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“Markov Processes”, Problem Sheet 2.

Hand in solutions before Monday 20.10., 2 pm (Exercises 1-3), resp.
Friday 24.10, 2 pm (Ex. 4,5) (post-box opposite to maths library)

1. (Conditional Expectations ) Let X, Y, Z be random variables on (Ω,A, P ) such
that X and Y are independent of Z. Prove that

E[X|σ(Y, Z)] = E[X|Y ].

2. (Passage times of the simple random walk) Let Sn =
∑n

i=1 Zi where (Zn)n≥1 are
independent random variables with P (Zn = 1) = P (Zn = −1) = 1/2. Let a be a strictly
positive integer, and let Ta = inf{n ≥ 0 : Sn = a} denote the first passage time of a.

a) Show that Sn and S2
n − n are martingales. For b < 0 < a compute P [Ta < Tb] and

E[TZ\(a,b)]. Conclude that E[Ta] = ∞.

b) Show that for any θ ∈ R,
Xθ

n = eθSn/(coshθ)n

is a martingale, and that for θ ≥ 0,
(

Xθ
n∧Ta

)

n≥0
is a bounded martingale that con-

verges almost surely and in L2 to the random variable

W θ = (cosh θ)−Taeθa 1{Ta<∞} .

Conclude that P (Ta < ∞) = 1 and E((coshθ)−Ta) = e−θa.

c) Explain how the results derived above can also be deduced from Corollary 1.7.

3. (Recurrence of Brownian motion) A continuous-time stochastic process
((Bt)t∈[0,∞), Px) taking values in R

d is called a Brownian motion starting at x if the sample
paths t 7→ Bt(ω) are continuous, B0 = x Px-a.s., and for every f ∈ C2

b (R
d), the process

M
[f ]
t := f(Bt)−

1

2

∫ t

0

∆f(Bs) ds

is a martingale w.r.t. the filtration FB
t = σ(Bs : s ∈ [0, t]). Let Ta = inf{t ≥ 0 : |Bt| = a}.

a) Compute Px[Ta < Tb] for a < |x| < b.

b) Show that for d ≤ 2, a Brownian motion is recurrent in the sense that Px[Ta < ∞] = 1
for any a < |x|.



c) Show that for d ≥ 3, a Brownian motion is transient in the sense that Px[Ta < ∞] → 0
as |x| → ∞.

You may assume the optional stopping theorem and the martingale convergence theorem
in continuous time without proof. You may also assume that the Laplacian applied to a
rotationally symmetric function g(x) = γ(|x|) is given by

∆g(x) = r1−d d

dr

(

rd−1 d

dr
γ

)

(r) =
d2

dr2
γ(r) +

d− 1

r

d

dr
γ(r) where r = |x|.

(How can you derive this expression rapidly if you do not remember it ?)

4. (Random walks on Z) Let ((Xn)n≥0, (Px)x∈Z) be the canonical Markov chain on Z

with transition matrix Q given by

Q(x, x+ 1) = p, Q(x, x) = r, Q(x, x− 1) = q

where p + q + r = 1, p > 0, q > 0, r ≥ 0. Fix a, b ∈ Z with a < b − 1 and let T = inf{n ≥
0 : Xn 6∈ (a, b)}.

a) Prove that for any function g : {a+1, a+2, . . . , b−1} → R and α, β ∈ R, the system

(Q− I)u(x) = −g(x), a < x < b, (1)

u(a) = α, u(b) = β,

has a unique solution.

b) Conclude that Ex(T ) < ∞ for any x. How can the mean exit time be computed
explicitly ?

c) Assume for the moment that for every s > 0 and x ∈, us(x) := Ex(T
s) < ∞. Prove

that u2 is a solution of (1) for some α, β, g to be determined as functions of u1.

d) Prove that there exists ǫ > 0 such that Ex[exp(λT )] < ∞ for any λ < ǫ. Hence
conclude that Ex(T

s) < ∞ for every s > 0.

5. (Feynman-Kac formula) This exercise gives a direct proof of the uniqueness part
in the Feynman-Kac formula. Let ((Xn)n≥0, Px) be a canonical time-homogeneous Markov
chain with generator L on the state space S. Let w : S → R+ be a nonnegative function.

a) For which functions v is

Mn = e−
∑

n−1

k=0
w(Xi)v(Xn)

a martingale?

b) Let D ⊂ S be a measurable subset such that T = inf{n > 0 : Xn ∈ Dc} < ∞ Px-a.s.
for any x, and let v be a bounded solution to the boundary value problem

(Lv)(x) = (ew(x) − 1)u(v) ∀x ∈ D, (2)

v(x) = f(x) ∀x ∈ Dc.

Show by using a) that

v(x) = Ex

(

e−
∑

T−1

k=0
w(Xk)f(XT )

)

.


