## Institute for Applied Mathematics Winter term 2014/15 Andreas Eberle, Lisa Hartung



## "Markov Processes", Problem Sheet 7.

Hand in solutions before Friday 28.11, 2 pm (post-box opposite to maths library)

- 1. (Rotations of the circle) Let  $\Omega = \mathbb{R}/\mathbb{Z} = [0,1]/\sim$  where  $0 \sim 1$ . We consider the rotation  $\theta(\omega) = \omega + a \pmod{1}$  with a = p/q,  $p, q \in \mathbb{N}$  relatively prime.
  - a) Show that for any  $x \in \Omega$ , the uniform distribution  $P_x$  on  $\{x, x + a, x + 2a, \dots, x + (q-1)a\}$  is  $\theta$ -invariant and ergodic.
  - b) Determine all  $\theta$ -invariant probability measures on  $\Omega$ , and represent them as a mixture of ergodic ones.
- 2. (Ergodicity and decay of correlations) We consider a stationary stochastic process  $(X_t)_{t\in[0,\infty)}$  defined on the canonical probability space  $(\Omega, \mathcal{A}, P)$ .
  - a) Prove that the following properties are equivalent:
    - (i) P is ergodic.
    - (ii) Var  $\left[\frac{1}{t}\int_0^t F \circ \theta_s \, ds\right] \to 0$  as  $t \uparrow \infty$  for any  $F \in \mathcal{L}^2(\Omega, \mathcal{A}, P)$ .
    - (iii)  $\frac{1}{t} \int_0^t \text{Cov} \left[ F \circ \theta_s, G \right] ds \to 0 \text{ as } t \uparrow \infty \text{ for any } F, G \in \mathcal{L}^2(\Omega, \mathcal{A}, P).$
    - (iv)  $\frac{1}{t} \int_0^t \text{Cov} \left[ F \circ \theta_s, F \right] ds \to 0 \text{ as } t \uparrow \infty \text{ for any } F \in \mathcal{L}^2(\Omega, \mathcal{A}, P).$
  - b) The process  $(X_t)$  is said to be mixing iff

$$\lim_{t\to\infty} \operatorname{Cov} (F \circ \theta_t, G) = 0 \quad \text{for any } F, G \in \mathcal{L}^2(\Omega, \mathcal{A}, P).$$

Prove that:

- (i) If  $(X_t)_{t\geq 0}$  is mixing then it is ergodic.
- (ii) If the tail field  $\mathcal{F} = \bigcap_{t\geq 0} \sigma(X_s: s\geq t)$  is trivial then  $(X_t)_{t\geq 0}$  is mixing (and hence ergodic).

- 3. (Ergodicity and irreducibility for Markov processes in continuous time) We consider a canonical Markov process  $((X_t)_{t\geq 0}, P_x)$  with state space  $(S, \mathcal{B})$  and transition semigroup  $(p_t)_{t\geq 0}$ .
  - a) Show that for  $\mu \in \mathcal{P}(S)$ , the following three conditions are equivalent:
    - (i)  $P_{\mu} \circ \theta_t^{-1} = P_{\mu}$  for any  $t \ge 0$ .
    - (ii)  $((X_t)_{t\geq 0}, P_{\mu})$  is a stationary process.
    - (iii)  $\mu$  is invariant with respect to  $p_t$  for any  $t \geq 0$ .
  - b) Show that the following three conditions are equivalent:
    - (i)  $P_{\mu}$  is ergodic.
    - (ii) Every function  $h \in \mathcal{L}^2(\mu)$  such that  $p_t h = h \mu$ -a.s.  $\forall t \geq 0$  is almost surely constant.
    - (iii) Every set  $B \in \mathcal{B}$  such that  $p_t 1_B = 1_B \mu$ -a.s. for any  $t \ge 0$  satisfies  $\mu(B) \in \{0, 1\}$ .
  - c) Show that for any shift-invariant event A, there exists  $B \in \mathcal{B}$  with  $p_t 1_B = 1_B \mu$ -a.s. for any  $t \geq 0$  such that

$$1_A = 1_{\{X_0 \in B\}} \qquad P_{\mu}\text{-a.s.}$$