

"Markov Processes", Problem Sheet 6.

Hand in solutions before Friday 21.11, 2 pm (post-box opposite to maths library)

1. (Stationary processes) Let $((X_n)_{n \in \mathbb{Z}_+}, P)$ be a canonical stationary process with state space S, and let $\mathcal{J} = \{A : A = \Theta^{-1}(A)\}$ be the σ -algebra of shift invariant events.

- a) Prove that for $F: \Omega \to \mathbb{R}$ the following two properties are equivalent:
 - (i) F is \mathcal{J} measurable.
 - (ii) $F = F \circ \Theta$.

Conclude that P is ergodic if and only if any shift-invariant function $F: \Omega \to \mathbb{R}$ is P-almost surely constant.

- b) Show that $((X_n)_{n \in \mathbb{Z}_+}, P)$ can be extended to a two-sided stationary process $((\hat{X}_n)_{n \in \mathbb{Z}}, \hat{P})$ on $\hat{\Omega} = S^{\mathbb{Z}}$ such that $\hat{X}_{0:\infty} \sim X_{0:\infty}$. *Hint: You may apply Kolmogorov's extension theorem.*
- c) Show that for any measurable function $G: S^{\mathbb{Z}_+} \to \mathbb{R}$, the process $(G(X_{n:\infty}))_{n \in \mathbb{Z}_+}$ is again stationary under P.

2. (Conductance and lower bounds for mixing times) Let p be a transition kernel on (S, \mathcal{B}) with stationary distribution μ . For sets $A, B \in \mathcal{B}$ with $\mu(A) > 0$, the *equilibrium* flow Q(A, B) from A to B is defined by

$$Q(A,B) = (\mu \otimes p)(A \times B) = \int_A \mu(dx) \, p(x,B),$$

and the *conductance* of A is given by

$$\Phi(A) = \frac{Q(A, A^C)}{\mu(A)}.$$

The bottleneck ratio (isoperimetric constant) Φ_* is defined as

$$\Phi_* = \min_{A:\mu(A) \le 1/2} \Phi(A).$$

Let $\mu_A(B) = \mu(B|A)$ denote the conditioned measure on A.

a) Show that for any $A \in \mathcal{B}$ with $\mu(A) > 0$,

$$\|\mu_A p - \mu_A\|_{TV} = (\mu_A p)(A^C) = \Phi(A).$$

Hint: Prove first that

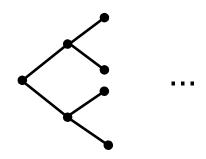
- (i) $(\mu_A p)(B) \mu_A(B) \leq 0$ for any measurable $B \subseteq A$, and
- (ii) $(\mu_A p)(B) \mu_A(B) = (\mu_A p)(B) \ge 0$ for any measurable $B \subseteq A^C$.
- b) Conclude that

$$\|\mu_A - \mu\|_{TV} \le t\Phi(A) + \|\mu_A p^t - \mu\|_{TV} \quad \text{for any } t \in \mathbb{Z}_+.$$

c) Hence prove the lower bound

$$t_{mix}\left(\frac{1}{4}\right) \geq \frac{1}{4\Phi_*}$$

3. (Lazy random walk on a binary tree)



Consider the lazy random walk with resting probability p(x, x) = 1/2 on a binary tree of depth k. Let $m = 2^{k+1} - 1$ denote the number of vertices. Prove that:

a) $t_{mix}(1/4) = O(m)$.

b)
$$t_{mix}(1/4) = \Omega(m)$$
.

Hint: You may assume the conductance bound from the previous exercise!