Institute for Applied Mathematics Winter term 2014/15 Andreas Eberle, Lisa Hartung

"Markov Processes", Problem Sheet 10.

Hand in solutions before Friday 09.01., 2 pm

We wish you a merry Christmas and a happy new year!

1. (Markov processes and martingales) Let $(p_{s,t})$ be a transition function on a measurable space (S, \mathcal{B}) . Show that an adapted process (X_t, P) with state space (S, \mathcal{B}) is an (\mathcal{F}_t) -Markov process with transition function $(p_{s,t})$ if and only if $(p_{s,t}f)(X_s)$, $s \in [0,t]$, is an (\mathcal{F}_s) -martingale for any $t \geq 0$ and any $f \in \mathcal{F}_b(S)$.

2. (Uniform motion to the right) Consider a deterministic Markov process (X_t, P_x) on \mathbb{R} given by $X_t = x + t P_x$ -almost surely.

- a) Show that the transition semigroup $(P_t)_{t\geq 0}$ is strongly continuous both on $\hat{C}(\mathbb{R})$ and on $L^2(\mathbb{R}, dx)$.
- b) Prove that the generator on $\hat{C}(\mathbb{R})$ is given by

Lf = f', $Dom(L) = \{f \in \hat{C}(\mathbb{R}) : f' \in \hat{C}(\mathbb{R})\}.$

c) Show that the generator on $L^2(\mathbb{R}, dx)$ is given by

$$Lf = f', \quad Dom(L) = H^{1,2}(\mathbb{R}, dx).$$

3. (Brownian motion reflected at 0) Let $(B_t)_{t\geq 0}$ be a standard one-dimensional Brownian motion with transition density $p_t(x, y)$.

a) Show that $X_t = |B_t|$ is a Markov process with transition density

$$p_t^+(x,y) = p_t(x,y) + p_t(x,-y).$$

b) Prove that (X_t, P) solves the martingale problem for the operator $\mathcal{L}f = \frac{1}{2}f''$ with domain

$$\mathcal{A} = \{ f \in C_b^2([0,\infty)) : f'(0) = 0 \}.$$

Hint: Note that functions in \mathcal{A} can be extended to symmetric functions in $C_b^2(\mathbb{R})$.

c) Construct another solution to the martingale problem for \mathcal{L} with domain $C_0^{\infty}(0,\infty)$. In which sense do the generators of the two processes on $L^2(\mathbb{R}_+, dx)$ differ from each other ?

4. (Strongly continuous semigroups and resolvents)

- a) State the defining properties of a strongly continuous contraction semigroup and a strongly continuous contraction resolvent on a Banach space E.
- b) Prove that if (P_t) is a C_0 contraction semigroup then $G_{\alpha}f = \int_0^{\infty} e^{-\alpha t} P_t f dt$ defines a C_0 contraction resolvent.
- c) Compute the resolvent of Brownian motion on $\hat{C}(\mathbb{R})$ explicitly.

5. (Immigration-death process) Particles in a population die independently with rate $\mu > 0$. In addition, immigrants arrive with rate $\lambda > 0$. Assume that the population consists initially of one particle.

- a) Explain why the population size X_t can be modeled by a birth-death process with rates $b(n) = \lambda$ and $d(n) = n\mu$.
- b) Show that the generating function $G(s,t) = \mathbb{E}(s^{X_t})$ is given by

$$G(s,t) = \left\{1 + (s-1)e^{-\mu t}\right\} \exp\left\{\frac{\lambda}{\mu}(s-1)(1-e^{-\mu t})\right\}$$

c) Deduce the limiting distribution of X_t as $t \to \infty$.

6. (Explosion, occupation times and stationary distributions for diffusions on \mathbb{R}^n) Consider a diffusion process (X_t, P_x) on \mathbb{R}^n solving the local martingale problem for the generator

$$\mathcal{L}_t f = \frac{1}{2} \sum_{i,j=1}^n a_{i,j}(t,x) \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i(t,x) \frac{\partial f}{\partial x_i}, \qquad f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^n).$$

We assume that the coefficients are continuous functions and $P_x[X_0 = x] = 1$.

a) Prove that the process is non-explosive if there exist finite constants c_1, c_2, r such that

tr $a(t,x) \leq c_1 |x|^2$ and $x \cdot b(t,x) \leq c_2 |x|^2$ for $|x| \geq r$.

b) Now suppose that $\zeta = \infty$ almost surely, and that there exist $V \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^n)$ and $\varepsilon, c \in \mathbb{R}_+$ such that $V \ge 0$ and

$$\frac{\partial V}{\partial t} + \mathcal{L}_t V \leq \varepsilon + c \mathbf{1}_B \quad \text{on } \mathbb{R}_+ \times \mathbb{R}^n,$$

where B is a ball in \mathbb{R}^n . Prove that

$$E\left[\frac{1}{t}\int_0^t 1_B(X_s)\,ds\right] \geq \frac{\varepsilon}{c} - \frac{V(0,x_0)}{ct}$$

b) Conclude that if (X_t, P_x) is a time-homogenuous Markov process and the conditions above hold then there exists a stationary distribution.