

## "Markov Processes", Problem Sheet 8.

Hand in solutions before Friday 5.12., 2 pm (post-box opposite to maths library)

1. (Asymptotic variances of ergodic averages) We consider a stationary Markov chain  $(X_n, P_\mu)$  with state space  $(S, \mathcal{B})$ , transition kernel p, and initial distribution  $\mu$ .

a) For  $f \in \mathcal{L}^2(\mu)$  let  $f_0 = f - \int f \, d\mu$ , and

$$A_t f = \frac{1}{t} \sum_{i=0}^{t-1} f(X_i).$$

Prove (without assuming the CLT) that if  $Gf_0 \equiv \sum_{k=0}^{\infty} p^k f_0$  converges in  $\mathcal{L}^2(\mu)$  then

$$\lim_{t \to \infty} t \operatorname{Var} [A_t f] = 2(f_0, Gf_0)_{L^2(\mu)} - (f_0, f_0)_{L^2(\mu)} = \operatorname{Var}_{\mu}(f) + \sum_{k=1}^{\infty} \operatorname{Cov}_{\mu}(f, p^k f).$$

b) Let  $S = \{1, 2\}$ , and suppose that the transition rates are given by p(1, 1) = p(2, 2) = pand p(2, 1) = p(1, 2) = 1 - p with  $p \in (0, 1)$ . Show that the unique stationary distribution  $\mu$  is given by  $\mu(1) = \mu(2) = 1/2$  for all values of p. Now consider

$$S_n = A_n - B_n,$$

where  $A_n$  and  $B_n$  are, respectively, the number of visits to the states 1 and 2 during the first *n* steps. Show that  $S_n/\sqrt{n}$  satisfies a central limit theorem, and calculate the limiting variance as a function  $\sigma^2(p)$  of *p*. How does  $\sigma^2(p)$  behave as *p* tends to 0 or 1? Can you explain it? What is the value of  $\sigma^2(1/2)$ ? Could you have guessed it?

2. (Random Walks on  $\mathbb{Z}_+$ ) Let  $\delta \in (0, 1)$ . We consider a random walk on the nonnegative integers with transition probabilities

$$p(x,y) = \begin{cases} \frac{1}{2} & \text{for } x = y \ge 0, \\ \frac{1+\delta}{4} & \text{for } y = x+1, \ x \ge 1, \\ \frac{1-\delta}{4} & \text{for } y = x-1, \ x \ge 1 \\ \frac{1}{2} & \text{for } x = 0, \ y = 1. \end{cases}$$

a) Find the stationary distribution  $\mu(x)$  explicitly.

- b) If f(x) is a function on  $\mathbb{Z}_+$  with compact support, solve the equation  $-\mathcal{L}g = f$  explicitly (e.g. by the variation of constants ansatz g = uh where h is a nontrivial solution of  $\mathcal{L}h = 0$ ). Show that a solution g either grows exponentially at infinity or is a constant for large x.
- c) Show that there is a solution g that is a constant for large x if and only if  $\int f d\mu = 0$ . What can you say about the asymptotic variance and the central limit theorem for  $\sum_{j=0}^{n-1} f(X_j)$  for such functions f?

## 3. (Equivalent characterizations of ergodicity for Markov processes)

We consider a canonical right-continuous Markov process  $((X_t)_{t\geq 0}, P_x)$  with state space  $(S, \mathcal{B})$ , transition semigroup  $(p_t)_{t\geq 0}$ , and stationary initial distribution  $\mu$ . Show that the following nine conditions are all equivalent:

(i)  $P_{\mu}$  is ergodic.

(ii) 
$$\frac{1}{t} \int_0^t f(X_s) ds \to \int f d\mu \ P_{\mu}$$
-a.s. and in  $L^2(P_{\mu})$ , for any  $f \in \mathcal{L}^2(\mu)$ .

- (iii)  $\operatorname{Var}_{P_{\mu}}\left[\frac{1}{t}\int_{0}^{t}f(X_{s})\,ds\right]\to 0 \text{ as } t\uparrow\infty \text{ for any } f\in\mathcal{L}^{2}(\mu).$
- (iv)  $\frac{1}{t} \int_0^t \operatorname{Cov}_{P_\mu} [f(X_0), f(X_s)] ds \to 0 \text{ as } t \uparrow \infty \text{ for any } f \in \mathcal{L}^2(\mu).$
- (v)  $\frac{1}{t} \int_0^t P_\mu[X_0 \in B, X_s \in C] ds \to \mu(B)\mu(C)$  for any  $B, C \in \mathcal{B}$ .
- (vi)  $\frac{1}{t} \int_0^t p_s(x, B) ds \to \mu(B) \ \mu$ -a.e. for any  $B \in \mathcal{B}$ .
- (vii)  $P_x[T_B < \infty] > 0$   $\mu$ -a.e. for any  $B \in \mathcal{B}$  such that  $\mu(B) > 0$ .
- (viii) Every set  $B \in \mathcal{B}$  such that  $p_t 1_B = 1_B \mu$ -a.e. for any  $t \ge 0$  satisfies  $\mu(B) \in \{0, 1\}$ .
  - (ix) Every function  $h \in \mathcal{L}^2(\mu)$  such that  $p_t h = h \mu$ -a.e.  $\forall t \ge 0$  is almost surely constant.

## 4. (Structure of invariant measures) Let p be a transition kernel on $(S, \mathcal{B})$ and let

$$\mathcal{S}(p) = \{ \mu \in \mathcal{P}(S) : \mu = \mu p \}.$$

- a) Show that  $\mathcal{S}(p)$  is convex.
- b) Prove that  $\mu \in \mathcal{S}(p)$  is extremal if and only if every set  $B \in \mathcal{B}$  such that  $p1_B = 1_B$  $\mu$ -a.e. satisfies  $\mu(B) \in \{0, 1\}$ .
- c<sup>\*</sup>) Show that every  $\mu \in S(p)$  is a convex combination of extremals. (*Hint: You may use part c*) of Exercise 3 of the previous problem sheet.)