

"Markov Processes", Problem Sheet 11.

Hand in solutions before Friday 23.01., 2 pm

1. (Adjoint processes) Let $p_t, t \ge 0$, be the transition semigroup of a time-homogeneous Markov jump process on a *finite* state space S with generator \mathcal{L} . Let μ be a probability measure with full support on S.

- a) Write down explicitly the adjoint \mathcal{L}^* of \mathcal{L} as an operator in $L^2(\mu)$. Prove that \mathcal{L}^* is the generator of a Markov process if and only if μ is stationary w.r.t. $(p_t)_{t>0}$.
- b) Show that in this case, the Markov process generated by \mathcal{L}^* has the transition semigroup p_t^* .
- c) Give a probabilistic interpretation of this process when μ is the initial distribution.

2. (Ornstein-Uhlenbeck process) The transition semigroup of the Ornstein-Uhlenbeck process on \mathbb{R} is given by

$$(p_t f)(x) = (2\pi)^{-1/2} \int f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) e^{-y^2/2} dy \quad \text{for } f \in \mathcal{F}_b(\mathbb{R}).$$

- a) Show that the standard normal distribution γ is a stationary initial distribution.
- b) Let L denote the generator on $L^2(\mathbb{R}, \gamma)$. Show that $C^2_{\text{pol}} \subset \text{Dom}(L)$ and

$$(Lf)(x) = f''(x) - xf'(x) \qquad \text{for any } f \in C^2_{\text{pol}}.$$

c) Show that p_t preserves polynomials. Hence conclude that $C_{\rm pol}^2$ is a core for the generator.

Remark. C_{pol}^2 denotes the space of continuous functions on \mathbb{R} with at most polynomial growth at infinity.

3. (Martingale problem for Feller processes) Let (p_t) be the transition function of a right-continuous time-homogeneous Markov process $((X_t)_{t\geq 0}, (P_x)_{x\in S})$ on a separable locally compact state space S such that

$$p_t\left(\hat{C}(S)\right) \subseteq \hat{C}(S) \qquad \forall \ t \ge 0.$$

- a) Show that $(p_t)_{t\geq 0}$ induces a Feller semigroup, and (X_t, P_x) solves the martingale problem for the generator (L, Dom(L)) for any $x \in S$.
- b) Prove that for any $\alpha \ge 0$ and any $f \in \text{Dom}(L)$,

$$M_t^{f,\alpha} = e^{-\alpha t} f(X_t) + \int_0^t e^{-\alpha s} \left(\alpha f - Lf\right)(X_s) ds$$

is a martingale.

4. (Differential operators as generators) Suppose that the generator of a Feller semigroup on \mathbb{R} satisfies

$$(Lf)(x) = \sum_{n=0}^{m} a_n(x) \frac{d^n f}{dx^n}(x) \qquad \forall \ f \in C_0^{\infty}(\mathbb{R})$$

for some $m \in \mathbb{N}$ and coefficients $a_i \in C(\mathbb{R})$. Show that for any $x \in \mathbb{R}$,

$$a_0(x) \le 0,$$
 $a_2(x) \ge 0$ and $a_n(x) = 0 \quad \forall n > 2.$