1. (Infinitesimal characterization of stationary distributions). Let p_t , $t \ge 0$, be the transition semigroup of a continuous time-homogeneous Markov chain on a finite state space S.

a) Show that μ is a stationary distribution if and only if

$$\sum_{x \in S} \mu(x) \mathcal{L}(x, y) = 0 \quad \text{for all } y \in S,$$

where \mathcal{L} is the generator of the process.

b) Show that the transition matrices are self-adjoint in $L^2(\mu)$, i.e.,

$$\sum_{x \in S} f(x) (p_t g)(x) \mu(x) = \sum_{x \in S} (p_t f)(x) g(x) \mu(x) \qquad \forall t \ge 0, \ f, g: S \to \mathbb{R},$$

if and only if the generator satisfies the detailed balance condition w.r.t. μ . What does this mean for the process ?

2. (Stationary distributions of Feller semigroups). Let p_t , $t \ge 0$, be the transition semigroup of a time-homogeneous Markov process on a compact state space S. Suppose that p_t has the Feller property, and let \mathcal{J} denote the set of all invariant probability measures. Prove:

a) $\mu \in \mathcal{J}$ if and only if

$$\int p_t f \, d\mu = \int f \, d\mu \quad \text{for all } f \in C(S) \text{ and } t \ge 0.$$

- b) \mathcal{J} is as a compact subset of $\mathcal{M}_1(S)$.
- c) If $\mu = \lim_{t\to\infty} \nu p_t$ exists for some $\nu \in \mathcal{M}_1(S)$, then $\mu \in \mathcal{J}$.
- d) If $\mu = \lim_{n\to\infty} t_n^{-1} \int_0^{t_n} \nu p_t dt$ exists for some $\nu \in \mathcal{M}_1(S)$ and some $t_n \uparrow \infty$, then $\mu \in \mathcal{J}$.
- e) \mathcal{J} is not empty.

3. (Simple exclusion process). Let $\mathbb{Z}_n^d = \mathbb{Z}^d/(n\mathbb{Z})^d$ denote a discrete *d*-dimensional torus. The simple exclusion process on $S = \{0, 1\}^{\mathbb{Z}_n^d}$ is the Markov process with generator

$$(\mathcal{L}f)(\eta) = \frac{1}{2d} \sum_{x \in \mathbb{Z}_n^d} \sum_{y: |y-x|=1} I_{\{\eta(x)=1, \eta(y)=0\}} \cdot (f(\eta^{x,y}) - f(\eta)),$$

where $\eta^{x,y}$ is the configuration obtained from η by exchanging the values at x and y. Show that any Bernoulli measure of type

$$\mu_p = \bigotimes_{x \in \mathbb{Z}_n^d} \nu_p, \qquad \nu_p(1) = p, \ \nu_p(0) = 1 - p,$$

 $p \in [0, 1]$, is a stationary distribution. Why does this not contradict the fact that any irreducible Markov process on a finite state space has a unique stationary distribution ?

4. (Adjoint processes). Let p_t , $t \ge 0$, be the transition semigroup of a continuous time-homogeneous Markov chain on a finite state space S with generator \mathcal{L} . Let μ be a probability measure with full support on S.

- a) Write down explicitly the adjoint \mathcal{L}^* of \mathcal{L} as an operator in $L^2(\mu)$. Prove that \mathcal{L}^* is the generator of a Markov process if and only if μ is stationary w.r.t. $(p_t)_{t\geq 0}$.
- b) Show that in this case, the Markov process generated by \mathcal{L}^* has the transition semigroup p_t^* .
- c) Give a probabilistic interpretation of this process when μ is the initial distribution.