] > E [liminf Mya,| > E[Mr; T < oc].

n—o0 n—oo

A.4 Almost sure convergence of supermartingales

The strength of martingale theory is partially due to powkgeneral convergence theorems that
hold for martingales, sub- and supermartingales. (%f),>, be a discrete-parameter super-
martingale w.r.t. a filtratior{,,),,.~o on a probability spacé&?, A, P). The following theorem
yields a stochastic counterpart to the fact that any lowemnbded decreasing sequence of reals
converges to a finite limit:

Theorem A.8 (Supermartingale Convergence Theorem, Dodp If sup,,~, E[Z,] < oo then

n

(Z,) converges almost surely to an integrable random varigblec £!(9, A, P). In particular,
supermartingales that are uniformly bounded from aboveveage almost surely to an integrable
random variable.

Remark (L! boundedness and.! convergencs.
(1). Although the limit is integrablel,! convergence doewot hold in general.

(2). The conditionsup F[Z,]] < oo holds if and only if(Z,) is bounded inZ'. Indeed, as
E[Z] < oo by our definition of a supermartingale, we have

E[|Z,|] = E[Z,) +2E|Z]] < E|Z) +2E|Z]] for anyn > 0.

For proving the Supermartingale Convergence Theorem, wedate the numbel/ () (w) of
upcrossings over an interval, b) by the sequencg,,(w), cf. below for the exact definition.
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b A
a'/\/\ / \/\/

. / \ J
Y ,
1st upcrossing 2nd upcrossing
Note that ifU (%) (w) is finite for any non-empty bounded interval b) thenlim sup Z,(w) and
liminf Z, (w) coincide, i.e., the sequen¢¢,,(w)) converges. Therefore, to show almost sure

convergence ofZ, ), we derive an upper bound féf(**). We first prove this key estimate and
then complete the proof of the theorem.

A.4.1 Doob’s upcrossing inequality

Forn € N anda,b € R with a < b we define the numbér,\™” of upcrossings over the interval
(a,b) before timen by

Ué“’b) = max{kz(): J0<s1 <ty <s9<tg...<sp <t <n:Z, <a,lz, zb}.
Lemma A.9 (Doob). If (Z,,) is a supermartingale then
(b—a)-E[U*Y] < E[(Z, —a)7] for anya < bandn > 0.

Proof. We may assumé&[Z, ] < oo since otherwise there is nothing to prove. The key idea is
to set up a predictable gambling strategy that increasesagpital by(b — «) for each completed
upcrossing. Since the net gain with this strategy shoulthdgma supermartingale this yields an
upper bound for the average number of upcrossings. Here sttategy:

e Wait until 7, < a.

e Then play unit stakes unti;, > b.

e

The stake”}, in roundk is

1 if Zo < a,
C, =
0 otherwise,
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and

c 1 if (Okfl =1 ande,l < b) or (Ck,1 =0 ande,1 < a),
=
0 otherwise.

Clearly, (Cy) is a predictable, bounded and non-negative sequence ddramdriables. More-
over,Cy, - (Zy, — Zy_1) is integrable for any: < n, becausé&’ is bounded and

E[|1Z]] = 2B[Z}) - B[z < 2B(Z] - E(2,] < 2B[Z}] - E|Z]]

n

for k < n. Therefore, by Theorem A.4 and the remark below, the process
k
(CeZ)i = Zci'<Zi_Zifl)a 0<k<mn,
=1

Is again a supermartingale.

Clearly, the value of the proces§ Z increases by at leagk — a) units during each completed
upcrossing. Between upcrossing periods, the valugQF), is constant. Finally, if the final
time n is contained in an upcrossing period, then the process capake by at mosgt/,, — a)~

units during that last period (sincg. might decrease before the next upcrossing is completed).
Therefore, we have

(CoZ)n > (b—a)-UY —(Z,—a)", ie.,

(b—a) U < (CZ)p+ (Z,—a)".

A /\V/\ N\
AV ARV

Zn

Gain>b—a Gain>b—-a  Loss< (Z,—a)”
Since(C, 7 is a supermartingale with initial valug we obtain the upper bound

(b= a)B[US"] < B(CuZ)u] + El(Zy — a)7] < E[(Zy —a)7].

]
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A.4.2 Proof of Doob’s Convergence Theorem
We can now complete the proof of TheoremIA.8.

Proof. Let

U(a,b) = sup UT(La,b)
neN

denote the total number of upcrossings of the supermatériga) over an intervala, b) with
—00 < a < b < co. By the upcrossing inequality and monotone convergence,

E[UY] = lim E[U™Y] < -sup E[(Z, —a)7]. (A.4.1)

n—oo — Qa neN

Assumingsup E[Z, ] < oo, the right hand side of (A.4.1) is finite sin¢&,, — a)~ < |a| + Z,,.
Therefore,
U@ < o  P-almost surely,

and hence the event

{liminf Z,, # limsup Z,} = U {UY = o}

a,beQ
a<b

has probability zero. This proves almost sure convergence.

It remains to show that the almost sure lindit, = lim Z,, is an integrable random variable
(in particular, it is finite almost surely). This holds trug, &y the remark below Theordm A.8,
sup E[Z] < oo implies that(Z,) is bounded in’!, and therefore

E[|Z|] = Ellim |Z,]] < liminf B[ |Z,]] < oo

by Fatou’s lemma. ]

A.4.3 Examples and first applications
We now consider a few prototypic applications of the almasé £onvergence theorem:

Example (Sums of i.i.d. random variableg. Consider a Random Walk

=1

on R with centered and bounded increments:
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Suppose thaP[n; # 0] > 0. Then there exists > 0 such thatP[|n;| > ¢] > 0. As the
increments are i.i.d., the evefit);| > <} occurs infinitely often with probability one. Therefore,
almost surely the martingalé,,) does not converge as— oc.

Now leta € R. We consider the first hitting time
T, = min{n >0 : S, > a}

of the intervalla, o0). By the Optional Stopping Theorem, the stopped Random \\&lk., )..>o
is again a martingale. Moreover, 8g < a for anyk < T, and the increments are boundeddy
we obtain the upper bound

St < a+c foranyn € N.

Therefore, the stopped Random Walk converges almost suyelyebSupermartingale Conver-
gence Theorem. AS,,) does not converge, we can conclude tR&t, < oo] = 1 foranya > 0,
i.e.,

limsup S, = oo almost surely.

Since(S,) is also a submartingale, we obtain
liminf S, = —oco almost surely

by an analogue argument.

Remark (Almost sure vs. LP convergencg. In the last example, the stopped process does not
converge inL? for anyp € [1, c0). In fact,
lim E[St, A = E[ST,] > a whereas FE|[Sy] = 0.

n—oo

Example (Products of non-negative i.i.d. random variable}. Consider a growth process

Z, = 1Iv
=1
with i.i.d. factorsY; > 0 with finite expectationv € (0, c0). Then
M, = Z,/a"

is a martingale. By the almost sure convergence theorem te limit /., exists almost surely,
becausel/,, > 0 for all n. For the almost sure asymptotics(¢f, ), we distinguish three different
cases:
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(1). a < 1 (subcritical): In this case,

converges t® exponentially fast with probability one.

(2). o =1 (critical): Here(Z,,) is a martingale and converges almost surely to a finite lithit.
P[Y; # 1] > 0 then there exists > 0 such that’; > 1 + ¢ infinitely often with probability
one. This is consistent with convergence &f,) only if the limit is zero. Hence, ifZ,,) is
not almost surely constant, then also in the critical cgse» 0 almost surely.

(3). « > 1 (supercritical): In this case, on the s¢f\/, > 0},
Ly = M, -a" ~ My -a",

i.e., (Z,) grows exponentially fast. The asymptotics on the{set, = 0} is not evident
and requires separate considerations depending on thd.mode

Although most of the conclusions in the last example coultehzeen obtained without martin-
gale methods (e.g. by taking logarithms), the martingafg@ach has the advantage of carrying
over to far more general model classes. These include fongbeabranching processes or expo-
nentials of continuous time processes.

Example (Boundary behaviour of harmonic functions). Let D C R? be a bounded open
domain, and let : D — R be a harmonic function ofy that is bounded from below:

Ah(z) = 0 foranyz e D, inf h(z) > —o0. (A.4.2)

zeD

To study the asymptotic behavior 6fx) asx approaches the boundafyD, we construct a
Markov chain(X,) such thath(X,) is a martingale: Let : D — (0,00) be a continuous
function such that

0 < r(z) < dist(z,0D) foranyz € D, (A.4.3)

and let(X,,) w.r.t P, denote the canonical time-homogeneous Markov chain wétte sipaceD,
initial value z, and transition probabilities

p(z,dy) = Uniform distribution on the sphergy € R : |y — x| = r(z)}.
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By (A.4.3), the functior is integrable w.r.tp(x, dy), and, by the mean value property,
(ph)(z) = h(z) foranyxz € D.

Therefore, the proceds X,,) is a martingale w.r.t. P, for eachz € D. As h(X,) is lower
bounded by[(A.4]2), the limit as — oo exists P,-almost surely by the Supermartingale Con-
vergence Theorem. In particular, since the coordinatetiomez — x; are also harmonic and
lower bounded oD, the limit X, = lim X,, exists P,-almost surely. MoreovetX, is in 9D,
because is bounded from below by a strictly positive constant on amypact subset ab.

Summarizing we have shown:

(1). Boundary regularity: If ~ is harmonic and bounded from below dn then the limit
lim h(X,) exists along almost every trajectal, to the boundaryD.

n—oo

(2). Representation df in terms of boundary valuesf # is continuous orD, thenh(X,,) —
h(X) P.-almost surely and hence

hz) = lim E;[h(Xn)] = E[h(X)],

n—o0

i.e., the distribution ofX . w.r.t. P, is the harmonic measure oD.

Note that, in contrast to classical results from analygis, first statement holds without any
smoothness condition on the boundaiy. Thus, although boundary values/ofmay not exist
in the classical sense, they still do exist along almostyetrajectory of the Markov chain!

A.5 Brownian Motion

Definition (Brownian motion)
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(1). Leta € R. A continous-time stochastic process : 2 — R,t > 0, definend on a
probability spacg(2, A, P), is called aBrownian motion (starting in a)if and only if
a) By(w) =a foreachw € (.
b) For any partition0 < ¢, <t; <--- < t,, the incrementd3, . — B, are indepedent

random variables with distribution

Bt - Bti ~ N(O7 ti_H_ - tl)

i+1
c) P-almost every sample path— B;(w) is continous.

d) AnR?-valued stochastic procegs (w) = (Bt(l) (w),..., B (w)) is called a multi-dimensional
Brownian motion if and only if the component proces{ﬁ%)), ce (Bt(d)) are independent
one-dimensional Brownian motions.

Thus the increments of é&dimensional Brownian motion are independent over disjtime
intervals and have a multivariate normal distribution:

B, — B; ~ N(0,(t—s)-1;) forany0 <s <t.
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