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1. (Infinitesimal characterization of stationary distributions) Consider a time-
homogeneous continuous time Markov chain Xt = YNt

where (Nt) is a Poisson process with
constant intensity λ > 0, and (Yn) is an independent Markov chain with transition matrix
π on a finite state space S.

a) Show that the transition function is given by

pt(x, y) = Px[Xt = y] = exp(tL) (x, y),

where L = λ(π − I) and exp(tL) is the matrix exponential. Hence conclude that
(pt)t≥0 satisfies the forward and backward equation

d

dt
pt = ptL = Lpt for t ≥ 0.

b) Prove that a probability measure µ on S is a stationary distribution if and only if
∑

x∈S

µ(x)L(x, y) = 0 for any y ∈ S.

c) Show that the transition matrices are self-adjoint in L2(µ), i.e.,
∑

x∈S

f(x) (ptg)(x) µ(x) =
∑

x∈S

(ptf)(x) g(x) µ(x) for any t ≥ 0, f, g : S → R,

if and only if the generator L satisfies the detailed balance condition w.r.t. µ. What
does this mean for the process ?

2. (Simple exclusion process) Let Z
d
n = Z

d/(nZ)d denote a discrete d-dimensional
torus. The simple exclusion process on S = {0, 1}Z

d
n is the Markov process with generator

(Lf) (η) =
1

2d

∑

x∈Zd
n

∑

y:|y−x|=1

1{η(x)=1,η(y)=0} · (f(η
x,y)− f(η)) ,

where ηx,y is the configuration obtained from η by exchanging the values at x and y. Show
that any Bernoulli measure of type

µp =
⊗

x∈Zd
n

νp , νp(1) = p, νp(0) = 1− p,



p ∈ [0, 1], is a stationary distribution. Why does this not contradict the fact that any
irreducible Markov process on a finite state space has a unique stationary distribution ?

(You may assume the statements of Exercise 1).

3. (Bounds for ergodic averages in the non-stationary case) Let (Xn)n∈Z+
be a

Markov chain on (S,B) with transition kernel p and stationary distribution µ, and let

Ab,nf =
1

n

b+n−1∑

i=b

f(Xi).

Assume that there are a distance d on S, 0 < α < 1 and σ̄ ∈ R+ such that

(A1) W1
d (νp, ν̃p) ≤ αW1

d (ν, ν̃) ∀ ν, ν̃ ∈ P(S), and

(A2) Varp(x,·)(f) ≤ σ̄2‖f‖2Lip(d) ∀ x ∈ S, f : S → R Lipschitz.

Prove that under these assumptions the following bounds hold for any b, n, k ≥ 0, x ∈ S,
and for any Lipschitz continuous function f : S → R:

a) Varx [f(Xn)] ≤
∑n−1

k=0 α
2k σ̄2‖f‖2Lip(d).

b) |Covx [f(Xn), f(Xn+k)]| =
∣∣Covx

[
f(Xn), (p

kf)(Xn)
]∣∣ ≤ αk

1−α2 σ̄
2‖f‖2Lip(d).

c) Varx [Ab,nf ] ≤ 1
n

σ̄2

(1−α)2
‖f‖2Lip(d).

d) |Ex [Ab,nf ]− µ(f)| ≤ 1
n

αb

1−α

∫
d(x, y)µ(dy) ‖f‖Lip(d).

e) Ex

[
|Ab,nf − µ(f)|2

]
≤ 1

n
1

(1−α)2

(
σ̄2 + 1

n
α2b(

∫
d(x, y)µ(dy))2

)
‖f‖2Lip(d).

4. (Succesful couplings and TV-convergence to equilibrium) Consider a Markov
chain on (S,B) with transition kernel p and stationary distribution µ. A coupling (Xn, Yn)
of the chains with initial distributions ν and µ respectively is called succesful if the coupling
time

T = inf {n ≥ 0 : Xn = Yn for any n ≥ T}

is almost surely finite. Show that a succesful coupling exists if and only if ||νpn−µ||TV → 0
as n ↑ ∞.


