"Markov Processes", Problem Sheet 11.
 Hand in solutions before Friday 23.01., 2 pm

1. (Adjoint processes) Let $p_{t}, t \geq 0$, be the transition semigroup of a time-homogeneous Markov jump process on a finite state space S with generator \mathcal{L}. Let μ be a probability measure with full support on S.
a) Write down explicitly the adjoint \mathcal{L}^{*} of \mathcal{L} as an operator in $L^{2}(\mu)$. Prove that \mathcal{L}^{*} is the generator of a Markov process if and only if μ is stationary w.r.t. $\left(p_{t}\right)_{t \geq 0}$.
b) Show that in this case, the Markov process generated by \mathcal{L}^{*} has the transition semigroup p_{t}^{*}.
c) Give a probabilistic interpretation of this process when μ is the initial distribution.
2. (Ornstein-Uhlenbeck process) The transition semigroup of the Ornstein-Uhlenbeck process on \mathbb{R} is given by

$$
\left(p_{t} f\right)(x)=(2 \pi)^{-1 / 2} \int f\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) e^{-y^{2} / 2} d y \quad \text { for } f \in \mathcal{F}_{b}(\mathbb{R})
$$

a) Show that the standard normal distribution γ is a stationary initial distribution.
b) Let L denote the generator on $L^{2}(\mathbb{R}, \gamma)$. Show that $C_{\text {pol }}^{2} \subset \operatorname{Dom}(L)$ and

$$
(L f)(x)=f^{\prime \prime}(x)-x f^{\prime}(x) \quad \text { for any } f \in C_{\mathrm{pol}}^{2} .
$$

c) Show that p_{t} preserves polynomials. Hence conclude that $C_{\text {pol }}^{2}$ is a core for the generator.

Remark. C_{pol}^{2} denotes the space of continuous functions on \mathbb{R} with at most polynomial growth at infinity.
3. (Martingale problem for Feller processes) Let $\left(p_{t}\right)$ be the transition function of a right-continuous time-homogeneous Markov process $\left(\left(X_{t}\right)_{t \geq 0},\left(P_{x}\right)_{x \in S}\right)$ on a separable locally compact state space S such that

$$
p_{t}(\hat{C}(S)) \subseteq \hat{C}(S) \quad \forall t \geq 0
$$

a) Show that $\left(p_{t}\right)_{t \geq 0}$ induces a Feller semigroup, and $\left(X_{t}, P_{x}\right)$ solves the martingale problem for the generator $(L, \operatorname{Dom}(L))$ for any $x \in S$.
b) Prove that for any $\alpha \geq 0$ and any $f \in \operatorname{Dom}(L)$,

$$
M_{t}^{f, \alpha}=e^{-\alpha t} f\left(X_{t}\right)+\int_{0}^{t} e^{-\alpha s}(\alpha f-L f)\left(X_{s}\right) d s
$$

is a martingale.
4. (Differential operators as generators) Suppose that the generator of a Feller semigroup on \mathbb{R} satisfies

$$
(L f)(x)=\sum_{n=0}^{m} a_{n}(x) \frac{d^{n} f}{d x^{n}}(x) \quad \forall f \in C_{0}^{\infty}(\mathbb{R})
$$

for some $m \in \mathbb{N}$ and coefficients $a_{i} \in C(\mathbb{R})$. Show that for any $x \in \mathbb{R}$,

$$
a_{0}(x) \leq 0, \quad a_{2}(x) \geq 0 \quad \text { and } \quad a_{n}(x)=0 \quad \forall n>2 .
$$

