Markov Processes SS 2008 Series 5

1. (Martingales of compound Poisson processes). Let Z_1, Z_2, \ldots be independent identically distributed \mathbb{R}^d -valued random variables. Let K_t be a Poisson process of intensity λ that is independent of the Z_i . Consider the compound Poisson process $(X_t)_{t\geq 0}$ defined by

$$X_t = \sum_{i=1}^{K_t} Z_i \,.$$

Prove that the following processes are martingales:

- a) $M_t = X_t b \cdot t$, where $b := \lambda \cdot E[Z_1]$, provided $E[|Z_1|] < \infty$.
- b) $|M_t|^2 a \cdot t$, where $a := \lambda \cdot E[|Z_1|^2]$, provided $E[|Z_1|^2] < \infty$.
- c) $\exp(ip \cdot X_t + \psi(p) t)$, where $p \in \mathbb{R}^d$ and ψ is the characteristic exponent.

2. (Poisson point processes). Give an explicit construction (with complete proofs) of a Poisson point process with finite intensity ν .

3. (Transformations of Lévy processes).

- a) State without proof the Lévy-Khinchin representation for Lévy processes.
- b) Show that if X_t is a Lévy process then the processes $-X_t$ and $X_t + ct$, $c \in \mathbb{R}$, are again Lévy processes.
- c) How are the characteristics in the Lévy-Khinchin representation of these processes related to those for X_t ?

4. (Stable processes). State the Lévy-Itô representation for α -stable processes, $\alpha \in (0, 2]$. Show that an α -stable process has finite mean if and only if $\alpha > 1$.

5. (Olber's paradox). Suppose that stars occur in \mathbb{R}^3 at the points R_i , $i \in \mathbb{N}$, of a spatial Poisson process with intensity λ . The star at R_i has brightness B_i , where the B_i are i.i.d. with mean β . The total illumination at the origin from stars within a large ball with radius a is

$$I_a = \sum_{i:|R_i| \le a} \frac{cB_i}{|R_i|^2}$$

for some absolute constant c. Show that

$$E[I_a] = 4\pi\lambda c\beta a \,.$$

The fact that this is unbounded as $a \to \infty$ is called *Olber's paradox*, and suggests that the celestial sphere should be uniformly bright at night. The fact that it is not is a problem whose resolution is still a matter for debate. One plausible explanation relies on a sufficiently fast rate of expansion of the Universe.

6. (Semigroups, generators and resolvents). Consider a strongly continuous contraction semigroup $(P_t)_{t\geq 0}$ on a Banach space B. For $\alpha > 0$, the corresponding α -resolvent is the linear operator $G_{\alpha} : B \to B$ defined by

$$G_{\alpha}f = \int_0^{\infty} e^{-\alpha t} P_t f \, dt.$$

- a) Prove that each G_{α} is a contraction.
- b) Show that for all $f \in B$, $G_{\alpha}f$ is contained in the domain of the generator L of P_t , and

$$LG_{\alpha}f = f - \alpha G_{\alpha}f.$$

Conclude that

$$G_{\alpha} = (\alpha - L)^{-1}.$$

c) Show that $\alpha G_{\alpha} f$ converges to f as $\alpha \to \infty$. Conclude that the generator of a C_0 contraction semigroup is densely defined.