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Winter term 2014/15 ) o
Andreas Eberle, Lisa Hartung universitatbonn

“Markov Processes”, Problem Sheet 2.

Hand in solutions before Monday 20.10., 2 pm (Exercises 1-3), resp.
Friday 24.10, 2 pm (Ex. 4,5) (post-box opposite to maths library)

1. (Conditional Expectations ) Let X,Y,Z be random variables on (£, .4, P) such
that X and Y are independent of Z. Prove that

E[X|o(Y,2)] = E[X|Y].

2. (Passage times of the simple random walk) Let S, = >""" | Z; where (Z,),>; are
independent random variables with P(Z,, = 1) = P(Z, = —1) = 1/2. Let a be a strictly
positive integer, and let T, = inf{n > 0: S, = a} denote the first passage time of a.

a) Show that S, and S? — n are martingales. For b < 0 < a compute P[T, < T;] and
E[Ty\(ap))- Conclude that E[T},] = oo.

b) Show that for any 0 € R,
X? = %" /(coshd)™
is a martingale, and that for 6 > 0, (XﬁATa)n>0 is a bounded martingale that con-

verges almost surely and in L? to the random variable
W = (cosh®) e 117, <00y -
Conclude that P(T, < co) = 1 and E((coshf)~ =) = e~
c) Explain how the results derived above can also be deduced from Corollary 1.7.
3. (Recurrence of Brownian motion) A continuous-time stochastic process

((Bt)te[0,00), Pr) taking values in R? is called a Brownian motion starting at x if the sample
paths t — B;(w) are continuous, By = z P,-a.s., and for every f € CZ(R?), the process
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is a martingale w.r.t. the filtration F? = o(B, : s € [0,t]). Let T, = inf{t > 0 : |B;| = a}.
a) Compute P,[T, < Ty] for a < |z| < b.

b) Show that for d < 2, a Brownian motion is recurrent in the sense that P, [T, < oo] =1
for any a < |z|.



c¢) Show that for d > 3, a Brownian motion is transient in the sense that P,[T, < oo] — 0
as |x| — oo.
You may assume the optional stopping theorem and the martingale convergence theorem

i continuous time without proof. You may also assume that the Laplacian applied to a
rotationally symmetric function g(x) = v(|x|) is given by

d d d? d—1 d
Ag(z) = ri=d o (rd_l %7) (r) = Wv(r) + . %7(7’) where r = |x|.

(How can you derive this expression rapidly if you do not remember it ?)
4. (Random walks on Z) Let ((X,)n>0, (Pr)zez) be the canonical Markov chain on Z
with transition matrix () given by
Q(xvx—i_ 1) =p, Q(QE,ZI}') =T, Q(ZI}',LE’ - 1) =dq
where p+q+r=1,p> 0,9 > 0,r > 0. Fix a,b € Z with a < b— 1 and let T' = inf{n >
0:X, &(a,b)}.
a) Prove that for any function g : {a+1,a+2,...,0—1} — R and «, § € R, the system
(@Q — Du(z) = —g(x), a<z<D, (1)
u(a) = a, u(b) = 3,

has a unique solution.

b) Conclude that E,(T) < oo for any x. How can the mean exit time be computed
explicitly ?
¢) Assume for the moment that for every s > 0 and = €, us(x) := E,(T°) < 0o. Prove

that us is a solution of (1) for some «, 3, g to be determined as functions of u;.

d) Prove that there exists ¢ > 0 such that E,[exp(AT)] < oo for any A\ < e. Hence
conclude that E,(7*) < oo for every s > 0.

5. (Feynman-Kac formula) This exercise gives a direct proof of the uniqueness part
in the Feynman-Kac formula. Let ((X},),>0, P:) be a canonical time-homogeneous Markov
chain with generator £ on the state space S. Let w : S — R be a nonnegative function.

a) For which functions v is
M, = e~ Ziso wXiy (X))

a martingale?

b) Let D C S be a measurable subset such that 7" = inf{n > 0: X,, € D°} < oo P,-a.s.
for any x, and let v be a bounded solution to the boundary value problem

(L) (z) = (e*@ — Du(v) Vz e D, (2)
v(xz) = f(x) Ve D
Show by using a) that

w(z) = E, (e— Tio wlXe) f(XT)) .



