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Chapter 1
Brownian Motion

This introduction to stochastic analysis starts with an introduction to Brownian motion.
Brownian Motion is a diffusion process, i.e. a continuous-time Markov process (B; )0
with continuous sample paths ¢ — B;(w). In fact, it is the only nontrivial continuous-
time process that is a Lévy process as well as a martingale and a Gaussian process. A
rigorous construction of this process has been carried out first by N. Wiener in 1923.
Already about 20 years earlier, related models had been introduced independently for
financial markets by L. Bachelier [Théorie de la spéculation, Ann. Sci. Ecole Norm.
Sup. 17, 1900], and for the velocity of molecular motion by A. Einstein [Uber die von
der molekularkinetischen Theorie der Wirme geforderte Bewegung von in ruhenden
Fliissigkeiten suspendierten Teilchen, Annalen der Physik 17, 1905].

It has been a groundbreaking approach of K. It6 to construct general diffusion processes
from Brownian motion, cf. [...]. In classical analysis, the solution of an ordinary dif-
ferential equation z’(t) = f(¢,x(t)) is a function, that can be approximated locally for
t close to ty by the linear function x(to) + f(to, x(to)) - (t — to). Similarly, Itd showed,
that a diffusion process behaves locally like a linear function of Brownian motion — the

connection being described rigorously by a stochastic differential equation (SDE).

The fundamental role played by Brownian motion in stochastic analysis is due to the
central limit Theorem. Similarly as the normal distribution arises as a universal scal-

ing limit of standardized sums of independent, identically distributed, square integrable

12



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 13

random variables, Brownian motion shows up as a universal scaling limit of Random

Walks with square integrable increments.

1.1 From Random Walks to Brownian Motion

To motivate the definition of Brownian motion below, we first briefly discuss discrete-
time stochastic processes and possible continuous-time scaling limits on an informal

level.

A standard approach to model stochastic dynamics in discrete time is to start from a se-
quence of random variables 7, 7)o, . . . defined on a common probability space (€2, A, P).
The random variables 7,, describe the stochastic influences (noise) on the system. Often
they are assumed to be independent and identically distributed (i.i.d.). In this case the
collection (7,) is also called a white noise, whereas a colored noise is given by depen-
dent random variables. A stochastic process X,,,n = 0,1,2, ..., taking values in R? is
then defined recursively on (€2, A, P) by

Xps1 = X4 ®et(Xn0psr), n=0,1,2,.... (1.1.1)

Here the ®,, are measurable maps describing the random law of motion. If X, and
71,72, - . . are independent random variables, then the process (X,,) is a Markov chain

with respect to P.

Now let us assume that the random variables 7),, are independent and identically dis-
tributed taking values in R, or, more generally, R%. The easiest type of a nontrivial
n

stochastic dynamics as described above is the Random Walk S,, = > n; which satisfies
i=1

Snt1 = Sn+ Ny forn=20,1,2,....

Since the noise random variables 7,, are the increments of the Random Walk (.S,,), the

law of motion (LLLI) in the general case can be rewritten as
Xpp1 = Xo = ©0i(Xo,Spa1—S,),  n=0,1,2,.... (1.1.2)

This equation is a difference equation for (X,,) driven by the stochastic process (.S, ).

University of Bonn 2015/2016



14 CHAPTER 1. BROWNIAN MOTION

Our aim is to carry out a similar construction as above for stochastic dynamics in con-
tinuous time. The stochastic difference equation (I.1.2]) will then eventually be replaced
by a stochastic differential equation (SDE). However, before even being able to think
about how to write down and make sense of such an equation, we have to identify a
continuous-time stochastic process that takes over the role of the Random Walk. For
this purpose, we first determine possible scaling limits of Random Walks when the time
steps tend to 0. It will turn out that if the increments are square integrable and the size
of the increments goes to 0 as the length of the time steps tends to 0, then by the Central
Limit Theorem there is essentially only one possible limit process in continuous time:

Brownian motion.

Central Limit Theorem

Suppose that Y,,; : 2 — R4 1 < i <n < oo, are identically distributed, square-
integrable random variables on a probability space (2, .4, P) such that Y, 1,...,Y,

are independent for each n € N. Then the rescaled sums

% Z(Yn,z - E[Yn,zD

converge in distribution to a multivariate normal distribution N (0, C') with covariance
matrix
k) (1
Ckl = Cov [Yn(,i)7 er,z)] .

To see, how the CLT determines the possible scaling limits of Random Walks, let us

consider a one-dimensional Random Walk
So=> m, ~n=012.,
=1

on a probability space (2, .4, P) with independent increments 7; € £2(Q, A, P) nor-

malized such that
En] = 0 and Varlp;] = L (1.1.3)

Plotting many steps of the Random Walk seems to indicate that there is a limit process

with continuous sample paths after appropriate rescaling:

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 15
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To see what appropriate means, we fix a positive integer m, and try to define a rescaled
Random Walk S\™ (¢ = 0,1/m, 2/m, ...) with time steps of size 1/m by

Spm = ewm Sk (k=0,1,2,..)

for some constants ¢,,, > 0. If ¢ is a multiple of 1/m, then

-m - t.

Var[S{™] = & -Var[Sm] = ¢

2
m

Hence in order to achieve convergence of St(m) as m — oo, we should choose ¢,

proportional to m~1/2. This leads us to define a continuous time process (S\™ )= by
St(m) (w) = —Smuw) whenever ¢ = k/m for some integer k,

vm

and by linear interpolation for t € (&1, £1].

University of Bonn 2015/2016



16 CHAPTER 1. BROWNIAN MOTION

S

Figure 1.1: Rescaling of a Random Walk.

Clearly,
E[S™] = 0  forallt>0,
and
Var[S™] = iVaur[Sm] = t
m

whenever ¢ is a multiple of 1/m. In particular, the expectation values and variances for a
fixed time ¢ do not depend on m. Moreover, if we fix a partition 0 < ¢, < t; < ... <,

such that each ¢; is a multiple of 1/m, then the increments

S~ gim = ﬁ (Smties = Swt),  i=0,1,2,...,n—1,  (1.1.4)
of the rescaled process (St(m))tzo are independent centered random variables with vari-
ances t;;1 — t;. If ¢; is not a multiple of 1/m, then a corresponding statement holds
approximately with an error that should be negligible in the limit m — oo. Hence, if
the rescaled Random Walks (St(m))tzo converge in distribution to a limit process (By):>0,
then (B;);>o should have independent increments By, — By, over disjoint time intervals

with mean 0 and variances t; 1 — t;.
It remains to determine the precise distributions of the increments. Here the Central
Limit Theorem applies. In fact, we can observe that by (LT.4) each increment

miiy1

m m 1
S-S = NI

k=mt;+1

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 17

of the rescaled process is a rescaled sum of m - (t;;41 — t;) i.i.d. random variables
with mean 0 and variance 1. Therefore, the CLT implies that the distributions of the

increments converge weakly to a normal distribution:

S s 2 N0, by — ).

tit1

Hence if a limit process (B;) exists, then it should have independent, normally dis-

tributed increments.

Our considerations motivate the following definition:

Definition (Brownian Motion).

(1). Let a € R. A continuous-time stochastic process By : {2 — R, t > 0, defined on
a probability space (2, A, P), is called a Brownian motion (starting in a) if and
only if

(a) Bo(w) = a foreachw € Q.
(b) For any partition 0 < 1y < t; < ... < t,, the increments B, ., — By, are

independent random variables with distribution

Bti+1 - Bt' a N(O, ti+1 - tz)

7

(¢) P-almost every sample path t — By(w) is continuous.

(2). AnR%valued stochastic process By(w) = (Bt(l)(w), Ceey Bt(d) (w)) is called a mul-
ti-dimensional Brownian motion if and only if the component processes

(Bt(l)), C (Bt(d)) are independent one-dimensional Brownian motions.

Thus the increments of a d-dimensional Brownian motion are independent over disjoint

time intervals and have a multivariate normal distribution:

Bi—Bs ~ N(0,(t—s)- 1) forany 0 < s <t.

University of Bonn 2015/2016
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Remark. (1). Continuity: Continuity of the sample paths has to be assumed sepa-

(2).

3).

).

rately: If (B;);>o is a one-dimensional Brownian motion, then the modified pro-
cess (Et)tzo defined by By, = B, and

Bt = Bt . [{BtER\Q} fort >0

has almost surely discontinuous paths. On the other hand, it satisfies (a) and (b)

since the distributions of (étl ,..., By, )and (By,, ..., B, ) coincide foralln € N
and ty,...,t, > 0.

Spatial Homogeneity: If (B;):>o is a Brownian motion starting at 0, then the

translated process (a + B;):>¢ is a Brownian motion starting at a.

Existence: There are several constructions and existence proofs for Brownian mo-
tion. In Section [L.3]below we will discuss in detail the Wiener-Lévy construction
of Brownian motion as a random superposition of infinitely many deterministic
paths. This explicit construction is also very useful for numerical approximations.
A more general (but less constructive) existence proof is based on Kolmogorov’s

extension Theorem, cf. e.g. [Klenke].

Functional Central Limit Theorem: The construction of Brownian motion as
a scaling limit of Random Walks sketched above can also be made rigorous.
Donsker’s invariance principle is a functional version of the central limit The-
orem which states that the rescaled Random Walks (St(m)) converge in distribu-
tion to a Brownian motion. As in the classical CLT the limit is universal, i.e., it
does not depend on the distribution of the increments 7; provided (I.1.3) holds,

cf. Section ??.

Brownian motion as a Lévy process.

The definition of Brownian motion shows in particular that Brownian motion is a Lévy

process, 1.e., it has stationary independent increments (over disjoint time intervals). In

fact, the analogues of Lévy processes in discrete time are Random Walks, and it is rather

obvious, that all scaling limits of Random Walks should be Lévy processes. Brownian

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 19

motion is the only Lévy process L; in continuous time with paths such that E[L,] =
0 and Var[L;] = 1. The normal distribution of the increments follows under these
assumptions by an extension of the CLT, cf. e.g. [Breiman: Probability]. A simple
example of a Lévy process with non-continuous paths is the Poisson process. Other
examples are «-stable processes which arise as scaling limits of Random Walks when
the increments are not square-integrable. Stochastic analysis based on general Lévy

processes has attracted a lot of interest recently.

Let us now consider consider a Brownian motion (B;);>( starting at a fixed point a €
R4, defined on a probability space (£, A, P). The information on the process up to time

t is encoded in the o-algebra
FEP = o(B,]0<s<t)
generated by the process. The independence of the increments over disjoint intervals
immediately implies:
Lemma 1.1. Forany 0 < s < t, the increment B; — By is independent of F5.

Proof. For any partition 0 = tq < t; < ... <t, = s of the interval [0, s|, the increment
B, — By is independent of the o-algebra

J(Btl - Bto7Bt2 - Bt17 . '7Btn - Btn—l)

generated by the increments up to time s. Since

k
Btk - Bto _'_ Z(Btz - Btifl)

=1
and By, is constant, this o-algebra coincides with o(B;,, By,, ..., By, ). Hence B, — B

is independent of all finite subcollections of (B, |0 < u < s) and therefore independent
of FE. 0

Brownian motion as a Markov process.

As a process with stationary increments, Brownian motion is in particular a time-homo-

geneous Markov process. In fact, we have:

University of Bonn 2015/2016



20 CHAPTER 1. BROWNIAN MOTION

Theorem 1.2 (Markov property). A Brownian motion (B;)s>o in R? is a time-homo-

geneous Markov process with transition densities

_ —d/2 _|$ —yl d
pt<x7y) - (27Tt) Y 24 ) t> 07 T,y € R )

i.e., for any Borel set A C R? and 0 < s < t,

P[Bica|FP = /pt_S(BS, y) dy P-almost surely.
A

Proof. For 0 < s < t we have B; = B, + (B; — B,) where B, is FZ-measurable, and
B; — B, is independent of 72 by Lemma[L[.1l Hence

PB e A|FPlw) = P[Byw)+Bi—B.c Al = N(Bu(w)(t—s)- LAl
= /(27r(t —5))" Y% exp (—%) dy  P-almost surely.
L

Remark (Heat equation as backward equation and forward equation). The tran-
sition function of Brownian motion is the heat kernel in R?, i.e., it is the fundamental

solution of the heat equation

ou 1
— = -Au
ot =
More precisely, p;(z, y) solves the initial value problem
0 1 d
apt(‘xay) - éAmpt(‘xay) foranyt > Oaxay €eR >
(1.1.5)
lim [ b1 )/ () dy = f(2) for any f € C4(RY),z € R,
d A2
where A, = > 92 denotes the action of the Laplace operator on the x-variable. The
i=1 O%;

equation (LL3) can be viewed as a version of Kolmogorov’s backward equation for

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 21

Brownian motion as a time-homogeneous Markov process, which states that for each
t >0,y € R and f € Cy(R?), the function

o(s.z) = / prs(,9) £ () dy

solves the terminal value problem

0 1

aZ(s x) = —§Amv(s,x) for s € [0, 1), 181}1%1)(5 x) = f(z). (1.1.6)
Note that by the Markov property, v(s,z) = (p;—sf)(x) is a version of the conditional
expectation E[f(B;) | Bs = z|. Therefore, the backward equation describes the depen-

dence of the expectation value on starting point and time.

By symmetry, p;(x, y) also solves the initial value problem

0 1
&pt( T,Y) = éAypt(a:,y) foranyt >0, and x,y € RY
(1.1.7)
lim [ g(x)p(z,y) de = g(y) for any g € Cb(Rd),y c R,

\,0

The equation (LL7) is a version of Kolmogorov’s forward equation, stating that for

g € Cy(R?), the function u(t,y) = [ g(z)pi(x, y) dz solves

ou 1 .
E(t,y) = aAyu(t,y) fort > 0, Ilfl\r%u(t,y) = g(y). (1.1.8)

The forward equation describes the forward time evolution of the transition densities

pe(x,y) for a given starting point x.

The Markov property enables us to compute the marginal distributions of Brownian

motion:

Corollary 1.3 (Finite dimensional marginals). Suppose that (By);>¢ is a Brownian

motion starting at o € R< defined on a probability space (2, A, P). Then for any

University of Bonn 2015/2016



22 CHAPTER 1. BROWNIAN MOTION

ne€Nand0 =ty < t; <ty <... <1, the joint distribution of By, , By,, ..., By, is

n

absolutely continuous with density

thl,...,Btn (l‘la D 7'1771) - pt1 ('Z‘O) xl)ptg—tl (l‘la xQ)pt;«x—tg (an :L‘3) T 'ptn—tnfl(l‘n—17 xn)
= ﬁ(Zw(t — 1)) - exp ——Zw (1.1.9)
i=1 b =iz

Proof. By the Markov property and induction on n, we obtain

P[By, € Ay,..., By, € A,
= E[P[Btn € An ‘ .F37 ] 3 Bt1 c Al, e ey Btn—l c Anfl]
— E[.ptn_tn 1 Btn 17A ) Bt1 6 Al,.. Btn 1 6 An 1]

= / / ptl To, T ptz tl(xlal?)
n 1

ptn 1—tn—29 xn 2y Tp— 1)ptn—tn 1(.27” 17A )df['n 1° dxl

_ / /(Hptl_tl (- 1,%)) d, -~ dy

foralln > 0and Ay, ..., A, € B(R?). ]

Remark (Brownian motion as a Gaussian process). The corollary shows in particular
that Brownian motion is a Gaussian process, i.e., all the marginal distributions in (L.1.9)
are multivariate normal distributions. We will come back to this important aspect in the

next section.

Wiener Measure

The distribution of Brownian motion could be considered as a probability measure on

[0:20) consisting of all maps = : [0,00) — R? A disadvantage

the product space (R%)
of this approach is that the product space is far too large for our purposes: It contains
extremely irregular paths x(¢), although at least almost every path of Brownian motion

is continuous by definition. Actually, since [0,00) is uncountable, the subset of all

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 23

continuous paths is not even measurable w.r.t. the product o-algebra on (R?)[0:>°),

Instead of the product space, we will directly consider the distribution of Brownian
motion on the continuous path space C'([0, c0), R?). For this purpose, we fix a Brownian
motion (B;);> starting at 7o € R on a probability space ({2, A, P), and we assume that
every sample path ¢ — B,;(w) is continuous. This assumption can always be fulfilled by
modifying a given Brownian motion on a set of measure zero. The full process (B;):>0
can then be interpreted as a single path-space valued random variable (or a "random

path").

o

B(u})

Figure 1.2: B: Q — C([0,0),R?), B(w) = (Bi(w))r>o0-

We endow the space of continuous paths x : [0, 00) — R? with the o-algebra
B = oX|t>0)
generated by the coordinate maps
X, : C([0,00),RY) — R4 X,(z) =y, t>0.

Note that we also have
B = o(X,|teD)

for any dense subset D of [0, c0), because X; = 1i1r% X for each t € [0, 00) by con-
S—
tinuity. Furthermore, it can be shown that B is the Borel o-algebra on C([0, c0), R9)

endowed with the topology of uniform convergence on finite intervals.

University of Bonn 2015/2016



24 CHAPTER 1. BROWNIAN MOTION

Theorem 1.4 (Distribution of Brownian motion on path space). The map B : () —
C([0,00),R?) is measurable w.r.t. the o-algebras A/B. The distribution P o B~* of B
is the unique probability measure i, on (C ([0, 00), R?), B) with marginals

fizo [{z € C([0,00),RY) s 2y, € Ay, 2y, € Ay} (1.1.10)
H27Tt_tz 1)) d/g/ /exp( Z‘t ? 1|)d:}cn---dx1
- bi—1
e Ay An

foranyn €N, 0<t, <...<ty, and Ay,..., A, € B(R?).

Definition. The probability measure ji,, on the path space C([0,00), R%) determined
by (ILI0) is called Wiener measure (with start in x).

Remark (Uniqueness in distribution). The Theorem asserts that the path space distri-
bution of a Brownian motion starting at a given point x; is the corresponding Wiener

measure. In particular, it is uniquely determined by the marginal distributions in (1.1.9).

Proof of Theorem[L4l Forn € N0 < t; < ... < t,, and A;,..., A, € B(R?), we
have
X, e AL X, €A} = {w: X, (Bw)) € AL..., X, (Bw))eA,}
- {BtleAla---aBtneAn} € A

Since the cylinder sets of type { Xy, € A;,..., X, € A, } generate the o-algebra B, the
map B is A/B-measurable. Moreover, by corollary the probabilities

PBe{X;, € Ay,....X;, € A,}] = P[By € Ay,...,B;, € A,

are given by the right hand side of (ILI.10). Finally, the measure yi,, is uniquely deter-
mined by (LL.IQ), since the system of cylinder sets as above is stable under intersections

and generates the o-algebra B. ]

Stochastic Analysis Andreas Eberle



1.2. BROWNIAN MOTION AS A GAUSSIAN PROCESS 25

Definition (Canonical model for Brownian motion.). By (I.1.10), the coordinate pro-
cess
Xt ($) = Ty, t Z 0,

on C([0,00),R%) is a Brownian motion starting at xo w.r.t. Wiener measure [i,,. We
refer to the stochastic process (C([0,00),RY), B, iz, (X¢)i>0) as the canonical model

Jor Brownian motion starting at x.

1.2 Brownian Motion as a Gaussian Process

We have already verified that Brownian motion is a Gaussian process, i.e., the finite
dimensional marginals are multivariate normal distributions. We will now exploit this

fact more thoroughly.

Multivariate normals

Let us first recall some basics on normal random vectors:

Definition. Suppose that m € R" is a vector and C' € R"™" is a symmetric non-
negative definite matrix. A random variable Y : {2 — R" defined on a probability
space (2, A, P) has a multivariate normal distribution N(m, C) with mean m and

covariance matrix C if and only if its characteristic function is given by

E[e?Y] = ¢iPm—3p-Cp forany p € R". (1.2.1)

If C' is non-degenerate, then a multivariate normal random variable Y is absolutely

continuous with density

fr(z) = (2ndetC) V?exp (—%(3: —m)-C Y (z — m)) :
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A degenerate normal distribution with vanishing covariance matrix is a Dirac measure:
N(m,0) = 6,.

Differentiating (L2.1) w.r.t. p shows that for a random variable Y ~ N(m, (), the
mean vector is m and Cj ; is the covariance of the components Y; and Y;. Moreover, the

following important facts hold:

Theorem 1.5 (Properties of normal random vectors).

(1). A random variable Y : Q) — R"™ has a multivariate normal distribution if and
only if any linear combination

n

p-Y = > pY, peR"

i=1
of the components Y; has a one dimensional normal distribution.

(2). Any daffine function of a normally distributed random vector Y is again normally

distributed:
Y ~Nm,C) = AY +b~ N(Am+b, ACAT)
foranyd € N, A € R>" and b € RY

(3). If Y = (Y1,...,Y,) has a multivariate normal distribution, and the components

Y1, ..., Y, are uncorrelated random variables, then Y1, . . .Y, are independent.

Proof. (1). follows easily from the definition.

(2). ForY ~ N(m,C), A € R”" and b € R? we have

E[eip-(AYer)] _ eip-bE[ei(ATp)-Y]
eip-bei(ATp)-m—%(ATp)~CATp

. 1
P (Am+b)—3p- ACAT for any p € R?,

ie, AY + b~ N(Am + b, ACAT).
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(3). If Y3,...,Y,, are uncorrelated, then the covariance matrix C; ; = Cov[Y;, Y]] is a

diagonal matrix. Hence the characteristic function

n
E[e?Y] = pirm=3pCp ||6imkpk—%(1k,kpi

k=1

is a product of characteristic functions of one-dimensional normal distributions.
Since a probability measure on R" is uniquely determined by its characteristic
function, it follows that the adjoint distribution of Y7, . . ., Y}, is a product measure,

ie. Yy, ..., Y, are independent.

O

If Y has a multivariate normal distribution N (m, C) then for any p, ¢ € R", the random

variables p - Y and ¢ - Y are normally distributed with means p - m and ¢ - m, and

covariance
Covlp-Y,q-Y] = Z piCijq; = p-Cq
ij=1
In particular, let {eq, ..., e,} C R" be an orthonormal basis consisting of eigenvectors

of the covariance matrix C'. Then the components e; - Y of Y in this basis are uncor-
related and therefore independent, jointly normally distributed random variables with

variances given by the corresponding eigenvectors \;:

COV[@Z‘ . Y, €; - Y] = )\i(;i,ja 1 S Z,j S n. (122)

Correspondingly, the contour lines of the density of a non-degenerate multivariate nor-
mal distribution N (m, C') are ellipsoids with center at m and principal axes of length

Vv A; given by the eigenvalues e; of the covariance matrix C'.
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Figure 1.3: Level lines of the density of a normal random vector Y ~
1 1 1
N , .

Conversely, we can generate a random vector Y with distribution N (m, C') from i.i.d.

standard normal random variables 7, . .., Z, by setting

Y = m+) VAZe. (1.2.3)
=1

More generally, we have:

Corollary 1.6 (Generating normal random vectors). Suppose that C = UANU " with
a matrix U € R d € N, and a diagonal matrix A = diag(\, ..., \y) € R4 with

nonnegative entries \;. If Z = (Zy,...,Zy) is a random vector with i.i.d. standard
normal random components 7, . .., Z, then
Y = UAPZ+m

has distribution N (m, C').
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Proof. Since Z ~ N(0, I,), the second assertion of Theorem [L3implies

Y ~ N(m,UAU").

Choosing for U the matrix (eq, .. ., e,) consisting of the orthonormal eigenvectors
el,...,e, of C, we obtain (I.2.3) as a special case of the corollary. For computational

purposes it is often more convenient to use the Cholesky decomposition
C = LL'

of the covariance matrix as a product of a lower triangular matrix L and the upper

triangular transpose L '
Algorithm 1.7 (Simulation of multivariate normal random variables).
Given: m € R", C' € R™" symmetric and non-negative definite.
Output: Sample y ~ N(m, C).

(1). Compute the Cholesky decomposition C' = LL".

(2). Generate independent samples 21, ...,2, ~ N(0,1) (e.g. by the Box-Muller
method).

(3). Sety := Lz+ m.

Gaussian processes

Let [ be an arbitrary index set, e.g. [ = N, = [0,00) or I = R".

Definition. A collection (Y;)ic1 of random variables Y; : Q) — R? defined on a proba-
bility space (), A, P) is called a Gaussian process if and only if the joint distribution
of any finite subcollection Yy, ...,Y, withn € Nandt,,... 1, € [ is a multivariate

normal distribution.
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The distribution of a Gaussian process (Y;);c; on the path space R or C'(I, R) endowed
with the o-algebra generated by the maps © — x4, ¢ € I, is uniquely determined by
the multinormal distributions of finite subcollections Y;, ..., Y; as above, and hence

by the expectation values
m(t) = E[Y, tel,
and the covariances
c(s,t) = Covl]Ys, Yy, s,t € l.
A Gaussian process is called centered, if m(t) = 0 forany ¢ € I.

Example (AR(1) process). The autoregressive process (Y},),—o.12,... defined recur-
sively by Yy ~ N(0, v),

Y,=aY, 1+en, forn € N,

with parameters vy > 0, a, ¢ € R, 7, i.i.d. ~ N(0, 1), is a centered Gaussian process.

The covariance function is given by
cn,n+k) = wvo+e’n foranyn,k >0 ifa=1,

and

52

1—a2

cn,n+k) = o (oﬂ"vo + (1 —a®)- ) forn,k >0 otherwise.

This is easily verified by induction. We now consider some special cases:
a = 0: In this case Y,, = en,. Hence (Y,,) is a white noise, i.e., a sequence of inde-
pendent normal random variables, and

Cov[V,, Y] = € 0um for any n,m > 1.

a=1: HereY, = Yo+ > n,ie., the process (Y,) is a Gaussian Random Walk, and
=1

Cov[Y,, Y] = v +e®-min(n,m) for any n, m > 0.

We will see a corresponding expression for the covariances of Brownian motion.
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a < 1: Fora < 1, the covariances Cov[Y,,, Y, | decay exponentially fast as k& — oo.

&2

If vg = =7, then the covariance function is translation invariant:
e2ak
cn,n+k) = T2 for any n, k > 0.
—

Therefore, in this case the process (Y,,) is stationary, i.e., (Y 1x)n>0 ~ (Y )n>o for all
k> 0.

Brownian motion is our first example of a nontrivial Gaussian process in continuous

time. In fact, we have:

Theorem 1.8 (Gaussian characterization of Brownian motion). A real-valued stoch-
astic process (By)ic(o,00) With continuous sample paths t — By(w) and By = 0 is a

Brownian motion if and only if (By) is a centered Gaussian process with covariances

Cov[Bs, By] = min(s,t) for any s,t > 0. (1.2.4)

Proof. For a Brownian motion (B;) and 0 =ty < t; < ... < t,, the increments B;, —
By, ,, 1 < i < n, are independent random variables with distribution N (0,¢; — t;_1).

Hence,
(Btl _Btoa"'aBtn _Btn,l) ~ ®N(07tz _ti—1)7
i=1

which is a multinormal distribution. Since B;, = By, = 0, we see that

10
1
By, By, — By,
Btn Btn Btn—l
11 1 10
11 1 1

also has a multivariate normal distribution, i.e., (B;) is a Gaussian process. Moreover,
since B, = B; — By, we have E[B;] = 0 and

Cov[Bs,B;] = Cov[Bs, Bs] + Cov[Bs, B, — Bs] = Var[By] = s
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forany 0 < s <, 1e., holds.

Conversely, if (B;) is a centered Gaussian process satisfying (I.2.4)), then for any 0 =
to <t <...<ty,,thevector (B;, — By,,...,B;, — By,_,) has a multivariate normal

distribution with
E[Btz - Bti—l] - E[Btz] - E[Bti—l] = 07 and

Cov|By, — By,_,, By, — By;,_,] = min(t;,t;) —min(t;,t;_1)
—min(t;,_y,t;) +min(¢;_q1,¢;_1)
= (ti—tic1)-0ij forany¢,j =1,...,n.
Hence by Theorem[1.3](3), the increments B;, — By, ,, 1 < i < n, are independent with

distribution N (0,t; — t;,_1), i.e., (B;) is a Brownian motion. O

Symmetries of Brownian motion

A first important consequence of the Gaussian characterization of Brownian motion are

several symmetry properties of Wiener measure:

Theorem 1.9 (Invariance properties of Wiener measure). Let (B;);>o be a Brown-
ian motion starting at 0 defined on a probability space (), A, P). Then the following

processes are again Brownian motions:
(1). (—Bi)i>0 (Reflection invariance)
(2). (Bisn — Br)isoforany h >0  (Stationarity)
(3). (a=Y2By) o foranya >0 (Scale invariance)
(4). The time inversion (§t>t20 defined by

By=0, Bi=t-By, fort>0.
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Proof. The proofs of (1), (2) and (3) are left as an exercise to the reader. To show (4),
we first note that for eachn € Nand 0 < t; < ... < t,, the vector (B,,, ..., B, ) hasa
multivariate normal distribution since it is a linear transformation of (B, , ..., Bi,),

(Bo, Bitys - - - » B, ) respectively. Moreover,

E[B)] = 0 for any ¢ > 0,
Cov|B,, B] = st-Cov|Bys, Biyl
= st- min(é, %) = min(t, s) forany s,¢ >0, and
Cov[By,B] = 0 for any ¢ > 0.

Hence (ét)tzo is a centered Gaussian process with the covariance function of Brownian
motion. By Theorem [L.8 it only remains to show that P-almost every sample path
t — By(w) is continuous. This is obviously true for ¢ > 0. Furthermore, since the finite
dimensional marginals of the processes (Et)tzo and (B;):>o are multivariate normal
distributions with the same means and covariances, the distributions of (ét)tzo and
(B4)t>0 on the product space R(>) endowed with the product o-algebra generated by

the cylinder sets agree. To prove continuity at 0 we note that the set

z:(0,00) > R | limz; =0
N0
1<0)

is measurable w.r.t. the product o-algebra on R(*:>) Therefore,

PllimB,=0| = PllimB, =0 = 1.
N0 t\0
teQ teQ

Since Et is almost surely continuous for ¢ > 0, we can conclude that outside a set of

measure zZero,

sup |B,| = sup |By] — 0 ast ™\, 0,
s€(0,t) s€(0,6)NQ
ie.,t— ét is almost surely continuous at 0 as well. U
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Remark (Long time asymptotics versus local regularity, LLLN). The time inversion
invariance of Wiener measure enables us to translate results on the long time asymp-
totics of Brownian motion (¢ ,* co) into local regularity results for Brownian paths
(t \( 0) and vice versa. For example, the continuity of the process (Et) at 0 is equiva-

lent to the law of large numbers:
1 :
P {hm -B, = O} = P [hmsBl/s = O] = 1
t—oo ¢ s\0

At first glance, this looks like a simple proof of the LLN. However, the argument is based
on the existence of a continuous Brownian motion, and the existence proof requires

similar arguments as a direct proof of the law of large numbers.

Wiener measure as a Gaussian measure, path integral heuristics

Wiener measure (with start at 0) is the unique probability measure 4 on the continuous

path space C([0, 00), R?) such that the coordinate process
X;:C([0,00),RY) - R Xy(z) = m,

is a Brownian motion starting at 0. By Theorem [L.8] Wiener measure is a centered
Gaussian measure on the infinite dimensional space C([0, o), R?), i.e., for any n € N
and t1,...,t, € Ry, (X4, ..., X,) is normally distributed with mean 0. We now "de-
rive" a heuristic representation of Wiener measure that is not mathematically rigorous
but nevertheless useful:

Fix a constant 7" > 0. Then for 0 = t;, < t; < ... < t, < T, the distribution of

(X4, ., Xy,) wrt. Wiener measure is

1 |2y, — ? -
Mtl,---,tn(dxtlv ) dxtn) = Z(tl, ' eXp <__ Z t _ tz 11 ) H dxti?

.., i1

(1.2.5)
where Z(t1,...,t,) is an appropriate finite normalization constant, and zy := 0. Now
choose a sequence (7 )xen of partitions 0 = t(()k) < tgk) <... < t;’% = T of the interval
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(k) _
i+1

in , we obtain the heuristic asymptotic representation

[0, T'] such that the mesh size max |t tl(k)\ tends to zero. Taking informally the limit

T

1 1
wdr) = —exp |-t /
0

2

dt | So(dzo) [] de. (1.2.6)

te(0,7T

dx
dt

for Wiener measure on continuous paths x : [0, 7] — R? with a "normalizing constant"

Z . Trying to make the informal expression (I.2.6) rigorous fails for several reasons:

e The normalizing constant 7., = klim Z (tgk), ce tﬁk&
—00

)) is infinite.
2

7 dt is also infinite for p-almost every path z, since typical
paths of Brownian motion are nowhere differentiable, cf. below.

Tld
e The integral [ v
0

e The product measure [] dx; can be defined on cylinder sets but an extension to
te(0,7T
the o-algebra generated by the coordinate maps on C'([0, 00), R%) does not exist.

Hence there are several infinities involved in the informal expression (I.2.6). These
infinities magically balance each other such that the measure 1 is well defined in contrast

to all of the factors on the right hand side.

In physics, R. Feynman introduced correspondingly integrals w.r.t. "Lebesgue measure

on path space", cf. e.g. the famous Feynman Lecture notes [...], or Glimm and Jaffe [ ...

1.

Although not mathematically rigorous, the heuristic expression (L2.3) can be a very
useful guide for intuition. Note for example that takes the form

p(dr) o exp(—[lz|[F/2) A(da), (1.2.7)
1/2

where |||z = (x,x)y" is the norm induced by the inner product

T

dr d

(T, 9)n = /Eﬁﬁ (1.2.8)
0
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of functions x,y : [0,7] — R¢ vanishing at 0, and \ is a corresponding "infinite-

dimensional Lebesgue measure" (which does not exist!). The vector space
d
H = {r:]0,7] = R?: x(0) = 0,z is absolutely continuous with d—f € L*}

is a Hilbert space w.r.t. the inner product (I.2.8)). Therefore, (1.2.7]) suggests to consider
Wiener measure as a standard normal distribution on H. It turns out that this idea can
be made rigorous although not as easily as one might think at first glance. The difficulty
is that a standard normal distribution on an infinite-dimensional Hilbert space does not
exist on the space itself but only on a larger space. In particular, we will see in the next
sections that Wiener measure x can indeed be realized on the continuous path space

C([0,T], R%), but p-almost every path is not contained in H'!

Remark (Infinite-dimensional standard normal distributions). The fact that a stan-
dard normal distribution on an infinite dimensional separable Hilbert space H can not
be realized on the space H itself can be easily seen by contradiction: Suppose that p
is a standard normal distribution on H, and e,, n € N, are infinitely many orthonormal

vectors in /. Then by rotational symmetry, the balls

1
B, = {xEH:||x—en||H<§}, n €N,

should all have the same measure. On the other hand, the balls are disjoint. Hence by

o-additivity,
> uB.] = M[UBn} < plH = 1,
n=1

and therefore u[B,,] = 0 for all n € N. A scaling argument now implies
pl{x € H : ||z —h| <||h]|/2}] =0 forall h € H,

and hence 1 = 0.

1.3 The Wiener-Lévy Construction

In this section we discuss how to construct Brownian motion as a random superposi-

tion of deterministic paths. The idea already goes back to N. Wiener, who constructed
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Brownian motion as a random Fourier series. The approach described here is slightly
different and due to P. Lévy: The idea is to approximate the paths of Brownian mo-
tion on a finite time interval by their piecewise linear interpolations w.r.t. the sequence
of dyadic partitions. This corresponds to a development of the Brownian paths w.r.t.
Schauder functions ("wavelets") which turns out to be very useful for many applica-

tions including numerical simulations.

Our aim is to construct a one-dimensional Brownian motion B; starting at 0 for ¢t €
[0, 1]. By stationarity and independence of the increments, a Brownian motion defined
for all ¢ € [0, 00) can then easily be obtained from infinitely many independent copies

of Brownian motion on [0, 1]. We are hence looking for a random variable
B = (Bi)wep,y : 2 — C([0,1])
defined on a probability space (2, .4, P) such that the distribution P o B~! is Wiener

measure £ on the continuous path space C'([0, 1]).

A first attempt

Recall that 1 should be a kind of standard normal distribution w.r.t. the inner product

1

dr d

(., 9)n = /Ed—‘?dt (1.3.1)
0

on functions z, y : [0, 1] — R. Therefore, we could try to define
Bw) = Y Ziw)e(t) forte0,1]andw e Q, (1.3.2)
=1

where (Z;);en is a sequence of independent standard normal random variables, and

(€;)ien is an orthonormal basis in the Hilbert space

H = {z:[0,1] = R|z(0) =0, x is absolutely continuous with (z, z)y < co}.
(1.3.3)

However, the resulting series approximation does not converge in H:
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Theorem 1.10. Suppose (¢e;);cn is a sequence of orthonormal vectors in a Hilbert space

H and (Z;);en is a sequence of i.i.d. random variables with P[Z; # 0] > 0. Then the

o0

series Y Z;(w)e; diverges with probability 1 w.r.t. the norm on H.
i=1

Proof. By orthonormality and by the law of large numbers,

Z Zi(w)e;

P-almost surely as n — oo. L

2

= nZZ-cu2 — 00
D Ziw)
i=1

H

The Theorem again reflects the fact that a standard normal distribution on an infinite-

dimensional Hilbert space can not be realized on the space itself.

To obtain a positive result, we will replace the norm

N

L 2

dx
= — | dt
Izl 1%
0
on H by the supremum norm
llswp = sup [z,
t€[0,1]

and correspondingly the Hilbert space H by the Banach space C'([0, 1]). Note that the
supremum norm is weaker than the H-norm. In fact, for x € H and ¢t € [0, 1], the

Cauchy-Schwarz inequality implies

t

2 t
= / dds| <t / Pds < |l
0

0

and therefore

[2llsp < ll@lln foranyx e H.
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There are two choices for an orthonormal basis of the Hilbert space H that are of par-

ticular interest: The first is the Fourier basis given by

2
eo(t) = t, en(t) = £sin(7rmﬁ) forn > 1.
™m

With respect to this basis, the series in is a Fourier series with random coeffi-
cients. Wiener’s original construction of Brownian motion is based on a random Fourier
series. A second convenient choice is the basis of Schauder functions ("wavelets") that
has been used by P. Lévy to construct Brownian motion. Below, we will discuss Lévy’s
construction in detail. In particular, we will prove that for the Schauder functions, the
series in (I.3.2) converges almost surely w.r.t. the supremum norm towards a contin-
uous (but not absolutely continuous) random path (B).c(o,1). It is then not difficult to

conclude that (B;);c[o,1] is indeed a Brownian motion.

The Wiener-Lévy representation of Brownian motion

Before carrying out Lévy’s construction of Brownian motion, we introduce the Schauder
functions, and we show how to expand a given Brownian motion w.r.t. this basis of
function space. Suppose we would like to approximate the paths ¢t — B;(w) of a Brow-
nian motion by their piecewise linear approximations adapted to the sequence of dyadic

partitions of the interval [0, 1].

An obvious advantage of this approximation over a Fourier expansion is that the values

of the approximating functions at the dyadic points remain fixed once the approximating
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partition is fine enough. The piecewise linear approximations of a continuous function

on [0, 1] correspond to a series expansion w.r.t. the base functions

e(t) =t , and

enik(t) = 27"%eoo(2" — k), n=0,1,2,....k=0,1,2,...,2" — 1, , where
t fort € [0,1/2]
eoo(t) = min(t,1-1)" = 1—t forte (1/2,1]
0 fort € R\ [0, 1]
1+ e(t)
1
enyk(t)
o—(1+n/2) |
k-2 (k4127 1
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6070 (t)

1

The functions e, (n > 0,0 < k < 2") are called Schauder functions. It is rather
obvious that piecewise linear approximation w.r.t. the dyadic partitions corresponds to
the expansion of a function z € C(][0,1]) with 2(0) = 0 in the basis given by e(¢)
and the Schauder functions. The normalization constants in defining the functions e,
have been chosen in such a way that the e,, ;, are orthonormal w.r.t. the /-inner product

introduced above.

Definition. A sequence (e;);cn of vectors in an infinite-dimensional Hilbert space H is

called an orthonormal basis (or complete orthonormal system) of H if and only if
(1). Orthonormality:  (e;,ej) = 0;; foranyi,j € N, and

(2). Completeness: Any h € H can be expressed as

h = i(h, €i)He;.
i=1

Remark (Equivalent characterizations of orthonormal bases). Let ¢;,7 € N, be

orthonormal vectors in a Hilbert space . Then the following conditions are equivalent:
(1). (e;)ien is an orthonormal basis of H.

(2). The linear span

k
span{e; | i € N} = {Zciei

i=1

k‘GN,Cl,...,CkGR}
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is a dense subset of H.

(3). There is no element © € H,x # 0, such that (x,e;)y = 0 for every i € N.

(4). For any element x € H, Parseval’s relation

lzlf = i(az,e»% (1.3.4)
i=1
holds.
(5). Forany z,y € H,
(r,9)g = i(xaei)H(%ei)H- (1.3.5)
i=1

For the proofs we refer to any book on functional analysis, cf. e.g. [Reed and Simon:

Methods of modern mathematical physics, Vol. IJ.

Lemma 1.11. The Schauder functions e and e, (n > 0,0 < k < 2") form an or-
thonormal basis in the Hilbert space H defined by (L.3.3).

Proof. By definition of the inner product on H, the linear map d/dt which maps an
absolutely continuous function x € H to its derivative 2/ € L?(0,1) is an isometry
from H onto L*(0,1), i.e.,

($,y)H = (xlay/)LQ(O,l) for any x,y € H.
The derivatives of the Schauder functions are the Haar functions

ety = 1,

en’k(t) = 2n/2(I[k,2—n7(k+1/2)_2—n)(t) — ][(k+1/2)-2_”,(k+1)-2_")(t)) fora.e. t.
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e'(t) En (1)
1 o 2—n/24k —
(k+1)27"
1 REM
_2—n/24k —

It is easy to see that these functions form an orthonormal basis in L?(0,1). In fact,
orthonormality w.r.t. the L? inner product can be verified directly. Moreover, the linear
span of the functions ¢’ and ¢;, ; forn =0,1,...,mand k =0, 1,...,2" —1 consists of
all step functions that are constant on each dyadic interval [j - 2=+ (j41).27(m+D),
An arbitrary function in L?(0, 1) can be approximated by dyadic step functions w.r.t.
the L? norm. This follows for example directly from the L? martingale convergence
Theorem, cf. ... below. Hence the linear span of ¢’ and the Haar functions e], , is dense
in L?(0, 1), and therefore these functions form an orthonormal basis of the Hilbert space
L*(0,1). Since x — 2’ is an isometry from H onto L?(0, 1), we can conclude that e and

the Schauder functions e,, ;, form an orthonormal basis of H. O

The expansion of a function z : [0, 1] — R in the basis of Schauder functions can now
be made explicit. The coefficients of a function x € H in the expansion are
1 1

@@H::/fdﬁ - /fﬁ = (1) —2(0) = z(1)

0 0
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1 1

(x,enp)n = /:C'e;l’k dt = 2”/2/33'@)6’070(2"15— k) dt
0 0

2 [(a((h+ )27 = alk - 27) = al(h+ 1) 27) — (k4 ) - 27)

Theorem 1.12. Let € C([0, 1]). Then the expansion

co 2"—1

w(t) = z(e(t) =YD 2PN ennlt),

n=0 k=0

1 1
Ange = |(@((k+1)-27") —a((k+5) - 27)) = (2((k + 5) - 27") — (k- 27%))
holds w.r.t. uniform convergence on [0,1]. For x € H the series also converges w.r.t.

the stronger H-norm.

Proof. It can be easily verified that by definition of the Schauder functions, for each

m € N the partial sum

m 2"—1

M) = a(De(t) = >0 2P - eqi(t) (1.3.6)

n=0 k=0

is the polygonal interpolation of x(t) w.r.t. the (m+ 1)-th dyadic partition of the interval
[0, 1]. Since the function z is uniformly continuous on [0, 1], the polygonal interpola-
tions converge uniformly to z. This proves the first statement. Moreover, for x € H,
the series is the expansion of z in the orthonormal basis of [ given by the Schauder

functions, and therefore it also converges w.r.t. the H-norm. L

Applying the expansion to the paths of a Brownian motions, we obtain:

Corollary 1.13 (Wiener-Lévy representation). For a Brownian motion (By).co1] the
series representation

oo 2"—1

Biw) = Zwe®)+> > Znpwenxlt), te0,1], (13.7)

n=0 k=0
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holds w.r.t. uniform convergence on |0, 1| for P-almost every w € ), where
Z = DBy, and Z,j := —2"/2An7kB n>0,0<k<2"—1)

are independent random variables with standard normal distribution.

Proof. It only remains to verify that the coefficients Z and Z,, ; are independent with
standard normal distribution. A vector given by finitely many of these random variables
has a multivariate normal distribution, since it is a linear transformation of increments
of the Brownian motion B;. Hence it suffices to show that the random variables are

uncorrelated with variance 1. This is left as an exercise to the reader. |

Lévy’s construction of Brownian motion

The series representation (I.3.7) can be used to construct Brownian motion starting
from independent standard normal random variables. The resulting construction does
not only prove existence of Brownian motion but it is also very useful for numerical

implementations:

Theorem 1.14 (P. Lévy 1948). Let Z and Z,,, (n > 0,0 < k < 2" —1) be independent
standard normally distributed random variables on a probability space (2, A, P). Then
the series in ((L.37) converges uniformly on [0, 1] with probability 1. The limit process

(Bi)iejo,) is a Brownian motion.

The convergence proof relies on a combination of the Borel-Cantelli Lemma and the
Weierstrass criterion for uniform convergence of series of functions. Moreover, we will

need the following result to identify the limit process as a Brownian motion:

Lemma 1.15 (Parseval relation for Schauder functions). For any s,t € [0, 1],

oo 2"—1

e(t)e(s) + > Y enxlt)enn(s) = min(ts).

n=0 k=0
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Proof. Note that for g € H and s € [0, 1], we have
1

o(s) = gls)—g(0) = / d oy = (9.0,

0

where h(*)(t f Isy = min(s,t). Hence the Parseval relation (I.3.4) applied to

the functions A(*) and h® yields

s) + Zen,k(t)en,k(s)
= ( +Z €nk, enk,h())

1

= (h,(t), h(s)) = /[(0715)[(073) = min(t, 8).
0

Proof of Theorem |[.14] We proceed in 4 steps:

(1). Uniform convergence for P-a.e. w: By the Weierstrass criterion, a series of func-
tions converges uniformly if the sum of the supremum norms of the summands is

finite. To apply the criterion, we note that for any fixed ¢ € [0, 1] and n € N, only

one of the functions e,, ;,k = 0,1,...,2" — 1, does not vanish at ¢. Moreover,
len ()| < 27™/2, Hence
n—1

sup Z ZnrWw)en(t)| < 2 /2. M, (w), (1.3.8)

te(0,1] | 5,
where

M, = max |[Z,x|
0<k<2n

We now apply the Borel-Cantelli Lemma to show that with probability 1, M,
grows at most linearly. Let Z denote a standard normal random variable. Then
we have
P[M, >n] < 2"-P||Z]>n] < —-E[|Z|;|Z]|>n]
n
22" 2

.2
ze P dr = —— e
™n
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for any n € N. Since the sequence on the right hand side is summable, M, < n
holds eventually with probability one. Therefore, the sequence on the right hand
side of (I.3.8) is also summable for P-almost every w. Hence, by (I.3.8) and the

Weierstrass criterion, the partial sums

m 2"—1

B™(w) = +ZZan w)en k(t m € N,

n=0 k=0

converge almost surely uniformly on [0, 1]. Let

B, = lim B™

m—o0

denote the almost surely defined limit.

(2). L? convergence for fixed t: We now want to prove that the limit process (B;)
is a Brownian motion, i.e., a continuous Gaussian process with E[B;] = 0 and
Cov[By, Bs) = min(t, s) for any ¢, s € [0, 1]. To compute the covariances we first

show that for a given ¢ € |0, 1] the series approximation Bt(m)

of B, converges
also in L?. Let [,m € N with [ < m. Since the 7,  are independent (and hence

uncorrelated) with variance 1, we have

B((B" - B) <i ZZ ) = 3 Y ar

n=I[l+1 k=0 n=Il+1 k

The right hand side converges to 0 as [, m — oo since Y e, (t)? < oo by Lemma
n,k

.15l Hence B™,m € N, is a Cauchy sequence in L*(Q2, A, P). Since B; =

lim Bt(m) almost surely, we obtain

m— o0

B™  MZF B, in L9, A, P).

(3). Expectations and Covariances: By the L* convergence we obtain for any s,t €

0, 1]:
E[B] = lm EB™] = 0, and
m—ro0
Cov|B,,B,] = E[BB, = lim E[B/™B™]
m—0o0
m 2"—1
= e(t)e(s) + nllinooz_% ]; en e ()en(s)

University of Bonn 2015/2016



48 CHAPTER 1. BROWNIAN MOTION

Here we have used again that the random variables Z and Z,, ;, are independent

with variance 1. By Parseval’s relation (Lemma[L.13]), we conclude
Cov[By, Bs] = min(t,s).

Since the process (B;):cjo,1) has the right expectations and covariances, and, by
construction, almost surely continuous paths, it only remains to show that (B;) is

a Gaussian process in oder to complete the proof:

(4). (By)icjoq is a Gaussian process: We have to show that (B, , ..., By, ) has a mul-
tivariate normal distribution for any 0 < ¢; < ... < t; < 1. By Theorem [L.3]
it suffices to verify that any linear combination of the components is normally

distributed. This holds by the next Lemma since

l !
_ . (m)
Z piBy, = 7711_1)%0 Z pi By P-as.
j=1 j=1

is an almost sure limit of normally distributed random variables for any

pl;---7pl€R-

Combining Steps 3, 4 and the continuity of sample paths, we conclude that (5;)c[o,1) is

indeed a Brownian motion. [l

Lemma 1.16. Suppose that (X,,),cn is a sequence of normally distributed random vari-
ables defined on a joint probability space (£, A, P), and X,, converges almost surely to

a random variable X. Then X is also normally distributed.

Proof. Suppose X,, ~ N(m,,c?) withm, € R and o,, € (0,00). By the Dominated

Convergence Theorem,

. . . . . 71 2 2
E[e™] = lim E[e?*"] = lim P™me 277"
n—oo n—o0

The limit on the right hand side only exists for all p, if either o,, — oo, or the sequences
o, and m,, both converge to finite limits o € [0,00) and m € R. In the first case,

the limit would equal 0 for p # 0 and 1 for p = 0. This is a contradiction, since
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characteristic functions are always continuous. Hence the second case occurs, and,
therefore
. . 1 2.2
E[e?PX] = ePm2? for any p € R,

ie, X ~ N(m,o?). 0

So far, we have constructed Brownian motion only for ¢ € [0, 1]. Brownian motion on
any finite time interval can easily be obtained from this process by rescaling. Brownian
motion defined for all ¢ € R, can be obtained by joining infinitely many Brownian

motions on time intervals of length 1:

B2
B®)
- 1 1 1
1 2 3
4 B®
Theorem 1.17. Suppose that Bt(l), Bt(z), ... are independent Brownian motions starting
at 0 defined for t € [0, 1]. Then the process
([t]+1) S (i)
t]+ i
B, := BY+> B, >0,
i=1

is a Brownian motion defined for t € [0, o).
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The proof is left as an exercise.

1.4 The Brownian Sample Paths

In this section we study some properties of Brownian sample paths in dimension one.
We show that a typical Brownian path is nowhere differentiable, and Holder-continuous
with parameter « if and only if @ < 1/2. Furthermore, theset A, = {t >0 : B; = a}
of all passage times of a given point a € R is a fractal. We will show that almost surely,
A, has Lebesgue measure zero but any point in A, is an accumulation point of A,,.

We consider a one-dimensional Brownian motion (B;);>¢ with By = 0 defined on a
probability space (€2, A, P). Then:

Typical Brownian sample paths are nowhere differentiable

For any ¢ > 0 and h > 0, the difference quotient M is normally distributed with

mean 0 and standard deviation
U[(Bt-i-h — Bt)/h] = U[Bt+h — Bt]/h = 1/\/5

This suggests that the derivative

d - . By — By
al T ey

does not exist. Indeed, we have the following stronger statement.

Theorem 1.18 (Paley, Wiener, Zygmund 1933). Almost surely, the Brownian sample
path t — By is nowhere differentiable, and

B, — B;
s—1

lim sup = o0 foranyt > 0.

s\t
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Note that, since there are uncountably many ¢ > 0, the statement is stronger than claim-

ing only the almost sure non-differentiability for any given ¢ > 0.

Proof. 1t suffices to show that the set

1
N:{weQ ’Elte[O,T],k,LENVsE(t,t—i—E) ;| Bs(w) — Bi(w)| gL\s—t|}

is a null set for any 7" € N. Hence fix 7' € N, and consider w € N. Then there exist
k,L € Nandt € [0,T] such that

1
|Bs(w) — By(w)| < L-|s—t holds for s € (t,t+E). (1.4.1)

To make use of the independence of the increments over disjoint intervals, we note that

for any n > 4k, we can find an i € {1,2,...,nT} such that the intervals (£, 1),

(2L, H22) and (42, 23) are all contained in (¢, + 7):

n’ n n’ n

i—1
n
|
I

4 3e
— 3
-+ 3

Hence by (1.4.1)), the bound

Bini (w) — Bi(w)’ < ’B%(w) - Bt(w)’ + )Bt(w) — Bi(w)

j+1

< L
n

“O+L(2-0 <

holds for j = 4,7 + 1,7 + 2. Thus we have shown that /V is contained in the set

¥ o= U NU{pe -

8L
< — forj:i,i+1,i+2}.
k,LEN n>4k i=1 n
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We now prove P[N] = 0. By independence and stationarity of the increments we have

[

8L
<= forj:i,i—i—l,i—i—QH
n

8L1? 8L1?
- PUB; g—} - P[|Bl|§—] (14.2)
n n \/ﬁ
( 1 16L)3 160 I
Var Vi var i

for any ¢ and n. Here we have used that the standard normal density is bounded from
above by 1/+/27. By (L.4.2) we obtain

nT

8L

PN U{’Bm _B,| < forj:i,i+1,i+2}

n>4k i=1 " " n

3
< s inf nTL*/n%? = 0.
\/E n>4k
Hence, P[N] = 0, and therefore N is a null set. ]

Holder continuity

The statement of Theorem[I. 18 says that a typical Brownian path is not Lipschitz contin-
uous on any non-empty open interval. On the other hand, the Wiener-Lévy construction
shows that the sample paths are continuous. We can almost close the gap between these

two statements by arguing in both cases slightly more carefully:

Theorem 1.19. The following statements hold almost surely:
(1). Forany a > 1/2,

limsup; = o0 forallt > 0.
St s —

(2). Forany a < 1/2,

sup ———— < o0 forall T > 0.
seefo.r] |5 —t°
s#t
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Hence a typical Brownian path is nowhere Holder continuous with parameter o > 1/2,
but it is Holder continuous with parameter o < 1/2 on any finite interval. The critical

case o = 1/2 is more delicate, and will be briefly discussed below.

Proof of Theorem|[[.I9 The first statement can be shown by a similar argument as in
the proof of Theorem [L.18 The details are left to the reader.

To prove the second statement for 7' = 1, we use the Wiener-Lévy representation

oo 2"—1

By = Z-t+Y > Zugear(t)  foranyte[0,1]

n=0 k=0

with independent standard normal random variables Z, Z,, . For t, s € [0, 1] we obtain
|B:—Bs| < |Z] '|t_5|+ZMnZ|€n,k(t)_en,k(3)|a
n k

where M,, = max |Z,, k| as in the proof of Theorem [[.14] We have shown above that

by the Borel-Cantelli Lemma, M,, < n eventually with probability one, and hence
M,(w) < Cw)-n

for some almost surely finite constant C'(w). Moreover, note that for each s, ¢ and n, at

most two summands in >, €, (t) — e, x(s)| do not vanish. Since |e,, 5 (¢)] < 1 -277/2
and [e;, ;. (1) < 2"/2 we obtain the estimates
leni(t) —enr(s)] < 272 and (1.4.3)
leni(t) —enn(s)] < 22|t —s. (1.4.4)
For given s,t € [0, 1], we now choose N € N such that
27N < jt-s] < 20N, (1.4.5)

By applying (1.4.3) for n > N and (I.4.4) for n < N, we obtain

N o)
B, — B,| < |Z|-|t—s|+20-<Zn2”/2-|t—s|+ > n2_"/2>.
n=1

n=N+1
By (L.4.3)) the sums on the right hand side can both be bounded by a constant multiple of
|t — s|* for any av < 1/2. This proves that (B;);c[o,1 is almost surely Holder-continuous

of order «. |
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Law of the iterated logarithm

Khintchine’s version of the law of the iterated logarithm is a much more precise state-
ment on the local regularity of a typical Brownian path at a fixed time s > 0. It implies
in particular that almost every Brownian path is not Holder continuous with parameter

a = 1/2. We state the result without proof:

Theorem 1.20 (Khintchine 1924). For s > 0, the following statements hold almost

surely:

By — By .. By, — By
lim sup Rl = +1, and liminf A = —
N0 2t loglog(1/t) N0 2t log log(1/t)

For the proof cf. e.g. Breiman, Probability, Section 12.9.
By a time inversion, the Theorem translates into a statement on the global asymptotics

of Brownian paths:

Corollary 1.21. The following statements hold almost surely:

B B
limsup ————— = +1, and liminf ! = —1.

oo v/2tloglogt t—oo (/2tloglogt

Proof. This follows by applying the Theorem above to the Brownian motion ét =

t - By ;. For example, substituting h = 1 /t, we have

. B, . h - By,
lim sup ————= = limsup = +1
t—oo /2t 1oglog(t) o +/2hloglogl/h
almost surely. 0

The corollary is a continuous time analogue of Kolmogorov’s law of the iterated log-
n

arithm for Random Walks stating that for S,, = > n;, n; i.i.d. with E[n;] = 0 and
=1

Var[n;] = 1, one has

S Sh,
limsup———-— = +1 and Iliminf— = —1

n—soo v 2nloglogn n—oo +/2nloglogn
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almost surely. In fact, one way to prove Kolmogorov’s LIL is to embed the Random

Walk into a Brownian motion, cf. e.g. Rogers and Williams, Vol. I, Ch. 7 or Section[3.3]

Passage times

We now study the set of passage times to a given level a for a one-dimensional Brownian
motion (B;);>o. This set has interesting properties — in particular it is a random fractal.
Fix a € R, and let

A(w) = {t>0: B(w)=a} C [0,00).

Assuming that every path is continuous, the random set A,(w) is closed for every w.
Moreover, scale invariance of Brownian motion implies a statistical self similarity prop-
erty for the sets of passage times: Since the rescaled process (c~/2B,;);>0 has the same
distribution as (B;);>¢ for any ¢ > 0, we can conclude that the set valued random vari-
able ¢ - A,z has the same distribution as A,. In particular, A is a fractal in the sense
that

Ao ~ c¢-Ay for any ¢ > 0.

Figure 1.4: Brownian motion with corresponding level set A.
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Moreover, by Fubini’s Theorem one easily verifies that A, has almost surely Lebesgue
measure zero. In fact, continuity of ¢ — B,(w) for any w implies that (¢,w) — B;(w) is
product measurable (Exercise). Hence {(¢,w) : B;(w) = a} is contained in the product

o-algebra, and

EMA)] = E /I{a}(Bt)dt _ /P[Bt:a]dt _—

Theorem 1.22 (Unbounded oscillations, recurrence).

>0

P [suth = +oo} = P [inth = —oo} = 1.

In particular, for any a € R, the random set A\, is almost surely unbounded, i.e. Brow-

nian motion is recurrent.

Proof. By scale invariance,

supB; ~ ¢ Y?supB, = ¢ Y?supB, for any ¢ > 0.
>0 >0 >0

Hence,

P [suth 2@] =P [suth Za-\/E]

>0 >0
for any ¢ > 0, and therefore sup B; € {0, oo} almost surely. The first part of the asser-
tion now follows since sup B; is almost surely strictly positive. By reflection symmetry,

we also obtain inf B; = —oo with probability one. 0

The last Theorem makes a statement on the global structure of the set A,. By invariance

w.r.t. time inversion this again translates into a local regularity result:

Theorem 1.23 (Fine structure of A,). The set A, is almost surely a perfect set, i.e., any

t € A, is an accumulation point of \,,.
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Proof. We prove the statement for a = 0, the general case being left as an exercise. We

proceed in three steps:

STEP 1: 0 is almost surely an accumulation point of Ay: This holds by time-reversal.
Setting Et =t - By, we see that 0 is an accumulation point of A, if and only of
for any n € N there exists ¢ > n such that Et = 0, i.e., if and only if the zero set
of ét is unbounded. By Theorem this holds almost surely.

STEP 2: Forany s > 0, T, := min(A, N [s,00)) = min{t > s : B; = a} is almost
surely an accumulation point of A,: For the proof we need the strong Markov
property of Brownian motion which will be proved in the next section. By The-
orem the random variable 7T is almost surely finite. Hence, by continuity,

Br, = a almost surely. The strong Markov property says that the process

B, = BTSth - BTsu t > 07

is again a Brownian motion starting at 0. Therefore, almost surely, 0 is an accu-
mulation point of the zero set of B, by Step 1. The claim follows since almost

surely
{tZOEtIO} = {tZO:BTSth:BTS} = {tZTS:Bt:CL} g Aa.
STEP 3: To complete the proof note that we have shown that the following properties

hold with probability one:

(1). A, is closed.

(2). min(A, N [s,00)) is an accumulation point of A, for any s € Q..

Since Q, is a dense subset of R, , (1) and (2) imply that any ¢ € A, is an accu-
mulation point of A,. In fact, for any s € [0, ¢] N Q, there exists an accumulation

point of A, in (s, t] by (2), and hence ¢ is itself an accumulation point.

Remark. It can be shown that the set A, has Hausdorff dimension 1/2.
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1.5 Strong Markov property and reflection principle

In this section we prove a strong Markov property for Brownian motion. Before, we give
another motivation for our interest in an extension of the Markov property to random

times.

Maximum of Brownian motion

Suppose that (B;);>o is a one-dimensional continuous Brownian motion starting at 0
defined on a probability space (2,4, P). We would like to compute the distribution of

the maximal value

M, = max B

t€[0,s]

attained before a given time s € R,. The idea is to proceed similarly as for Random

Walks, and to reflect the Brownian path after the first passage time
T, = min{t>0:B;,=a}

to a given level a > 0:

B,
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It seems plausible (e.g. by the heuristic path integral representation of Wiener measure,

or by a Random Walk approximation) that the reflected process (Et)tzo defined by

ét _ B; fort < 1T,
a—(By—a) fort>T,
is again a Brownian motion. At the end of this section, we will prove this reflection
principle rigorously by the strong Markov property. Assuming the reflection principle
is true, we can compute the distribution of M in the following way:
P[M; >a] = P[M;>a,Bs;<a|+ P[Ms > a,Bs > a
— P[B,>a]+ P[B, > d
= 2-P[Bs; > d
= P[|Bs| > a].
Thus M has the same distribution as | By|.
Furthermore, since M, > a if and only if M, = max{B, : t € [0,s]} > a, we obtain

the stronger statement

P[M,>a,B;<c = P[M,>a,B;,>2a—c = P[B,>2a—c

for any @ > 0 and ¢ < a. As a consequence, we have:

Theorem 1.24 (Maxima of Brownian paths).

(1). Forany s > 0, the distribution of M is absolutely continuous with density

) = = ep(=a/29)- Jom(a).

(2). The joint distribution of M, and By is absolutely continuous with density

2r —y 2z —y)?
—— 77 ] ] I o .
e eXp< = 0,00 (T) L (—c0,2) (Y)

fuB () = 2
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Proof. (1) holds since M, ~ |B;|. For the proof of (2) we assume w.l.o.g. s = 1. The
general case can be reduced to this case by the scale invariance of Brownian motion

(Exercise). Fora > 0 and ¢ < a let
G(a,c) = P[M;>a,B; <c|.
By the reflection principle,
G(a,c) = P[Bi1>2a—¢ = 1-—®2a—c),

where ¢ denotes the standard normal distribution function. Since lim G(a,c¢) = 0 and
a—r0o0
lim G(a,c) = 0, we obtain

Cc——00

P[M, > a,B, <] = G(a,¢c) = / / (z,y) dydx

T=a y=—00

_ / / 22—y exp< (ngy)z) dydz.

T=a Yy=—00

This implies the claim for s = 1, since M; > 0 and B; < M by definition of M;. [

The Theorem enables us to compute the distributions of the first passage times 7;. In

fact, fora > 0 and s € [0, c0) we obtain

P[T,<s] = PIMy>a] = 2-P[By;>a] = 2-P[B; > a/V5]
- \f / /2 4. (1.5.1)
e

Corollary 1.25 (Distribution of 7),). For any a € R \ {0}, the distribution of T, is

absolutely continuous with density

fr.(s) = e/,
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Proof. For a > 0, we obtain

a 2
s) = Fl(s) = ——e />
fTa< ) Ta< ) \/ﬁ

by (I.5.I). For a < 0 the assertion holds since T, ~ T_, by reflection symmetry of

Brownian motion. U

Next, we prove a strong Markov property for Brownian motion. Below we will then
complete the proof of the reflection principle and the statements above by applying the

strong Markov property to the passage time 7,,.

Strong Markov property for Brownian motion

Suppose again that (B;):>o is a d-dimensional continuous Brownian motion starting at

0 on a probability space ({2, A, P), and let
]:tB = o0(Bs : 0<s <, t>0,

denote the o-algebras generated by the process up to time .

Definition. A random variable T : Q — [0, o0 is called an (FP)-stopping time if and

only if
{T<t} € FP foranyt > 0.

Example. Clearly, for any a € R, the first passage time
T, = min{t >0 : B, =a}

to a level a is an (F7)-stopping time.
The o-algebra FZ describing the information about the process up to a stopping time 7'
is defined by

FB ={AcA: An{T <t} € FP foranyt > 0}.
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Note that for (F7) stopping times S and T with S < T we have FZ C FZ, since for
t>0

ANn{S<tye F’ = AN{T <t} = An{S<t}n{T <t} € FP.

For any constant s € R, the process (Bs;+ — Bs):>0 is @ Brownian motion independent
of F5.

A corresponding statement holds for stopping times:

Theorem 1.26 (Strong Markov property). Suppose that T is an almost surely finite
(FP) stopping time. Then the process (ét)tzo defined by

Et = Bry— By ifT < oo, 0 otherwise,

is a Brownian motion independent of F=.

Proof. We first assume that 7" takes values only in C' U {oo} where C' is a countable
subset of [0,00). Then for A € FZ and s € C, we have AN {T = s} € FZ and
ét = B;.s—Bs;on AN{T = s}. By the Markov property, (B;s— Bs):>o is a Brownian
motion independent of FZ. Hence for any measurable subset I' of C'([0, oc], RY), we

have

P{(Bi)izo €TYNA] = > P[{(Biys — B)izo € TYNAN{T = s}

= > wll]-PIAN{T =s}] = p[l]- P[A]

where iy denotes the distribution of Brownian motion starting at 0. This proves the

assertion for discrete stopping times.

For an arbitrary (F7) stopping time 7T that is almost surely finite and n € N, we set
T, = %[nTW, ie.,

k k—1 k
T, = — on { <T§—} for any £ € N.
n n n
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Since the event {7}, = k/n} is ]-",f/n—measurable for any k € N, T), is a discrete (F7)
stopping time. Therefore, (Br, 1+ — Br, ):>0 is a Brownian motion that is independent
of Ff , and hence of the smaller o-algebra 7. As n — oo, T,, — T, and thus, by

continuity,

B, = Bri—Br = lim (B, — Br,).

Now it is easy to verify that (ét)tzo is again a Brownian motion that is independent of
FE. 0

A rigorous reflection principle

We now apply the strong Markov property to prove a reflection principle for Brownian
motion. Consider a one-dimensional continuous Brownian motion (B;);>¢ starting at 0.

For a € R let

T, = min{t >0 : B, =a} (first passage time),
BtT * = B} (process stopped at 7,), and
Et = Br,— Brp, (process after T,).

Theorem 1.27 (Reflection principle). The joint distributions of the following random

variables with values in R x C([0,00)) x C([0,00)) agree:

(Tu, (Bf*)iz0, (Bizo)  ~ (T, (BI*)iz0. (= Bi)izo)

Proof. By the strong Markov property, the process B is a Brownian motion starting at
0 independent of Fr,, and hence of T, and B”* = (B/*),>¢. Therefore,

Po(T,,B™ B)™ = Po(T,,B")"' @ uy = Po (T, B —B)™".

O
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As a consequence of the theorem, we can complete the argument given at the beginning
of this section: The "shadow path" LA?t of a Brownian path B; with reflection when

reaching the level a is given by

~ Bl fort <T,
th = ~ )
a— Byp, fort>T,

whereas
Bl fort < T,
th - - .
a+ By_r, fort>T1T,
By the Theorem[I27, (B, ),>0 has the same distribution as (B, ). Therefore, and since

max B; > a if and only if max Et > q, we obtain for a > c:
t€(0,s] t€[0,s]
P maXBtZa,Bsgc} = P[maxEtZCL,ESZQa—C]

telo,s] te(0,s]

= P[ESZQCL—C}

o0

= ! / e~ /25 .
21

2a—c

V>
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Chapter 2
Martingales in discrete time

Classical analysis starts with studying convergence of sequences of real numbers. Sim-
ilarly, stochastic analysis relies on basic statements about sequences of real-valued ran-
dom variables. Any such sequence can be decomposed uniquely into a martingale, i.e.,
a real.valued stochastic process that is “constant on average”, and a predictable part.
Therefore, estimates and convergence theorems for martingales are crucial in stochastic

analysis.

2.1 Definitions and examples

We fix a probability space (€2, .4, P). Moreover, we assume that we are given an in-
creasing sequence J,, (n = 0,1,2,...) of sub-c-algebras of A. Intuitively, we often

think of F,, as describing the information available to us at time n. Formally, we define:

Definition (Filtration, adapted process). (). A filtration on (2, A) is an increasing
sequence
Fo € FL C F C ...

of o-algebras F, C A.

(2). A stochastic process (X,,)n>o is adapted to a filtration (F,),>o iff each X,, is

F-measurable.

65
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Example. (1). The canonical filtration (F-X) generated by a stochastic process (X,,)
is given by

FX = 0(Xo, X1,...,X,).

n

If the filtration is not specified explicitly, we will usually consider the canonical

filtration.

(2). Alternatively, filtrations containing additional information are of interest, for ex-

ample the filtration

Fn = O'(Z,Xo,Xl,...7Xn)

generated by the process (X,,) and an additional random variable Z, or the filtra-
tion

fn - U(X07YE)7X17Y17"'7XH7Yn)

generated by the process (X,,) and a further process (Y;,).

Clearly, the process (X,,) is adapted to any of these filtrations. In general, (X,,) is
adapted to a filtration (F,,) if and only if X C JF,, for any n > 0.

Martingales and supermartingales

We can now formalize the notion of a real-valued stochastic process that is constant

(respectively decreasing or increasing) on average:

Definition (Martingale, supermartingale, submartingale). (/). A sequence of real-
valued random variables M, : Q@ — R (n = 0,1,...) on the probability space
(Q, A, P) is called a martingale w.r.t. the filtration (F,,) if and only if

(a) (M,) is adapted w.r.t. (F,),
(b) M, is integrable for any n > 0, and
(¢c) E[M,|F,1] = M,_1 foranyn € N.
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(2). Similarly, (M,) is called a supermartingale (resp. a submartingale) w.r.t. (F,)
if and only if (a) holds, the positive part M, (resp. the negative part M, ) is inte-
grable for any n > 0, and (c) holds with “=" replaced by “<”, “>" respectively.

Condition (c) in the martingale definition can equivalently be written as
() ElMpy1 — M, | F,] =0 foranyn € Z,,

and correspondingly with “=" replaced by “<” or “>" for super- or submartingales.

Intuitively, a martingale is a “fair game™’, i.e., M,,_; is the best prediction (w.r.t. the
mean square error) for the next value M,, given the information up to time n — 1. A su-
permartingale is “decreasing on average”, a submartingale is “increasing on average”,
and a martingale is both “decreasing” and “increasing”, i.e., “constant on average”. In

particular, by induction on n, a martingale satisfies
E[M,] = E[M,] for any n > 0.

Similarly, for a supermartingale, the expectation values E[M,,] are decreasing. More

generally, we have:

Lemma 2.1. If (M,,) is a martingale (respectively a supermartingale) w.r.t. a filtration
(Fn) then

&)
| =

E[M, 1. | Fn M, P-almost surely for any n, k > 0.

Proof. By induction on k: The assertion holds for £ = 0, since M, is F,,-measurable.

Moreover, the assertion for £ — 1 implies

ElMyyr | Fal = E[E[Mn—f—k | Frsk1] ’ ]:n}
= E[My1|F) = M, Pas.

by the tower property for conditional expectations. U
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68 CHAPTER 2. MARTINGALES IN DISCRETE TIME

Remark (Supermartingale Convergence Theorem). A key fact in analysis is that
any lower bounded decreasing sequence of real numbers converges to its infimum. The
counterpart of this result in stochastic analysis is the Supermartingale Convergence The-
orem: Any lower bounded supermartingale converges almost surely, cf. Theorem

below.

Some fundamental examples
a) Sums of independent random variables
A Random Walk .
Su = > i, n=0,1,2,...,

=1

with independent increments 1; € £1(, A, P) is a martingale w.r.t. to the filtration
Fo = oc(m,...,nn) = (S, 51,--.,5n)
if and only if the increments 7); are centered random variables. In fact, for any n € N,
B[Sy — Sp1 | Fama] = Elnn | Fai] = Elny]

by independence of the increments. Correspondingly, (.S,,) is an (F,,) supermartingale
if and only if E[n;] < 0 for any i € N.
b) Products of independent non-negative random variables
A stochastic process

M, = f[lY n=0,1,2,...,

with independent non-negative factors Y; € £'(, A, P) is a martingale respectively a
supermartingale w.r.t. the filtration

.Fn = O'(Yl,...,Yn)

if and only if E[Y;] = 1 forany i € N, or E[Y;] < 1 for any i € N respectively. In fact,

as M, is F,-measurable and Y,,, is independent of F,,, we have

E[My1 | F] = E[My - Your | Fol = My - E[Yps1]  foranyn > 0.
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Martingales and supermartingales of this type occur naturally in stochastic growth mod-

els.

Example (Exponential martingales). Consider a Random Walk S,, = >  n; with

i.i.d. increments 7);, and let
Z(\) = Elexp(An;)], A€ R,

denote the moment generating function of the increments. Then for any A € R with

Z(\) < oo, the process

n

M) = ez = (e /Z2()

=1
is a martingale. This martingale can be used to prove exponential bounds for Ran-
dom Walks, cf. e.g. Chernov’s theorem [“Einfiihrung in die Wahrscheinlichkeitstheo-

rie”’, Theorem 8.3].

Example (CRR model of stock market). In the Cox-Ross-Rubinstein binomial model
of mathematical finance, the price of an asset is changing during each period either by
a factor 1 + a or by a factor 1 + b with a, b € (—1, 0o) such that a < b. We can model

the price evolution in a fixed number NV of periods by a stochastic process
Su=80- ] X n=0,1,2,...,N,

defined on @ = {1 + a,1 + b}", where the initial price Sy is a given constant, and
X;(w) = w;. Taking into account a constant interest rate » > 0, the discounted stock

price after n periods is

n

_ X,
p— 1 n p— . ’ .
Sp = Su/(1+7) So i|:|1 Ty

A probability measure P on () is called a martingale measure if the discounted stock
price is a martingale w.r.t. P and the filtration F,, = o(X3, ..., X,,). Martingale mea-
sures are important for option pricing under no arbitrage assumptions, cf. Section
below. For1 <n < N,

X
1+r

o . E[Xn ‘ anl]

EN _ :E Nf— _ = _
[Sn‘Fn 1] |:Sn1 Fn 1:| Snl 1+7’
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70 CHAPTER 2. MARTINGALES IN DISCRETE TIME

Hence (.5,,) is an (F,,) martingale w.r.t. P if and only if
EX,|Fu1] = 147 forany 1 <n < N. (2.1.1)

On the other hand, since in the CRR model X, only takes the values 1 + a and 1 + b,

we have

E[X,|F.1] = (1+a)-PX,=14a|F,a]+(1+0b)-PX,=1+0b|F,_1]
= 14+a+((b—a) PX,=14+0| F1]

Therefore, by 2.1.1)), (S,,) is a martingale if and only if

P[Xn:1+b\]:n,1]zz_a foranyn=1,..., N,
—a
i.e., if and only if the growth factors X1, ..., Xy are independent with
— h—
PX,=1+0 =% and PX,=1+a = —_. (2.1.2)

b—a b—a
Hence for r ¢ [a, b], a martingale measure does not exist, and for r € [a, b], the product
measure P on () satisfying (2Z.1.2)) is the unique martingale measure. Intuitively this
is plausible: If » < a or r > b respectively, then the stock price is always growing
more or less than the discount factor (1 + 7)™, so the discounted stock price can not be
a martingale. If, on the other hand, a < r < b, then (§n) is a martingale provided the
growth factors are independent with

PX,=140 (1+7)—(1+a)

P[X,=1+d (14+b)—(1+7r)

We remark, however, that uniqueness of the martingale measure only follows from

(2.11) since we have assumed that each X,, takes only two possible values (binomial
model). In a corresponding trinomial model there are infinitely many martingale mea-

sures!

¢) Successive prediction values

Let F' be an integrable random variable, and let (F,,) be a filtration on a probability
space (€2, A, P). Then the process

)

M, = E[F|F,), n=012,...
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of successive prediction values for /' based on the information up to time 7 is a martin-

gale. Indeed, by the tower property for conditional expectations, we have
E[M, | Fo-1] = E[E[F|F]| Faor] = E[F | Faci] = Muy
almost surely for any n € N.

Remark (Representing martingales as successive prediction values). The class of
martingales that have a representation as successive prediction values almost contains
general martingales. In fact, for an arbitrary (F,,) martingale ()/,,) and any finite integer
m > 0, the representation

M, = E[M,, | F,]

holds for any n = 0,1,...,m. Moreover, the L' Martingale Convergence Theorem

implies that under a uniform integrability assumption, the limit M, = nll_lgo M, exists

in £!, and the representation
M, = E[M | F,]

holds for any n > 0, see Section [4.3]below .

d) Functions of martingales

By Jensen’s inequality for conditional expectations, convex functions of martingales are

submartingales, and concave functions of martingales are supermartingales:

Theorem 2.2 (Convex functions of martingales). Suppose that (M,,),>¢ is an (F,)
martingale, and u : R — R is a convex function that is bounded from below. Then

(u(M,)) is an (F,,) submartingale.

Proof. Since u is lower bounded, u(M,,)~ is integrable for any n. Jensen’s inequality

for conditional expectations now implies
Elu(Mpi1) | Fo] 2 w(E[Mpsr | Fa]) = u(M,)
almost surely for any n > 0. U

Example. If ()/,) is a martingale then (| M,,|?) is a submartingale for any p > 1.

University of Bonn 2015/2016



72 CHAPTER 2. MARTINGALES IN DISCRETE TIME

e) Functions of Markov chains

Let p(z, dy) be a transition kernel on a measurable space (.5, ).

Definition (Markov chain, superharmonic function). (/). A discrete time stochas-
tic process (X,)n>0 with state space (S,B) defined on the probability space
(Q, A, P) is called a (time-homogeneous) Markov chain with transition kernel
p w.r.t. the filtration (F,,), if and only if
(a) (X,) is (F,) adapted, and
(b) P[X,+1 € B|F,] = p(X,, B) P-almost surely for any B € B and n > 0.

(2). A measurable function h : S — R is called superharmonic (resp. subharmonic)

w.r.t. p if and only if the integrals

o)) = [ padphls)  wes,
exist, and
(ph)(x) < h(x) (respectively (ph)(x) > h(x))
holds for any x € S.

The function h is called harmonic iff it is both super- and subharmonic, i.e., iff

(ph)(z) = h(z) foranyx € S.

By the tower property for conditional expectations, any (F,,) Markov chain is also a

Markov chain w.r.t. the canonical filtration generated by the process.

Example (Classical Random Walk on Z9). The standard Random Walk (X,,),>o on
Z% is a Markov chain w.r.t. the filtration 7X = o(X,, ..., X,,) with transition prob-

abilities p(z,r + e) = 1/2d for any unit vector e € Z?. The coordinate processes

(X")p>0, 2 =1,...,d, are Markov chains w.r.t. the same filtration with transition prob-
abilities . 0d 9

D 1) = plz,z—1) = —, P = —-

plac+1) = plae—1) = 5o Blea) = —o
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A function h : Z¢ — R is superharmonic w.r.t. p if and only if
d
Agah(z) = = Z(h(x +¢;) — 2h(x) + h(z —¢;)) = 2d((ph)(z) — h(x)) < 0
i=1

for any x € Z%.
A function h : Z — R is harmonic w.r.t. p if and only if h(z) = ax + b with a,b € R,

and h is superharmonic if and only if it is concave.

It is easy to verify that (super-)harmonic functions of Markov chains are (super-)mar-

tingales:

Theorem 2.3 (Superharmonic functions of Markov chains are supermartingales).

Suppose that (X,,) is an (F,,) Markov chain. Then the real-valued process
M, = h(X,), n=0,1,2...,

is a martingale (resp. a supermartingale) w.r.t. (JF,,) for every harmonic (resp. super-
harmonic) function h : S — R such that h(X,,) (resp. h(X,)") is integrable for all

n.

Proof. Clearly, (M,,) is again (F,,) adapted. Moreover,
E[Myi1 | Fo] = EM(Xni1) | Fa] = (ph)(Xy) P-as.
The assertion now follows immediately from the definitions. U

Below, we will show how to construct more general martingales from Markov chains,
cf. Theorem At first, however, we consider a simple example that demonstrates the

usefulness of martingale methods in analyzing Markov chains:

Example (Wright model for evolution). In the Wright model for a population of N
individuals (replicas) with a finite number of possible types, each individual in genera-

tion n + 1 inherits a type from a randomly chosen predecessor in the n th generation.
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The number X, of individuals of a given type in generation n is a Markov chain with

state space S = {0, 1, ..., N} and transition kernel
p(k,e) = Bin(N, k/N).

p(k,e)

Figure 2.1: Transition function of (X,).

Moreover, as the average of this binomial distribution is %, the function h(x) = x is
harmonic, and the expected number of individuals in generation n+ 1 given Xg, ..., X,
is

E[X,i1 | Xo, ..., X, = X,
Hence, the process (X,,) is a bounded martingale. The Martingale Convergence The-
orem now implies that the limit X, = lim X, exists almost surely, cf. Section
below. Since X, takes discrete values, we can conclude that X,, = X, eventually with

probability one. In particular, X, is almost surely an absorbing state. Hence
P[X, =0 or X, =N eventually] = 1. (2.1.3)

In order to compute the probabilities of the events “X,, = 0 eventually” and “X,, = N
eventually” we can apply the Optional Stopping Theorem for martingales, cf. Section
2.3 below. Let

T :=min{n>0: X,=0o0r X, =N}, minl := oo,

denote the first hitting time of the absorbing states. If the initial number X of individ-

uals of the given type is k, then by the Optional Stopping Theorem,
E[Xr] = FE[X,] = k.
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Hence by we obtain
P[X, = N eventually] = P[X;=N] = iE[XT] _k and
n N N’
k N —k
P|X,=0 tuall =1-— = —.
[ eventually]| ~ ~

Hence eventually all individuals have the same type, and a given type occurs eventually

with probability determined by its initial relative frequency in the population.

2.2 Doob Decomposition and Martingale Problem

We will show now that any adapted sequence of real-valued random variables can be
decomposed into a martingale and a predictable process. In particular, the variance
process of a martingale ()M,,) is the predictable part in the corresponding Doob decom-
position of the process (M?2). The Doob decomposition for functions of Markov chains

implies the martingale problem characterization of Markov chains.

Doob Decomposition

Let (€2, A, P) be a probability space and (F,,),>¢ a filtration on (€2, .A4).

Definition (Predictable process). A stochastic process (A, )n>o is called predictable

w.r.t. (Fyn) if and only if Ag is constant and A,, is measurable w.r.t. F,_; for anyn € N.

Intuitively, the value A,,(w) of a predictable process can be predicted by the information

available at time n — 1.

Theorem 2.4 (Doob decomposition). Every (F,,) adapted sequence of integrable ran-

dom variables Y, (n > 0) has a unique decomposition (up to modification on null sets)

Y, = M, + A, (2.2.1)
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into an (JF,,) martingale (M,,) and a predictable process (A,) such that Ay = 0. Ex-
plicitly, the decomposition is given by

Av = Y E[Yi - Yio1 | Fail, and M, =Y, — A,. (2.2.2)
k=1

Remark. (1). Theincrements E[Y;—Y}_1|Fy_1] of the process (A,,) are the predicted

increments of (Y,) given the previous information.

(2). The process (Y,,) is a supermartingale (resp. a submartingale) if and only if the

predictable part (A,,) is decreasing (resp. increasing).

Proof of Theorem Uniqueness: For any decomposition as in (2.2.1)) we have
Y. —-Y.1. = M,— M+ A, — A4 for any k£ € N.
If (M,,) is a martingale and (A,,) is predictable then
ElYy —Yi 1| Fro1]l = E[Ap—Apr | Fea] = Ar— Ap, P-as.

This implies that (2.2.2)) holds almost surely if Ay = 0.
Existence: Conversely, if (A,) and (M,,) are defined by then (A,,) is predictable

with Ay = 0 and (MM,,) is a martingale, since

E[M), — My_y | Fx—1] = 0 P-as. forany k € N.

Conditional Variance Process

Consider a martingale (M,,) such that M, is square integrable for any n > 0. Then,
by Jensen’s inequality, (M/?) is a submartingale and can again be decomposed into a

martingale (Mn) and a predictable process (M ),, such that (M), = 0:

M? = M, + (M), for any n > 0.
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The increments of the predictable process are given by

(M) — (M)y—y = E[M — Mi_y | Fii]
= E[(My— My1)* | Foca] + 2+ E[My—y - (M — My—1) | Fi—1]
= Var[My — My_1 | Fi_1] for any k € N.

Here we have used in the last step that E[M;, — Mj,_4 | Fi_1] vanishes since (M,,) is a

martingale.

Definition (Conditional variance process). The predictable process

<M>n = ZV&I‘ [Mk — Mk,1 | kal] 9 n > O,
k=1

is called the conditional variance process of the square integrable martingale (M,,).

Example (Random Walks). If M,, = >"""  n; is a sum of independent centered random

variables 7; and F,, = o(n,...,n,) then the conditional variance process is given by
<M>n = Z?:l Val‘[m]-

The conditional variance process is crucial for generalizations of classical limit theo-
rems such as the Law of Large Numbers or the Central Limit Theorem from sums of
independent random variables to martingales. A direct consequence of the fact that
M? — (M), is a martingale is that

E[M? = E[M]+ E[(M),)] for any n > 0.
This can often be used to derive L?-estimates for martingales.

Example (Discretizations of stochastic differential equations). Consider an ordinary
differential equation
dX;

P WX > 2.2.
7t b(X4), t >0, (2.2.3)
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where b : R? — R is a given vector field. In order to take into account unpredictable

effects on a system, one is frequently interested in studying random perturbations of the
dynamics (2.2.3)) of type

dX; = b(X;)dt+ “noise” (2.2.4)

with a random noise term. The solution (X}):>o of such a stochastic differential equa-
tion (SDE) is a stochastic process in continuous time defined on a probability space
(Q, A, P) where also the random variables describing the noise effects are defined. The
vector field b is called the (deterministic) “drift”. We will make sense of general SDE

later, but we can already consider time discretizations.

For simplicity let us assume d = 1. Let b, : R — R be continuous functions, and let
(n:)ien be a sequence of i.i.d. random variables n; € £%(, A, P) describing the noise

effects. We assume
En] =0 and Var[n;] =1 for any i € N.

Here, the values 0 and 1 are just a convenient normalization, but it is an important
assumption that the random variables are independent with finite variances. Given an
initial value xy € R and a fine discretization step size 2 > 0, we now define a stochastic

process (XT(Lh)) in discrete time by Xéh) = 1z, and

XM —xM = (X" bt o (X)Whi, fork=0,1,2,... (2.2.5)

One should think of X ,gh) as an approximation for the value of the process (X;) at time
t = k - h. The equation (2.2.3)) can be rewritten as

n—1 n—1
Xr(zh) = To + Zb(X/(ch)) ~h+ U(X;gh)) Vh- Mke+1- (2.2.6)
k=0 k=0

To understand the scaling factors & and v'h we note first that if o = 0 then (Z.2.9) re-
spectively (2.2.6)) is the Euler discretization of the ordinary differential equation (2.2.3)).
Furthermore, if b = 0 and 0 = 1, then the diffusive scaling by a factor v/l in the second
term ensures that the continuous time process X E:L/)h pt € [0, 00), converges in distri-

bution as h N\, 0. Indeed, the functional central limit theorem (Donsker’s invariance
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principle) states that the limit process in this case is a Brownian motion (Bt)te[o,oo)- In

general, (2.2.6)) is an Euler discretization of a stochastic differential equation of type

where (B;):>¢ is a Brownian motion. Let F,, = o(n1, ..., n,) denote the filtration gen-
erated by the random variables 7;. The following exercise summarizes basic properties

of the process X ") in the case of normally distributed increments.
Exercise. Suppose that the random variables 7, are standard normally distributed.

(1). Prove that the process X ) is a time-homogeneous (F,,) Markov chain with tran-
sition kernel
plz, o) = N(z+b(x)h,a(z)*h)[e].

(2). Show that the Doob decomposition X" = A" 4 A g given by

[y

n—

n—1
Agzh) - Zb<X]E;h)) 'ha M(h) = Zo+ O-<Xlg;h))\/ﬁnk+la (227)
k=0

n

and the conditional variance process of the martingale part is

(MM, = o(X"M)2 . . (2.2.8)
k=0
(3). Conclude that
n—1
E[(MP —2)?] = > Elo(X{")} . (2.2.9)
k=0

The last equation can be used in combination with the maximal inequality for mar-
tingales to derive bounds for the processes (X)) in an efficient way, cf. Section

below.

Remark (Quadratic variation). The quadratic variation of a square integrable martin-
gale (M,,) is the process [M],, defined by

n

M, = S (M= My 1), 00
k=1
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It is easy to verify that M?> — [M], is again a martingale. However, [M],, is not pre-
dictable. For continuous martingales in continuous time, the quadratic variation and the
conditional variance process coincide. In discrete time or for discontinuous martingales

they are usually different.

Martingale problem

For a Markov chain (X,,) we obtain a Doob decomposition
f(X,) = MU 4 Al (2.2.10)

for any function f on the state space such that f(X,,) is integrable for each n. Compu-

tation of the predictable part leads to the following general result:

Theorem 2.5 (Martingale problem for time-homogeneuous Markov chains). Let p
be a stochastic kernel on a measurable space (S, B). Then for an (F,,) adapted stochas-

tic process (X, )n>0 with state space (S, B) the following statements are equivalent:
(1). (X,) is a time homogeneous (F,,) Markov chain with transition kernel p.

(2). (X,) is a solution of the martingale problem for the operator ¥ = p — 1, i.e.,

there is a decomposition
n—1
f(Xn) = MI + Y (ZH(X),  n>0,
k=0

with an (F,,) martingale (M,[@f])for every function f : S — R such that f(X,) is
integrable for each n, or, equivalently, for every bounded function f : S — R.

In particular, we see once more that if f(X,,) is integrable and f is harmonic (£ f = 0)
then f(X,) is a martingale, and if f is superharmonic ((Zf < 0), then f(X,) is a

supermartingale. The theorem hence extends Theorem [2.3] above.
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Proof. The implication “(i)=-(ii)” is just the Doob decomposition for f(X,). In fact,
by Theorem 2.4 the predictable part is given by

Al = iE[f(Xk+1)_f(Xk)|-Fk]
= S f) - f) = S(ZAX),

and M} = f(X,) — Al is a martingale.
To prove the converse implication “(i1)=-(1)” suppose that MY
bounded f : S — R. Then

Visa martingale for any

0 = BMY, - M| R
B (Xaa) = (Xn) | Fal = () (X0) = F(X0))
B (Xui) | Fu] = (0f)(X,)

almost surely for any bounded function f. Hence (X,,) is an (F,,) Markov chain with

transition kernel p. 0]

Example (One dimensional Markov chains). Suppose that under P,, the process (X,,)
is a time homogeneous Markov chain with state space S = R or S = Z, initial state
Xy = z, and transition kernel p. Assuming X,, € £%(Q, A, P) for each n, we define the
“drift’ and the “fluctuations” of the process by

b(ZL‘) = Ex[Xl—XQ]
a(r) = Var,[X; — Xo|.

We now compute the Doob decomposition of (X,,). Choosing f(x) = = we have

p-Df@ = [ysed - = EL6-X)] = ba)
Hence by Theorem [2.3]
n—1
X, = M,+) bXy) (2.2.11)
k=0
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with an (F,,) martingale (M,,). To obtain detailed information on },,, we compute the

variance process: By (2.2.11)) and the Markov property, we obtain

n—1 n—1 n—1
(M), =Y Var[Mpe — My | Fi] = > Var[Xpp — X | Fi] = a(Xy).
k=0 k=0 k=0
Therefore
n—1
M2 = M+ a(Xp) (2.2.12)
k=0

with another (F,,) martingale (]T/fn) The functions a(x) and b(x) can now be used in
connection with fundamental results for martingales as e.g. the maximal inequality (cf.

2.4 below) to derive bounds for Markov chains in an efficient way.

2.3 Gambling strategies and stopping times

Throughout this section, we fix a filtration (F,,),>0 on a probability space (€2, A, P).

Martingale transforms

Suppose that (M,,),>o is a martingale w.r.t. (F,,), and (C,,)nen is a predictable sequence
of real-valued random variables. For example, we may think of (), as the stake in the
n-th round of a fair game, and of the martingale increment M,, — M,,_; as the net gain
(resp. loss) per unit stake. In this case, the capital [,, of a player with gambling strategy

(C,,) after n rounds is given recursively by

I, = I1,.1+C, - (M,—M,) for any n € N,
ie.,
L, = I+ Cp-(My— M)
k=1

Stochastic Analysis Andreas Eberle



2.3. GAMBLING STRATEGIES AND STOPPING TIMES 83

Definition (Martingale transform). The stochastic process Cy M defined by
(CoM), = ch (My, — My_q) foranyn >0,
k=1

is called the martingale transform of the martingale (M, ),>o w.r.t. the predictable

sequence (C,,)n>1, or the discrete stochastic integral of C w.r.t. M.

We will see later that the process C, M is a time-discrete version of the stochastic inte-
gral [ Cs dM; of a predictable continuous-time process C' w.r.t. a continuous-time mar-
tingale M. To be precise, (CyM),, coincides with the It6 integral fon Cry dM ) of the

left continuous jump process ¢ — Cf; w.r.t. the right continuous martingale ¢ — M|,|.

Example (Martingale strategy). One origin of the word “martingale” is the name of
a well-known gambling strategy: In a standard coin-tossing game, the stake is doubled
each time a loss occurs, and the player stops the game after the first time he wins. If the

net gain in n rounds with unit stake is given by a standard Random Walk
M, = m+...4n,  niid. with Plp; =1] = P[p; = —1] = 1/2,
then the stake in the n-th round is
C, =21 ifpg=...=n,1=—1, and C, = 0 otherwise.

Clearly, with probability one, the game terminates in finite time, and at that time the

player has always won one unit, i.e.,

P[(CeM), =1 eventually] = 1.
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At first glance this looks like a safe winning strategy, but of course this would only be

the case, if the player had unlimited capital and time available.

Theorem 2.6 (You can’t beat the system!). (1). If (M,),>o is an (F,) martingale,
and (C,),>1 is predictable with C,, - (M,, — M,,_1) € LY(Q, A, P) foranyn > 1,
then C,M is again an (F,,) martingale.

(2). If (M,,) is an (F,,) supermartingale and (C.,),>1 is non-negative and predictable
with C,, - (M,, — M,,_1) € L for any n, then C,M is again a supermartingale.

Proof. Forn > 1 we have

E[(CQM)n - (COM)n—l | fn—l] = E[Cn : (Mn - Mn—l) | fn—l]
— - E[My—M, 1| Foq] = 0 Pas.
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This proves the first part of the claim. The proof of the second part is similar. U

The theorem shows that a fair game (a martingale) can not be transformed by choice of
a clever gambling strategy into an unfair (or “superfair”’) game. In models of financial
markets this fact is crucial to exclude the existence of arbitrage possibilities (riskless

profit).

Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain
E[(CeM),] = E[(CeM)o] = 0 forany n > 0

by the martingale property, although

lim (CoM), =1 P-almost surely.

n—oo

This is a classical example showing that the assertion of the dominated convergence

theorem may not hold if the assumptions are violated.

Remark. The integrability assumption in Theorem[2.6]is always satisfied if the random

variables (), are bounded, or if both C;, and M, are square-integrable for any n.

Example (Financial market model with one risky asset). Suppose that during each
time interval (n — 1,n), an investor is holding ®,, units of an asset with price .S, per
unit at time n. We assume that (.S,,) is an adapted and (®,,) is a predictable stochastic
process w.r.t. a filtration (F,,). If the investor always puts his remaining capital onto
a bank account with guaranteed interest rate r (“riskless asset”) then the change of his

capital V,, during the time interval (n — 1,n) is given by

Vn = Vn—l -+ (I)n . (Sn - Sn—l) -+ (Vn—l - (I)n . Sn—l) =T (231)

Considering the discounted quantity \7” = V,/(1 + )", we obtain the equivalent
recursion

V, = Voo 4+ @y - (S, — Syy) forany n > 1. (2.3.2)

In fact, (2.3.1)) holds if and only if

Vo= (14+7r)\Voy = @, (S — (1 +7)S-1),
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which is equivalent to ([2.3.2)). Therefore, the discounted capital at time n is given by

Vi = Vot (9.5),.
By Theorem [2.6] we can conclude that, if the discounted price process (.S,) is an (F,,)

martingale w.r.t. a given probability measure, then (V},) is a martingale as well. In this

case, assuming that 1/} is constant, we obtain in particular
EV,] = Vi,

or, equivalently,
EV,) = (1+7r)"W for any n > 0. (2.3.3)

This fact, together with the existence of a martingale measure, can now be used for
option pricing under a no-arbitrage assumption. To this end we assume that the payoff
of an option at time N is given by an (F)-measurable random variable F'. For example,
the payoff of a European call option with strike price K based on the asset with price

process (S,,) is Sy — K if the price S,, at maturity exceeds K, and 0 otherwise, i.e.,
F = (Sy—K)".

Suppose further that the option can be replicated by a hedging strategy (®,,), i.e., there
exists an Jp-measurable random variable V}, and a predictable sequence of random vari-
ables (®,,)1<n<n such that

F =1Vy

is the value at time N of a portfolio with initial value Vj, w.r.t. the trading strategy (®,,).
Then, assuming the non-existence of arbitrage possibilities, the option price at time
0 has to be Vj, since otherwise one could construct an arbitrage strategy by selling
the option and investing money in the stock market with strategy (®,,), or conversely.
Therefore, if a martingale measure exists (i.e., an underlying probability measure such
that the discounted stock price (gn) is a martingale), then the no-arbitrage price of the
option at time 0 can be computed by (2.3.3) where the expectation is taken w.r.t. the

martingale measure.

The following exercise shows how this works out in the Cox-Ross-Rubinstein binomial

model:
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Exercise (No-Arbitrage Pricing in the CRR model). Consider the CRR binomial
model, ie., Q = {1 +a,1 +b}Y with -1 <a <7r < b < oo, X;(wi,...,wn) = w;,
Fn=0(Xy,...,X,), and

where Sy is a constant.

(1). Completeness of the CRR model: Prove that for any function F' : {2 — R there
exists a constant 1 and a predictable sequence (®,,)1<,<xn such that F' = Vy
where (V},)1<n<n is defined by (2.3.1)), or, equivalently,

F
(I+r)N

Hence in the CRR model, any Fxy-measurable function F' can be replicated by

= ‘7]\/' - %+((I).§)N

a predictable trading strategy. Market models with this property are called com-

plete.

Hint: Prove inductively that forn = N,N —1,...,0, F = F/(1 + )~ can be

represented as
N

F=V,+ > &-(8—5.)

i=n-+1

with an F,,-measurable function \7” and a predictable sequence (P;),+1<i<n-

(2). Option pricing: Derive a general formula for the no-arbitrage price of an option
with payoff function F' : 2 — R in the CRR model. Compute the no-arbitrage

price for a European call option with maturity /V and strike K explicitly.

Stopped Martingales

One possible strategy for controlling a fair game is to terminate the game at a time
depending on the previous development. Recall that a random variable 7" : Q —
{0,1,2,...} U{oo} is called a stopping time w.r.t. the filtration (F,,) if and only if
the event {T" = n} is contained in F,, for any n > 0, or equivalently, iff {T' < n} € F,
for any n > 0.
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Example (Hitting times). (1). The first hitting time
Tg = min{n>0:X, € B} (where min () := o)
and the first passage or return time
Sp = min{n>1:X, € B}

to a measurable subset B of the state space by an (F,,) adapted stochastic process

are (F,,) stopping times. For example, for n > 0,
{Tg=n} = {X,eBY.. .. X,..€BX,eB} € F,.

If one decides to sell an asset as soon as the price 5,, exceeds a given level A > 0

then the selling time equals 7{ ) and is hence a stopping time.

(2). On the other hand, the last visit time
Ly = sup{n>0:X,¢€ B} (where sup () := 0)

is not a stopping time in general. Intuitively, to decide whether L = n, informa-

tion on the future development of the process is required.

We consider an (F,,)-adapted stochastic process (M,,),>0, and an (F,,)-stopping time
T on the probability space (2,4, P). The process stopped at time 7 is defined as
(MT/\n)nZO where

M, (w) forn < T'(w),

MT/\n(w) - MT(w)/\n(w) -
Mypy(w)  forn > T(w).

For example, the process stopped at a hitting time 7z gets stuck at the first time it enters

the set B.

Theorem 2.7 (Optional Stopping Theorem,Version 1). If (M,,),>o is a martingale
(resp. a supermartingale) w.r.t. (F,), and T is an (F,)-stopping time, then the stopped
process (Mrpn)n>o is again an (F,,)-martingale (resp. supermartingale). In particular,
we have

EMa] £ E[M)  foranyn>0.
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Proof. Consider the following strategy:
Cn = Iirsny = 1= Iir<n_y,

1.e., we put a unit stake in each round before time 7" and quit playing at time 7". Since

T is a stopping time, the sequence (C,,) is predictable. Moreover,
My — My = (CuM),  foranyn > 0. (2.3.4)

In fact, for the increments of the stopped process we have

= Cn : (Mn - Mn—1)7

M, — M, ifT >n
MT/\n_MT/\(nfl) = 0 ST <n—1

and (2.3.4)) follows by summing over n. Since the sequence (C,,) is predictable, bounded
and non-negative, the process C, M is a martingale, supermartingale respectively, pro-
vided the same holds for M. O

Remark (IMPORTANT). (1). In general, it is NOT TRUE under the assumptions in
Theorem [2.7] that

E[My] = E[M,], E[Mz] < E[M,] respectively. (2.3.5)

Suppose for example that (M,,) is the classical Random Walk starting at 0 and
T = Ty is the first hitting time of the point 1. Then, by recurrence of the
Random Walk, 7' < oo and My = 1 hold almost surely although M, = 0.

(2). If, on the other hand, T is a bounded stopping time, then there exists n € N such

that 7'(w) < n for any w. In this case, the optional stopping theorem implies
<
E[Mz] = E[Mrn] 2 E[M,).

More general sufficient conditions for (2.3.3)) are given in Theorems 2.8} 2.9 and

below.

Example (Classical ruin problem). Let a,b,x € Z with a < z < b. We consider the

classical Random Walk

n 1
X, =z+> m  npiid with Pl = £1] = 3
1=1
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with initial value X, = x. We now show how to apply the Optional Stopping Theorem

to compute the distributions of the exit time
T(w) = min{n >0 : X, (w) & (a,b)},

and the exit point X7. These distributions can also be computed by more traditional
methods (first step analysis, reflection principle), but martingales yield an elegant and

general approach.

(1). Ruin probability r(z) = P[Xr = a).
The process (X)) is a martingale w.r.t. the filtration F,, = o(ny,...,7n,), and
T < oo almost surely holds by elementary arguments. As the stopped process
X7, is bounded (a < X7p, < b), we obtain

n—oo

r = E[Xo] = E[X7pn] — E[X7] = a-r(x)+b-(1—r(x))

by the Optional Stopping Theorem and the Dominated Convergence Theorem.

Hence
b—=x

r(z) = (2.3.6)

a—1x

(2). Mean exit time from (a,b).
To compute the expectation E[T], we apply the Optional Stopping Theorem to
the (F,,) martingale
M, = X2 —n.

By monotone and dominated convergence, we obtain

2 = E[My = E[Mrn,) = E[X2,]— E[T An)
% E[XZ] - E[T].

Therefore, by (2.3.6),

E[T] = E[XZ] -2 = a® r(x) +b* (1 —r(x)) — 22
= (b—2x) - (x—a). (2.3.7)
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(3).

.

Mean passage time of b.
The first passage time 7, = min{n > 0 : X,, = b} is greater or equal than the
exit time from the interval (a, b) for any a < . Thus by (2.3.7), we have

E[T,) > lim (b—2x)(x—a) = oo,

a——00
i.e., T is not integrable! These and some other related passage times are im-
portant examples of random variables with a heavy-tailed distribution and infinite

first moment.

Distribution of passage times.
We now compute the distribution of the first passage time 7}, explicitly in the case

x =0and b= 1. Hence let 7" = T}. As shown above, the process

M) = e /(cosh \)™, n >0,

is a martingale for each A € R. Now suppose A > 0. By the Optional Stopping
Theorem,

1 = E[MJ] = E[M3,,] = E[e*""/(cosh A\)"""] (2.3.8)

for any n € N. As n — oo, the integrands on the right hand side converge
to e*(cosh \) ™ - I{7<o0}. Moreover, they are uniformly bounded by e*, since
Xran < 1for any n. Hence by the Dominated Convergence Theorem, the expec-
tation on the right hand side of (2.3.8) converges to Efe*/(cosh \)T ; T < oo,

and we obtain the identity
El(coshA\)™"; T < o0] = e for any A > 0. (2.3.9)

Taking the limit as A \, 0, we see that P[T" < oc| = 1. Taking this into account,
and substituting s = 1/cosh A in (2.3.9), we can now compute the generating

function of 1" explicitly:
E[lsT] = e = (1-V1-3s2)/s for any s € (0, 1). (2.3.10)

Developing both sides into a power series finally yields

an .P[T =n] = Z(_l)erl (1/2> g2m=1

n=0 m=1 m
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Therefore, the distribution of the first passage time of 1 is given by

P[T =2m—1] = (—1)™"! (f) = (—1)’““-%- (—%) _ (% —m+ 1) /m

and P[T = 2m] = 0 for any mN.

Optional Stopping Theorems

Stopping times occurring in applications are typically not bounded. Therefore, we need
more general conditions guaranteeing that (2.3.3) holds nevertheless. A first general

criterion is obtained by applying the Dominated Convergence Theorem:

Theorem 2.8 (Optional Stopping Theorem, Version 2). Suppose that (M,,) is a mar-
tingale w.r.t. (F,), T is an (F,,)-stopping time with P[T" < oo] = 1, and there exists a
random variable Y € L' (2, A, P) such that

|Mpan| < Y P-almost surely for any n € N.

Then
E[Mr] = E[M,].

Proof. Since P[T < oco] = 1, we have

Mr = lim Mp,, P-almost surely.
n—oo

By Theorem 2.7 E[M,] = E[Mrn,), and by the Dominated Convergence Theorem,
E[Mpp,] — E[Mr] as n — oo. O

Remark (Weakening the assumptions). Instead of the existence of an integrable ran-
dom variable Y dominating the random variables Mr,,, n € N, it is enough to assume
that these random variables are uniformly integrable, i.e.,

sup E[|MTM\ o | Mpan| > c} - 0 as ¢ — 00.

neN
A corresponding generalization of the Dominated Convergence Theorem is proven in
Section 4.3 below.
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For non-negative supermartingales, we can apply Fatou’s Lemma instead of the Domi-
nated Convergence Theorem to pass to the limit as n — oo in the Stopping Theorem.
The advantage is that no integrability assumption is required. Of course, the price to

pay is that we only obtain an inequality:

Theorem 2.9 (Optional Stopping Theorem, Version 3). If ()M,,) is a non-negative

supermartingale w.r.t. (F,), then
E[My] > E[Mr; T < oo

holds for any (F,,) stopping time T.

Proof. Since My = lim Mrpp, on {T < oo}, and My > 0, Theorem [2.7] combined
n—oo

with Fatou’s Lemma implies

E[M,] > liminf E[Mpn,] > E [liminf Mw] > E[My; T < ool.

n—oo n—oo

O

Example (Dirichlet problem for Markov chains). Suppose that w.r.t. the probability
measure P,, the process (X,,) is a time-homogeneous Markov chain with measurable
state space (S, BB), transition kernel p, and start in . Let D € BB be a measurable
subset of the state space, and f : D — R a measurable function (the given “boundary
values™), and let

T = min{n >0 : X, € D%}

denote the first exit time of the Markov chain from D. By conditioning on the first
step of the Markov chain, one can show that if f is non-negative or bounded, then the
function

W) = Ef(Xr); T<odl, (veS),

is a solution of the Dirichlet problem
(ph)(x) = h(z) forz € D,
h(z) = f(x) for v € DC,
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see [ XXXStochastic Processes].

By considering the martingale h(X7x,) for a function A that is harmonic on D, we

obtain a converse statement:

Exercise (Uniqueness of the Dirichlet problem). Suppose that P,[T < oc] = 1 for
any r € S.

(1). Prove that h(X7x,) is a martingale w.r.t. P, for any bounded solution A of the
Dirichlet problem and any = € S.

(2). Conclude that if f is bounded, then
h(z) = E.[f(X7)] (2.3.11)
is the unique bounded solution of the Dirichlet problem.

(3). Similarly, show that for any non-negative f, the function % defined by is

the minimal non-negative solution of the Dirichlet problem.

We finally state a version of the Optional Stopping Theorem that applies in particular to

martingales with bounded increments:

Stochastic Analysis Andreas Eberle



2.3. GAMBLING STRATEGIES AND STOPPING TIMES 95

Corollary 2.10 (Optional Stopping for martingales with bounded increments). Sup-
pose that (M,,) is an (F,,) martingale, and there exists a finite constant K € (0, 00) such

that
E[|Myi1 — M,| | F) €< K P-almost surely for any n > 0. (2.3.12)
Then for any (F,,) stopping time T with E[T| < oo, we have

E[Mr] = E[M,).

Proof. For any n > 0,
[ Mppn| < [Mol + Y [Migy — My - Irssy.
=0

Let Y denote the expression on the right hand side. We will show that Y is an integrable
random variable — this implies the assertion by Theorem 2.8 To verify integrability of
Y note that the event {T" > i} is contained in F; for any ¢ > 0 since T is a stopping
time. Therefore and by (2.3.12)),

Summing over %, we obtain

EY] < E[|Mo|]+k-ip[T>¢] = E[|My|] + k- E[T] < oo

=0

by the assumptions. O

Exercise (Integrability of stopping times). Prove that the expectation E[T] of a stop-
ping time 7’ is finite if there exist constants € > 0 and k£ € N such that

PT<n+k|F,) >« P-a.s. for any n € N.

University of Bonn 2015/2016



96 CHAPTER 2. MARTINGALES IN DISCRETE TIME

Wald’s identity for random sums

We finally apply the Optional Stopping Theorem to sums of independent random vari-
ables with a random number 7" of summands. The point is that we do not assume that
T is independent of the summands but only that it is a stopping time w.r.t. the filtration

generated by the summands.
Let S, = n1 + ... + 1, with i.i.d. random variables n; € £!(Q, A, P). Denoting by m
the expectations of the increments 7);, the process

M, =S5,—n-m

is a martingale w.r.t. 7,, = o(n1, . .., n,). By applying Corollary 2.10/to this martingale,

we obtain:

Theorem 2.11 (Wald’s identity). Suppose that T is an (F,,) stopping time with E[T] <

00. Then
E[Sr] = m - E[T)].

Proof. For any n > 0, we have
El[Mys1 — M| | Fo] = Elnpsr —m| [F] = El|nn —ml]

by the independence of the 7;. As the 7); are identically distributed and integrable, the
right hand side is a finite constant. Hence Corollary 2.10/ applies, and we obtain

0 = E[My] = E[My] = E[Sy] —m - E[T].

2.4 Maximal inequalities

For a standard Random Walk S,, = 7y + ... + 1, n; i.i.d. with P[n; = +1] = 1/2, the
reflection principle implies the identity
Plmax(Sy, S1,...,5,) > ¢ = P[S, >c]+ P[S, < ¢;max(Sy, Si,...,5) >
= P[|S,] > ]+ P[S, > (]
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for any ¢ € N. In combination with the Markov-Ceby3ev inequality this can be used to
control the running maximum of the Random Walk in terms of the moments of the last

value S,,.

Maximal inequalities are corresponding estimates for max (M, M, ..., M,) or sup M
k>0
when (M,,) is a sub- or supermartingale respectively. These estimates are an important

tool in stochastic analysis. They are a consequence of the Optional Stopping Theorem.

Doob’s inequality

We first prove the basic version of maximal inequalities for sub- and supermartingales:

Theorem 2.12 (Doob).

(1). Suppose that (M,,),>o is a non-negative supermartingale. Then

P |sup M > c} <
k>0

o=

- E[My] forany ¢ > 0.

(2). Suppose that (M,,),>o is a non-negative submartingale. Then

1 1
P [max M, Zc} < -.F [Mn; max M, Zc] < —-E[M,] foranyc> 0.
0<k<n c < c

Proof. (1). For c > 0 we consider the stopping time
T. = min{k >0 : M > c}, min ) = oo.

Note that 7. < oo whenever sup M), > c. Hence by the version of the Optional

Stopping Theorem for non-negative supermartingales, we obtain
1 1
Plsup My > ¢] < P[T, < o] < —E[Mry,; T, < oo] < —E[M,).
c c

Here we have used in the second and third step that (M,,) is non-negative. Re-

placing ¢ by ¢ — ¢ and letting € tend to zero we can conclude

1
Plsup M, > ¢] = li{‘rg)P[supMk > c—¢| < liminf E[My] = - E[M,].
€ C

e\0 c—¢

University of Bonn 2015/2016



98 CHAPTER 2. MARTINGALES IN DISCRETE TIME

(2). For a non-negative supermartingale, we obtain

1
leax Mch} = P[T.<n| < —E[Mr,; T. <n
¢

0<k<n

1 & 1 &
= sz_OE[Mk;Tc:k] < E;E[Mn;n:k]

1
= —-E[M,;T.<n].
c

Here we have used in the second last step that E[M;, ; T, = k| < E[M,,; T. = k]
since (M,,) is a supermartingale and {7, = k} is in F.
U

First consequences of Doob’s maximal inequality for submartingales are extensions of

the classical Markov- Cebysev inequalities:

Corollary 2.13. (1). Suppose that (M,,),>¢ is an arbitrary submartingale (not neces-

sarily non-negative!). Then

1
P{maXMch} < —E[MJ“
c

o5 max My, > c] forany c > 0, and
k<n <n

P {r&ax M, > c] < e MF {e’\Mn ; r}§1<ax M > C:| forany \,c > 0.

(2). If (M,,) is a martingale then, moreover, the estimates
1
P {max|]\/[k| > c} < —F {|Mn|p; max | My| > c}
k<n cP k<n

hold for any ¢ > 0 and p € [1, o).

Proof. The corollary follows by applying the maximal inequality to the non-negative
submartingales M", exp(AM,,), | M, |P respectively. These processes are indeed sub-
martingales, as the functions x — z* and = — exp(Az) are convex and non-decreasing

for any A > 0, and the functions x — |z|? are convex for any p > 1. U
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LP inequalities

The last estimate in Corollary 2.13] can be used to bound the L” norm of the running
maximum of a martingale in terms of the L”-norm of the last value. The resulting bound,

known as Doob’s LP-inequality, is crucial for stochastic analysis. We first remark:

y
Lemma 2.14. IfY : Q — R, is a non-negative random variable, and G(y) = [ g(x)dx
0
is the integral of a non-negative function g : R, — R, then
EIGY) = [ gle)- PIY = d de
0
Proof. By Fubini’s theorem we have
Y o)
BGW) = E|[g@de| = E| [ Tan(@gte)de
0 0
_ /g(c) P[Y > d de.
0
0]

Theorem 2.15 (Doob’s L? inequality). Suppose that (M,,),>o is a martingale, and let

My := max |My|, and ~ M* := sup |M,].
k

k<n
Then, for any p,q € (1,00) such that% + % =1, we have

IMlle < - [ Mullze, — and — |[M|[r < g -sup || My o

In particular, if (M,,) is bounded in LP then M* is contained in LP.
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Proof. By Lemma Corollary applied to the martingales M,, and (—M,,), and
Fubini’s theorem, we have
BlOy) B [ pot PV 2 de

0
00

EL3 -2
< /pcp E[|M,|; My = c]dc
0
M*

n

Fub.

= F |Mn\-/pcp2dp
0

P _E(a,)- (]

p—1

forany n > 0 and p € (1, 00). Setting ¢ = -£ and applying Holder’s inequality to the

right hand side, we obtain
E[(M;)] < q- Ml - (M) e = q- | Myl|ze - E[(M;;)"]M°,

i.e.,
1Ml = EIOMY0 < g | Malloo. (2.4.1)

This proves the first inequality. The second inequality follows as n — oo, since

1Ml = |

lim M* = liminf | M}, < q-sup||M,|
n—»00 Lp n—o00 neN

by Fatou’s Lemma. ]

Hoeffding’s inequality

For a standard Random Walk (.S,,) starting at 0, the reflection principle combined with

Bernstein’s inequality implies the upper bound

P[max(Sp,...,S,) >¢] < 2-P[S, >c] < 2-exp(—2c¢*/n)

forany n € Nand ¢ € (0, c0). A similar inequality holds for arbitrary martingales with

bounded increments:
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Theorem 2.16 (Azuma, Hoeffding). Suppose that (M,,) is a martingale such that
|M,, — M,_+1| < a, P-almost surely

for a sequence (a,,) of non-negative constants. Then

1 n
— > < ) Z
P Ikngaic(Mk M) > c} < exp ( 5¢ E al> (2.4.2)

foranyn € Nand c € (0,00).

Proof. W.l.o.g. we may assume M, = 0. Let Y,, = M,, — M,,_; denote the martingale
increments. We will apply the exponential form of the maximal inequality. For A > 0

and n € N, we have,

n

[

i=1

E[eAMn] — FE = F [eAM"—l - FB [eAY" ‘ anl]] . (243)

To bound the conditional expectation, note that

A < la, — Ya e—Aan | la, + Yy Aan

¢ - 2 a, 2 a,

holds almost surely, since  — exp(Az) is a convex function, and —a, < Y, <
a,. Indeed, the right hand side is the value at Y,, of the secant connecting the points

(—an, exp(—Aay,)) and (a,, exp(Aa,)). Since (M,,) is a martingale, we have
EY,|Foa] = 0,
and therefore
EleM | Fooa] < (e +e*) /2 = cosh(Aa,) < Pan)?/2
almost surely. Now, by (2.4.3]), we obtain

E[e)\yn] < E[e)\Mn—l] . e(Aan)2/2_
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Hence, by induction on n,

1 n
E[eMn] < exp <§>\2 Z af) for any n € N, (2.4.4)

and, by the exponential maximal inequality (cf. Corollary 2.13),

k<n

1 n
Plmax My > ¢| < exp (—)\c + 5)\2 Zl a?) (2.4.5)

holds for any n € N and ¢, A > 0.

For a given c and n, the expression on the right hand side of is minimal for A =
¢/ > a?. Choosing A correspondingly, we finally obtain the upper bound 2.4.2). O
Hoeffding’s concentration inequality has numerous applications, for example in the
analysis of algorithms, cf. [Mitzenmacher, Upful: Probability and Computing]. Here,

we just consider one simple example to illustrate the way it typically is applied:

Example (Pattern Matching). Suppose that X, X, ..., X,, is a sequence of indepen-
dent, uniformly distributed random variables (“letters”) taking value sin a finite set S

(the underlying “alphabet”), and let

n—I

N = Z[{Xi+1:a1,xi+2:aw ----- Xiti=a;} (246)
i=0

denote the number of occurrences of a given “word” ajas - - - a; with [ letters in the
random text. In applications, the “word” could for example be a DNA sequence. We

easily obtain
E[N] =) PXyp=a fork=1,...1] = (n—1+1)/|S|" (2.4.7)
=0

To estimate the fluctuations of the random variable N around its mean value, we con-

sider the martingale

MZ:E[N‘O'(Xl,,XZ)], (’l:O,l,,n)
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with initial value My, = E[N] and terminal value M, = N. Since at most [ of the
summands in (2.4.6) are not independent of 4, and each summand takes values 0 and 1

only, we have
|M; — M; 1| <1 foreachi=0,1,...,n.

Therefore, by Hoeffding’s inequality, applied in both directions, we obtain
PN — E[N]| > ¢] = P[|M, — My| > ¢] < 2exp(—c?/(2nl?))
for any ¢ > 0, or equivalently,
P[|N — E[N]| > ¢-1v/n] < 2-exp(—£%/2) for any ¢ > 0. (2.4.8)

The equation (2.4.7)) and the bound (2.4.8]) show that N is highly concentrated around

its mean if [ is small compared to /n.
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Chapter 3
Martingales in continuous time

The notion of a martingale, sub- and supermartingale in continuous time can be defined
similarly as in the discrete parameter case. Fundamental results such as the optional
stopping theorem or the maximal inequality carry over from discrete parameter to con-
tinuous time martingales under additional regularity conditions as, for example, conti-
nuity of the sample paths. Similarly as for Markov chains in discrete time, martingale
methods can be applied to derive explicit expressions and bounds for probabilities and

expectations of Brownian motion in a clear and efficient way.

We start with the definition of martingales in continuous time. Let ({2, A, P) denote a

probability space.

Definition. (7). A continuous-time filtration on (2, A) is a family (F;)ico,) of o-
algebras F; C A such that F, C F; forany 0 < s < .

(2). A real-valued stochastic process (M;)icio o) on (S, A, P) is called a martingale
[0,00)
(or super-, submartingale) w.r.t. a filtration (F;) if and only if

(a) (M,) is adapted w.r.t. (F), i.e., My is F; measurable for any t > 0.
(b) For anyt > 0, the random variable M, (resp. M,", M, ) is integrable.

(<,>)

(c) E[M,; | Fs] M P-almost surely for any 0 < s < t.
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3.1 Some fundamental martingales of Brownian Motion

In this section, we identify some important martingales that are functions of Brownian

motion. Let (B;)¢>( denote a d-dimensional Brownian motion defined on (2, A, P).

Filtrations generated by Brownian motion

Any stochastic process (X;):>o in continuous time generates a filtration
FX = 0(X,:0<s<t), t>0.

However, not every hitting time that we are interested in is a stopping time w.r.t. this
filtration. For example, for one-dimensional Brownian motion (B;), the first hitting
time 7' = inf{t > 0 : B; > c} of the open interval (c, ) is not an (F7) stopping
time. An intuitive explanation for this fact is that for ¢ > 0, the event {T" < ¢} is not
contained in ]—"tB , since for a path with B; < con [0,¢] and B, = ¢, we can not decide
at time ¢, if the path will enter the interval (¢, c0) in the next instant. For this and other

reasons, we also consider the right-continuous filtration

Fo=(Fl.. t=0

e>0

that takes into account “infinitesimal information on the future development.”

Exercise (Hitting times as stopping times). Prove that the first hitting time 7y =
inf{t >0 : B; € A} of aset A C R?is an (F?) stopping time if A is closed, whereas

T is an (F;) stopping time, but not necessarily an (F) stopping time if A is open.

It is easy to verify that a d-dimensional Brownian motion (B;) is also a Brownian motion

w.r.t. the right-continuous filtration (F;):

Lemma 3.1. For any 0 < s < t, the increment B; — B, is independent of Fs with
distribution N (0, (t — s) - I).

Proof. Since t — B, is almost surely continuous, we have

B,— B, = lim (B, — B,,.)  P-as. (3.1.1)
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For small ¢ > 0 the increment B; — B, is independent of F, fw and hence independent
of F,. Therefore, by (3.1.1), B; — B, is independent of F; as well. O

Another filtration of interest is the completed filtration (F/"). A o-algebra F is called
complete w.r.t. a probability measure P iff it contains all subsets of P-measure zero
sets. The completion of a o-algebra A w.r.t. a probability measure P on (2, .A) is the

complete o-algebra
AT = {ACQ:3A A e At AL CAC Ay, P[Ay\ Al =0}

generated by all sets in .4 and all subsets of P-measure zero sets in A.

It can be shown that the completion (F/) of the right-continuous filtration (F;) is again
right-continuous. The assertion of Lemma [3.1] obviously carries over to the completed

filtration.

Remark (The ‘“usual conditions”). Some textbooks on stochastic analysis consider
only complete right-continuous filtrations. A filtration with these properties is said to
satisfy the usual conditions. A disadvantage of completing the filtration, however, is
that (F7) depends on the underlying probability measure P (or, more precisely, on its
null sets). This can cause problems when considering several non-equivalent probability

measures at the same time.

Brownian Martingales

We now identify some basic martingales of Brownian motion:

Theorem 3.2 (Elementary martingales of Brownian motion). For a d-dimensional

Brownian motion (By) the following processes are martingales w.r.t. each of the filtra-
tions (FP), (F;) and (FF):

(1). The coordinate processes Bt(i), 1< <d

(2). Bt(i)Bt(j) —t-0; forany1 <1i,j <d.
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(3). exp(a- B, — $|al?t) forany o € R

The processes M = exp(a - By — 3|a|*t) are called exponential martingales.

Proof. We only prove the second assertion for d = 1 and the right-continuous filtration
(F:). The verification of the remaining statements is left as an exercise.
For d = 1, since B; is normally distributed, the F;-measurable random variable Bt2 —t

is integrable for any ¢. Moreover, by Lemma[3.1]

BB} - B} |F,] = El(B,-B,)’| F]+2B, E|B, - B, | F|]
= E[(Bt_Bs)]+QBs'E[Bt_BS] =t—s

almost surely. Hence
E[B} —t|F,) = B2—s  P-as.forany0 < s <t,
i.e., B? — tis an (F;) martingale. O

Remark (Doob decomposition, variance process of Brownian motion). For a one-

dimensional Brownian motion (B;), the theorem yields the Doob decomposition
B} = M+t

of the submartingale (B?) into a martingale (M) and the continuous increasing adapted

process (B); = t.

A Doob decomposition of the process f(B;) for general functions f € C%(R) will be

obtained below as a consequence of 1td’s celebrated formula. It states that

F(B,) — /f )dB, + = /f” (3.1.2)

where the first integral is an Itd stochastic integral, cf. Section[6.3l If, for example, [’ is
bounded, then the Itd integral is a martingale as a function of ¢. If f is convex then f(B;)

is a submartingale and the second integral is a continuous increasing adapted process in
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t. It is a consequence of that Brownian motion solves the martingale problem for
the operator .Z f = f” /2 with domain Dom(.%#) = {f € C*(R) : f’ bounded}.

1t6’s formula can also be extended to the multi-dimensional case, see Section
below. The second derivative is then replaced by the Laplacian Af = Ele gim’g.
The multi-dimensional It6 formula implies that a sub- or superharmonic function of d-
dimensional Brownian motion is a sub- or supermartingale respectively, if appropriate

integrability conditions hold. We now give a direct proof of this fact by the mean value

property:

Lemma 3.3 (Mean value property for harmonic function in R?). Suppose that h €

C?(R?%) is a (super-)harmonic function, i.e.,

©

Ah(x) 0 for any v € R%.

Then for any x € R% and any rotationally invariant probability measure (1 on R?,
&)
/ h(z +y) u(dy) = h(x). (3.1.3)

Proof. By the classical mean value property, h(z) is equal to (resp. greater or equal

than) the average value { h of h on any sphere OB, (x) with center at = and radius
9B, ()
r > 0, cf. e.g. [XXXKo0nigsberger: Analysis II]. Moreover, if y is a rotationally invari-

ant probability measure then the integral in (3.1.3)) is an average of average values over

spheres:
)
[rarnutn) = [ f bundr) © ha),
9B (x)
where iy, is the distribution of R(z) = |z| under p. O

Theorem 3.4 (Superharmonic functions of Brownian motion are supermartin-
gales). If h € C*(RY) is a (super-) harmonic function then (h(By)) is a (super-) mar-
tingale w.r.t. (F;) provided h(By) (resp. h(By)") is integrable for any t > 0.
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Proof. By Lemma[3.1land the mean value property, we obtain
E[h(By) | Fo(w) = E[M(Bs+ B — Bs) [ Fo](w)
= E[h(Bs(w) + B, — By)]

_ / h(By(w) +y) N(O, (t — ) T)(dy)
=) h(

B,(w))

forany 0 < s <t and P-almost every w. U

3.2 Optional Sampling and Optional Stopping

The Optional Sampling Theorem

The optional stopping theorem can be easily extended to continuous time martingales

with continuous sample paths. We directly prove a generalization:

Theorem 3.5 (Optional Sampling Theorem). Suppose that (M;);c(0,) is a martingale
w.r.t. an arbitrary filtration (F;) such that t — M, (w) is continuous for P-almost every
w. Then

E[Mr | Fs] = Ms P-almost surely (3.2.1)

for any bounded (F;) stopping times S and T with S < T.

We point out that an additional assumption on the filtration (e.g. right-continuity) is not
required in the theorem. Stopping times and the o-algebra Fg are defined for arbitrary

filtrations in complete analogy to the definitions for the filtration (F7) in Section

Remark (Optional Stopping). By taking expectations in the Optional Sampling The-
orem, we obtain
E[Mr] = E[E[My | Fo]] = E[M]

for any bounded stopping time 7". For unbounded stopping times,

E[MT] = E[Mo]
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holds by dominated convergence provided 7' < oo almost surely, and the random vari-

ables Mrp,,n € N, are uniformly integrable.

Proof of Theorem [3.5] We verify the defining properties of the conditional expectation
in (3.4) by approximating the stopping times by discrete random variables:

(1). Mg has an Fg-measurable modification: For n € N let S, =2 |2"S ], i.e.,

S, = k-27" on {k-27"<S<(k+1)2"}forany k=0,1,2,....

We point out that in general, S, is not a stopping time w.r.t. (F). Clearly, the

sequence (gn)neN is increasing with S = lim S,,. By almost sure continuity

Ms = lim Mg P-almost surely. 3.2.2)

n—oo

On the other hand, each of the random variables M 3, is Fg-measurable. In fact,

Mg, - Iis<ty = Z My.2-n - Itpo-n<s<(ki1)2-7 and S<t}

k:k-2—n<t

is F;-measurable for any ¢ > 0 since S is an (F;) stopping time. Therefore, by
(322), the random variable Mg := lim sup M 5, is an Fg-measurable modifica-

n—o0

tion of Mg.

(2). E[Mr; A] = E[Ms; A]forany A € Fg: Forn € N, the discrete random vari-
ables T, = 27" - [2"T"] and S,, = 27™ - [2™S5] are (F;) stopping times satisfying
T, > S, > S, cf. the proof of Theorem[L.26l In particular, F5 C Fs, C Fr..
Furthermore, (7,,) and (S,,) are decreasing sequences with 7' = lim7,, and
S = limS,. As T and S are bounded random variables by assumption, the
sequences (7},) and (.S,,) are uniformly bounded by a finite constant ¢ € (0, c0).

Therefore, we obtain
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Figure 3.1: Two ways to approximate a continuous stopping time.

k:k-2—n<c
= > BMoAN{T,=k-2)]  (323)
k:k-2—n<c

= E[M,.; A] forany A € Fr,,
and similarly
E[Ms,; Al = E[M.; A forany A € Fg,. (3.2.4)

In (3.2.3) we have used that (1/;) is an (F;) martingale, and AN{7T,, = k-27"} €
Fro-n. Aset A € Fgis contained both in Fr, and Fg, . Thus by (3.2.3) and
,

E[Mry, ; Al = E[Mg, ; A foranyn € Nandany A € Fs.  (3.2.5)

Asn — oo, My, — My and Mg, — Mg almost surely by continuity. It remains

to show that the expectations in (3.2.3) converge as well. To this end note that by

(3.2.3) and (3.2.4),

My, = E[M.|Fr,] and Mg, = E[M,|Fs,] P-almost surely.
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We will prove in Section that any family of conditional expectations of a
given random variable w.r.t. different o-algebras is uniformly integrable, and that
for uniformly integrable random variables a generalized Dominated Convergence

Theorem holds, cf. Theorem .13 Therefore, we finally obtain
E[Mr; A] = E[lim My, ; A] = lim E[My, ; A
= lim E[Mg, ; A] = Ellim Mg, ; A] = E[Mg; A,
completing the proof of the theorem.

O

Remark (Measurability and completion). In general, the random variable Mg is not
necessarily Fs-measurable. However, we have shown in the proof that Mg always has
an JFs-measurable modification M. 5. If the filtration contains all measure zero sets, then

this implies that My itself is Fg-measurable and hence a version of E[My | Fg].

Ruin probabilities and passage times revisited

Similarly as for random walks, the Optional Sampling Theorem can be applied to com-
pute distributions of passage times and hitting probabilities for Brownian motion. For a

one-dimensional Brownian motion (B;) starting at 0, and a, b > 0, let
T=inf{t >0 : B, & (—b,a)} and T,=inf{t >0 : B, =a}

denote the first exit time from the interval (—b, a) and the first passage time to the point
a, respectively. In Section [1.5|we have computed the distribution of 7}, by the reflection
principle. This and other results can be recovered by applying optional stopping to the
basic martingales of Brownian motion. The advantage of this approach is that it carries

over to other diffusion processes.
Exercise (Exit and passage times of Brownian motion). Prove by optional stopping:
(1). Law of the exit point: P[By = a] =b/(a+0b), P[Br=—b=a/(a+0),

(2). Mean exit time: E[T| = a-band E[T,] = oo,
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(3). Laplace transform of passage times: For any s > 0,
Elexp(—sT,)] = exp(—aV/2s).

Conclude that the distribution of T}, on (0, 00) is absolutely continuous with density

fr,(t) = a- (2rt3) Y2 - exp(—a?/2t).

Exit laws and Dirichlet problem

Applying optional stopping to harmonic functions of a multidimensional Brownian mo-
tion yields a generalization of the mean value property and a stochastic representation
for solutions of the Dirichlet problem. This will be exploited in full generality in Chap-
ter[7l Here, we only sketch the basic idea.

Suppose that h € C?(R?) is a harmonic function and that (B;)>¢ is a d-dimensional

Brownian motion starting at = w.r.t. the probability measure P,. Assuming that
E.[h(B;)] < o0 for any ¢ > 0,

the mean value property for harmonic functions implies that h(B;) is a martingale under
P,, cf. Theorem 3.4l The first hitting time 7' = inf{t > 0 : B; € R?\ D} of the com-
plement of an open set D C R? is a stopping time w.r.t. the filtration (F). Therefore,
by Theorem [3.5]and the remark below, we obtain

E.[h(Brn,)] = E[h(By)] = h(x) for any n € N. (3.2.6)

Now let us assume in addition that the set D is bounded. Then 7" is almost surely
finite, and the sequence of random variables i (Brx,) (n € N) is uniformly bounded
because Bry, takes values in the closure D for any n € N. Applying the Dominated

Convergence Theorem to (3.2.6), we obtain the integral representation
ha) = Eh(Bo) = [ bw)na(dy) (327
oD

where 1, = P, o B, ! denotes the exit law from D for Brownian motion starting at z.

In Chapter [7, we show that the representation (3.2.7) still holds true if h is a continuous
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function defined on D that is C? and harmonic on D. The proof requires localization
techniques that will be developed below in the context of stochastic calculus. For the
moment we note that the representation (3.2.7)) has several important aspects and appli-

cations:

Generalized mean value property for harmonic functions. For any bounded do-
main D C R? and any = € D, h(z) is the average of the boundary values of h on 9D

w.r.t. the measure fi,.

Stochastic representation for solutions of the Dirichlet problem. A solution i €
C?*(D) N C(D) of the Dirichlet problem

Ah(z) = 0 forz € D, (3.2.8)
h(z) = f(x) forz € 0D,

has a stochastic representation

h(z) = E.[f(Br)] forany x € D. (3.2.9)

Monte Carlo solution of the Dirichlet problem. The stochastic representation (3.2.9))
can be used as the basis of a Monte Carlo method for computing the harmonic function
h(z) approximately by simulating a large number n of sample paths of Brownian motion
starting at =, and estimating the expectation by the corresponding empirical average. Al-
though in many cases classical numerical methods are more efficient, the Monte Carlo
method is useful in high dimensional cases. Furthermore, it carries over to far more

general situations.

Computation of exit law. Conversely, if the Dirichlet problem (3.2.8)) has a unique
solution h, then computation of A (for example by standard numerical methods) enables
us to obtain the expectations in (3.2.8). In particular, the probability h(x) = P,[Br € A]
for Brownian motion exiting the domain on a subset A C 0D is informally given as the

solution of the Dirichlet problem

Ah =0 onD, h=14 ondD.
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This can be made rigorous under regularity assumptions. The full exit law is the har-
monic measure, i.e., the probability measure y, such that the representation (3.2.7) holds
for any function h € C%(D) N C(D) with Ah = 0 on D. For simple domains such as

half-spaces, balls and cylinders, this harmonic measure can be computed explicitly.

Example (Exit laws from balls). For d > 2, the exit law from the unit ball D = {y €
R? : |y| < 1} for Brownian motion starting at a point z € R? with |x| < 1 is given by

1 — |zf?

pa(dy) = (dy)

T y—a”

where v denotes the normalized surface measure on the unit sphere S¢! = {y € R? :
ly| = 1}. Indeed, the classical Poisson integral formula states that for any f € C(S%1),

the function
W) = / £() paldy)

solves the Dirichlet problem on D with boundary values lim h(x) = f(z) for any z €

T—z

S4=1 cf. e.g. [XXX Karatzas/Shreve, Ch. 4]. Hence by (3.2.9),

1—|af?

y— 24"

E,[f(Br)) = / f(v) (dy)

holds for any f € C(S9°!), and thus by a standard approximation argument, for any

indicator function of a measurable subset of S%1.

3.3 Maximal inequalities and the Law of the Iterated

Logarithm

The extension of Doob’s maximal inequality to the continuous time case is straight-
forward. As a first application, we give a proof for the upper bound in the law of the

iterated logarithm.

Maximal inequalities in continuous time
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Theorem 3.6 (Doob’s LP inequality in continuous time). Suppose that (M;);cjo,00) IS
a martingale with almost surely right continuous sample paths t — M;(w). Then the
following estimates hold for any a € [0,00), p € [1,00), ¢ € (1, 00] with % + % =1,
and c > 0:

(1). P

p]’

sup | M| z«:] < o EM,

te(0,a]

S q- ”Ma”LP-

(2). || sup [y

te(0,a]

Lp

Remark. The same estimates hold for non-negative submartingales.

Proof. Let (m,) denote an increasing sequence of partitions of the interval [0, a] such
that the mesh size of m,, goes to 0 as n — co. By Corollary applied to the discrete

time martingale (M,;)c,,, , we obtain

P [max|Mt| > c} < E[|M,P]/cP for any n € N.

teﬂ'n

Moreover, as n — o0,

max |[M;| 7 sup |M almost surely
temn te[0,a)

by right continuity of the sample paths. Hence

U {maX\Mt\ > c}]
tE™

n

P

sup | M, >c] = P

t€(0,a]

= lim P [max|Mt| > c} < E[|M,JP]/c.

n—oo temy

The first assertion now follows by replacing ¢ by ¢ — ¢ and letting € tend to 0. The

second assertion follows similarly from Theorem O

As a first application of the maximal inequality to Brownian motion, we derive an upper
bound for the probability that the graph of one-dimensional Brownian motion passes a

line in R?:

Stochastic Analysis Andreas Eberle



3.3. MAXIMAL INEQUALITIES AND THE LIL 117

LM

Lemma 3.7 (Passage probabilities for lines). For a one-dimensional Brownian motion

(By) starting at 0 we have
P[B; >+ at/2 forsomet > 0] < exp(—af) forany o, 5 > 0.
Proof. Applying the maximal inequality to the exponential martingale
M = exp(aB; — a*t/2)

yields

P[B, >+ at/2 forsomet € [0,a]] = P |sup (B, —at/2) >

te(0,a]
= P |sup M >exp(af)| < exp(—apf)-E[MZ] = exp(—af)
te(0,a]
for any a > 0. The assertion follows in the limit as a — oo. U

With slightly more effort, it is possible to compute the passage probability and the dis-

tribution of the first passage time of a line explicitly, cf. ?? below.

Application to LIL

A remarkable consequence of Lemmal[3.7is a simplified proof for the upper bound half

of the Law of the Iterated Logarithm:
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Theorem 3.8 (LIL, upper bound). For a one-dimensional Brownian motion ( B) start-

ing at 0, .
lim sup : < +1 P-almost surely. (3.3.1)

N0 y/2tloglogt—!

Proof. Let o > 0. We would like to show that almost surely,

B, < (1+0)h(t) for sufficiently small ¢ > 0,

where h(t) := +/2tloglogt~!'. Fix 6 € (0, 1). The idea is to approximate the function
h(t) by affine functions

Lo(t) = B+ ant/2

on each of the intervals [™, "], and to apply the upper bounds for the passage prob-

abilities from the lemma.
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We choose «, and f3,, in a such way that [,,(6™) = h(6™) and [,,(0) = h(6")/2, i.e.,

By = h(O™)/2 and a, = h(6")/0".

For this choice we have ,,(9") > 0 - 1,,(6"'), and hence

L) < LET) < = (3.3.2)
— h(z) < ? for any t € [0, 6™ 1.
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In(t)

eyt

h(6™)/2

9” en—l

We now want to apply the Borel-Cantelli lemma to show that with probability one,
By < (14 6)l,,(t) for large n. By Lemma[3.7]

P[B; > (14 6)I,(t) forsomet>0] < exp(—anf,-(1+6)?)
exp (‘h(j@? 1+ 5)2) .

Choosing h(t) = /2tloglogt~1, the right hand side is equal to a constant multiple of

n~(+9? which is a summable sequence. Note that we do not have to know the precise

form of h(t) in advance to carry out the proof — we just choose A(t) in such a way that
the probabilities become summable!

Now, by Borel-Cantelli, for P-almost every w there exists NV(w) € N such that
Bi(w) < (140)l,(t) forany ¢t € [0,1] and n > N(w). (3.3.3)

By (3.3.2), the right hand side of (3.3.3) is dominated by (1+6)h(t) /0 fort € [0", 6"~1].
Hence 5
1
B, < ih(t) forany ¢t € U [0, 6" 1,

0
n>N

i.e., for any t € (0, HN’l), and therefore,

B 146
lim sup . < 1ro P-almost surely.
t\O h(t) 8
The assertion then follows in the limitas § 1 and § \ 0. O
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Since (—B;) is again a Brownian motion starting at 0, the upper bound (3.3.1) also

implies 5
lim inf ! > —1 P-almost surely. 3.3.4)

N0 /2tloglogt—t

The converse bounds are actually easier to prove since we can use the independence of

the increments and apply the second Borel-Cantelli Lemma. We only mention the key

steps and leave the details as an exercise:

Exercise (Complete proof of LIL). Prove the Law of the Iterated Logarithm:

. By R > #
1 — = 41 and 1 f—— = —1
TP R TR Bt

where h(t) = /2t loglogt—!. Proceed in the following way:

(1). Let @ € (0,1) and consider the increments Z,, = Bygn — Bgn+1,n € N. Show that
if € > 0, then

P[Z, > (1 —¢)h(0") infinitely often] = 1.
(Hint: [ exp(—2%/2)dz < 2~ exp(—2?/2))
(2). Conclude that by (3.3.4),

B
lim sup L > 11— P-almost surely for any € > 0,
o h(t)

and complete the proof of the LIL by deriving the lower bounds

B B
limsup— > 1 and liminf —= < —1 P-almost surely.  (3.3.5)
o h(t) o R(t)
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Chapter 4
Martingale Convergence Theorems

The strength of martingale theory is partially due to powerful general convergence the-
orems that hold for martingales, sub- and supermartingales. In this chapter, we study
convergence theorems with different types of convergence including almost sure, L>

and L' convergence, and consider first applications.

At first, we will again focus on discrete-parameter martingales — the results can then be

easily extended to continuous martingales.

4.1 Convergence in L’

Already when proving the Law of Large Numbers, L? convergence is much easier to
show than, for example, almost sure convergence. The situation is similar for mar-
tingales: A necessary and sufficient condition for convergence in the Hilbert space
L?(2, A, P) can be obtained by elementary methods.

Martingales in L

Consider a discrete-parameter martingale (M,,),>o w.r.t. a filtration (F,,) on a probabil-

ity space (€2, A, P). Throughout this section we assume:
Assumption (Square integrability). F[M?| < oo for any n > 0.

We start with an important remark:

122
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Lemma 4.1. The increments Y,, = M, — M,_1 of a square-integrable martingale are

centered and orthogonal in L*(Q, A, P) (i.e. uncorrelated).

Proof. By definition of a martingale, E[Y,, | F,,—1] = 0 forany n > 0. Hence E[Y,] =0
and E[Y,,Y,] = E[Y,, - E]Y,, | F-1]] = 0 for 0 < m < n.

Since the increments are also orthogonal to M, by an analogue argument, a square
integrable martingale sequence consists of partial sums of a sequence of uncorrelated

random variables:

Mn:MO+Z:Y1C for any n > 0.
k=1

The Convergence Theorem

The central result of this section shows that an L?-bounded martingale (M,,) can always
be extended ton € {0,1,2,...} U{oo}:

Theorem 4.2 (L?> Martingale Convergence Theorem). The martingale sequence
(M,,) converges in L*(Q, A, P) as n — oo if and only if it is bounded in L? in the
sense that

sup E[M?] < oo. 4.1.1)

n>0

In this case, the representation
M, = E[M | F.]

holds almost surely for any n > 0, where M, denotes the limit of M,, in L*(Q, A, P).

We will prove in the next section that (M,,) does also converge almost surely to M.
An analogue result to Theorem .2/ holds with L? replaced by L? for any p € (1, c0) but
not for p = 1, cf. Section 4.3 below.

Proof. (1). Let us first note that

E[(M, — M,)?] = E[M?] — E[M2]  for0<m <n. (4.1.2)
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Indeed,

E[MS] - E[Mi] = E[(Mn - Mm)(Mn + Mm)]
= E[(M, — M,)*| + 2E[M,, - (M,, — M,,)],
and the last term vanishes since the increment M,, — M,, is orthogonal to M, in
L?.

(2). To prove that (£.1.1) is sufficient for L? convergence, note that the sequence
(E[M?]),>0 is increasing by @.1.2). If (.1.1)) holds then this sequence is bound-
ed, and hence a Cauchy sequence. Therefore, by @.1.2), (M,,) is a Cauchy se-

quence in L?. Convergence now follows by completeness of L?(Q2, A, P).

(3). Conversely, if (M,,) converges in L? to a limit M, then the L? norms are bound-

ed. Moreover, by Jensen’s inequality, for each fixed k£ > 0,
E[M, | Fi] — E[My | Fi] in L*(Q, A, P) as n — oo.
As (M,,) is a martingale, we have E[M,, | Fi] = M, for n > k, and hence
My = E[My | Fi P-almost surely.
O

Remark (Functional analytic interpretation of L? convergence theorem). The asser-
tion of the L? martingale convergence theorem can be rephrased as a purely functional

analytic statement:

An infinite sum > Y}, of orthogonal vectors Y), in the Hilbert space L?(Q, A, P) is
k=1

convergent if and only if the sequence of partial sums »_ Y}, is bounded.
k=1

How can boundedness in L? be verified for martingales? Writing the martingale (M,,)

as the sequence of partial sums of its increments Y,, = M,, — M,,_;, we have

E[M?] = (Mﬁzn:Yk,szn:Yk) = E[Mg]JriE[Y,f]

k=1 = L2 k=1
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by orthogonality of the increments and M. Hence

sup E[M?] = E[M;]+ ) E[Y].

n=0 k=1

Alternatively, we have E[M?] = E[MZ] + E[(M),]. Hence by monotone convergence

sup E[M;] = E[Mg]+ E[(M)o]

n>0

where (M), = sup(M),.

Summability of sequences with random signs

As a first application we study the convergence of series with coefficients with random
signs. In an introductory analysis course it is shown as an application of the integral and

Leibniz criterion for convergence of series that

o0

> n~“ converges — a>1 , whereas
o n=1
> (—1)"n~* converges = a> 0.
n=1

Therefore, it seems interesting to see what happens if the signs are chosen randomly.

The L? martingale convergence theorem yields:

Corollary 4.3. Let (a,,) be a real sequence. If (¢,,) is a sequence of independent random
variables on (2, A, P) with Ple,, = +1] = Ple,, = —1] = 1/2, then

Z ena, convergesin L*(Q, A, P) <= Z a2 < oo.

n=1 n=1

n
Proof. The sequence M,, = > £a;, of partial sums is a martingale with
k=1

oup B2 = Y Blefad] = 3l

nz0 k=1 k=1

O
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o
Example. The series Y €, - n~“ converges in L? if and only if o > %
n=1

Remark (Almost sure asymptotics). By the Supermartingale Convergence Theorem
(cf. Theorem[4.3]below), the series » | €,a,, also converges almost surely if > ai < 00.
On the other hand, if " a? = oo then the series of partial sums has almost surely
unbounded oscillations:
Exercise. Suppose that ) a,, = oo, and let M,, = > ea.

k=1

(1). Compute the conditional variance process (M),,.

(2). For¢ > 0let T, = inf{n > 0 : |M,| > c¢}. Apply the Optional Stopping
Theorem to the martingale in the Doob decomposition of (A/?), and conclude
that P[T. = oo] = 0.

(3). Prove that ()M,,) has almost surely unbounded oscillations.

L2 convergence in continuous time

The L? convergence theorem directly extends to the continuous-parameter case.

Theorem 4.4 (L? Martingale Convergence Theorem in continuous time). Let a €
(0, 00]. If (My)iejo,a) is a martingale w.rt. a filtration (Fy)cjo,a) Such that

sup E[M?] < oo

te[0,u)
then M, = lgn M, exists in L*(Q, A, P) and (My)iejo. is again a square-integrable

martingale.

Proof. Choose any increasing sequence t¢,, € [0, u) such that t,, — w. Then (M, ) is an
L?-bounded discrete-parameter martingale. Hence the limit M, = lim M, exists in L?,
and

M,, = E[M,|F,] for any n € N. (4.1.3)
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For an arbitrary ¢ € [0, u), there exists n € N with ¢,, € (¢, u). Hence
M, = E[M,, | F] = E[M,|F]

by (4.1.3) and the tower property. In particular, (M;);cjo, is a square-integrable mar-

tingale. By orthogonality of the increments,
B[(M, — M,,)*] = E[(My — M)?] + E[(M; — M,,)*] > E[(M, — M,)’]
whenever t,, <t < u. Since M, — M, in L?, we obtain

. _ 2] _

O
Remark. (1). Note that in the proof it is enough to consider a fixed sequence ¢,, ,/* .

(2). To obtain almost sure convergence, an additional regularity condition on the sam-
ple paths (e.g. right-continuity) is required, cf. below. This assumption is not

needed for L? convergence.

4.2 Almost sure convergence of supermartingales

Let (Z,)n>0 be a discrete-parameter supermartingale w.r.t. a filtration (F,),>o on a
probability space (€2,.4, P). The following theorem yields a stochastic counterpart to

the fact that any lower bounded decreasing sequence of reals converges to a finite limit:

Theorem 4.5 (Supermartingale Convergence Theorem, Doob). If sup E[Z, ] < oo
n>0

then (Z,) converges almost surely to a random variable 7, € L'(Q, A, P).
In particular, supermartingales that are uniformly bounded from below converge almost

surely to an integrable random variable.
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Remark (L' boundedness vs. L' convergence). (1). The conditionsup E[Z,] < oo
holds if and only if (Z,,) is bounded in L'. Indeed, as E[Z;"] < oo by our defini-

tion of a supermartingale, we have

E[|Z,|] = E[Z,) +2E|Z;] < E[Z) +2E|Z;] for any n > 0.

(2). Although (Z,) is bounded in L' and the limit is integrable, L' convergence does

not hold in general, cf. the examples below.

For proving the Supermartingale Convergence Theorem, we introduce the number

U@ (w) of upcrossings of an interval (a, b) by the sequence Z,(w), cf. below for the

AN
AN

AL
——

exact definition.

. J/

~
Ist upcrossing 2nd upcrossing

Note that if U (w) is finite for every non-empty bounded interval [a, b] then
lim sup Z,,(w) and lim inf Z,, (w) coincide, i.e., the sequence (Z,,(w)) converges. There-
fore, to show almost sure convergence of (Z,,), we derive an upper bound for U(@?), We

first prove this key estimate and then complete the proof of the theorem.

Doob’s upcrossing inequality

Forn € Nand a,b € R with a < b, we define the number U™ of upcrossings of the

interval [a, b] before time n by

UMY = max{k>0:30<s;<t; <sy<ty...<sp <t <m:
Z,(w) < a, Zy,(w) > b}

i

Stochastic Analysis Andreas Eberle



4.2. ALMOST SURE CONVERGENCE OF SUPERMARTINGALES 129

Lemma 4.6 (Doob). If (Z,) is a supermartingale then
(b—a) E[U™] < E[(Z, —a)7] forany a < bandn > 0.

Proof. We may assume E[Z, ] < oo since otherwise there is nothing to prove. The key
idea is to set up a predictable gambling strategy that increases our capital by (b — a)
for each completed upcrossing. Since the net gain with this strategy should again be a
supermartingale this yields an upper bound for the average number of upcrossings. Here

is the strategy:
I—) e Wait until 7, < a.

e Then play unit stakes until Z; > b.

’7 repea

The stake C}, in round k is

1 if Zy <a,
C =
0 otherwise,
and for £ > 2,
o 1 if (Cyy=1and Z;_1 <b)or (Cx_1 =0and Z;_; < a),
k= )

0 otherwise

Clearly, (C) is a predictable, bounded and non-negative sequence of random variables.

Moreover, Cy, - (Zy, — Zy_1) is integrable for any & < n, because CY, is bounded and

E[1Z] = 2B(2}) - ElZ] < 2E(Z) - E|Z,) < 2E[Z{] - E|Z;]

n

for k < n. Therefore, by Theorem and the remark below, the process

k
(CoZ)y = ZCZ"<ZZ‘_Z@'71)7 0<k<n,

i=1
is again a supermartingale.

Clearly, the value of the process C,Z increases by at least (b — a) units during each
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completed upcrossing. Between upcrossing periods, the value of (CeZ); is constant.
Finally, if the final time n is contained in an upcrossing period, then the process can
decrease by at most (Z,, — a)~ units during that last period (since Z; might decrease

before the next upcrossing is completed). Therefore, we have
(CoZ)n > (b—a)-UY —(Z,—a)", ie.,

(b—a)- U < (C2)y+ (Zn—a)".

A /\Y/\ N\
VAR

Zy,
Gain>b—a Gain>b—a Loss < (Z, —a)~
Since C, 7 is a supermartingale with initial value 0, we obtain the upper bound
(b= a)B[U™] < Bl(CuZ)n] + E[(Zo — a)7] < E[(Zn—a)7].
O

Proof of Doob’s Convergence Theorem

We can now complete the proof of Theorem

Proof. Let

U(a,b) = sup Uéa,b)
neN

denote the total number of upcrossings of the supermartingale (Z,,) over an interval
(a,b) with —oo < a < b < oco. By the upcrossing inequality and monotone conver-

gence,

E[U(a’b)] — lim E[Ué“vb)] < -sup E[(Z, —a)”]. “4.2.1)

n—o0 — Q neN
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Assuming sup E[Z] < oo, the right hand side of is finite since (Z, — a)” <
la| + Z,,. Therefore,
U <« 5 P-almost surely,

and hence the event

{liminf Z,, # limsup Z,} = U (U@ = 0}

a,beQ
a<b

has probability zero. This proves almost sure convergence.

It remains to show that the almost sure limit Z,, = lim Z,, is an integrable random
variable (in particular, it is finite almost surely). This holds true as, by the remark below

Theorem 4.3} sup F[Z,] < oo implies that (Z,,) is bounded in L', and therefore
E[|Zw|] = Elliminf |Z,|] < liminf E[|Z,|] < oo

by Fatou’s lemma. O

Examples and first applications
We now consider a few prototypic applications of the almost sure convergence theorem:

Example (1. Sums of i.i.d. random variables). Consider a Random Walk

Sn = Z i
=1

on R with centered and bounded increments
n; ii.d. with |n;| < cand E[n;] =0, c€R.

Suppose that P[n; # 0] > 0. Then there exists € > 0 such that P[|n;| > €] > 0. As the
increments are i.i.d., the event {|n;| > e} occurs infinitely often with probability one.

Therefore, almost surely, the martingale (S,,) does not converge as n — oo.

Now let a € R. We consider the first hitting time

T, = inf{t>0: S, >a}
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of the interval [a, c0). By the Optional Stopping Theorem, the stopped Random Walk
(ST,An)n>0 1s again a martingale. Moreover, as S, < a for any & < T, and the incre-

ments are bounded by ¢, we obtain the upper bound
Stoan < a+c for any n € N.

Therefore, the stopped Random Walk converges almost surely by the Supermartingale

Convergence Theorem. As (.5,,) does not converge, we can conclude that
P[T, < x] =1 for any a > 0, i.e., limsupS,, = oo almost surely.
Since (.5,,) is also a submartingale, we obtain
liminf S,, = —oo  almost surely

by an analogue argument. A generalization of this result is given in Theorem 4.7l below.

Remark (Almost sure vs. LP convergence). In the last example, the stopped process

does not converge in L? for any p € [1, 00). In fact,

lim E[St,nn] = FE[St,] > a  whereas FE[St,,] = FE[So] = 0 for all n.

n—oo

Example (2. Products of non-negative i.i.d. random variables). Consider a growth

process
Zn = 1Iv
i=1
with i.i.d. factors Y; > 0 with finite expectation o € (0, 00). Then
M, = Z,/a"

is a martingale. By the almost sure convergence theorem, a finite limit M, exists al-
most surely, because M,, > 0 for all n. For the almost sure asymptotics of (Z,,), we

distinguish three different cases:

(1). a < 1: In this case,
Zn = M, -a"

converges to 0 exponentially fast with probability one.
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(2). a = 1: Here (Z,,) is a martingale and converges almost surely to a finite limit. If
P[Y; # 1] > 0 then there exists ¢ > 0 such that Y; > 1 + ¢ infinitely often with
probability one. This is consistent with convergence of (Z,,) only if the limit is
zero. Hence, if (Z,) is not almost surely constant, then also in the critical case,

Z, — 0 almost surely.
(3). a > 1 (supercritical): In this case, on the set { M., > 0},
Ly = M,-a" ~ DMy-ao",

i.e., (Z,) grows exponentially fast. The asymptotics on the set { M., = 0} is not

evident and requires separate considerations depending on the model.

Although most of the conclusions in the last example could have been obtained without
martingale methods (e.g. by taking logarithms), the martingale approach has the advan-
tage of carrying over to far more general model classes. These include for example

branching processes or exponentials of continuous time processes.

Example (3. Boundary behaviors of harmonic functions). Let D C R? be a bounded
open domain, and let » : D — R be a harmonic function on D that is bounded from

below:

Ah(z) = 0 foranyz € D, ing) h(z) > —o0. (4.2.2)

To study the asymptotic behavior of h(x) as x approaches the boundary 9D, we con-
struct a Markov chain (X,,) such that h(X,,) is a martingale: Let r : D — (0,00) be a

continuous function such that
0 < r(z) < dist(z,0D) forany x € D, (4.2.3)

and let (X,,) w.r.t P, denote the canonical time-homogeneous Markov chain with state

space D, initial value x, and transition probabilities

p(x,dy) = Uniform distribution on {y € R? : |y — x| = r(z)}.
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By (@.2.3)), the function h is integrable w.r.t. p(x, dy), and, by the mean value property,
(ph)(x) = h(z) forany x € D.

Therefore, the process h(X,,) is a martingale w.r.t. P, for each x € D. As h(X,) is
lower bounded by (4.2.2)), the limit as n — oo exists P,-almost surely by the Super-
martingale Convergence Theorem. In particular, since the coordinate functions x — x;
are also harmonic and lower bounded on D, the limit X, = nh~>I£lo X,, exists P,-almost

surely. Moreover, X, is in 9D, because r is bounded from below by a strictly positive

constant on any compact subset of D.
Summarizing we have shown:

(1). Boundary regularity: If h is harmonic and bounded from below on D then the
limit lim A(X,,) exists along almost every trajectory X, to the boundary 9D.

n—oo

(2). Representation of h in terms of boundary values: If h is continuous on D, then
h(X,) — h(X) P,-almost surely and hence

W) = lim E.[h(Xn)] = E[h(Xs)],

n—oo

i.e., the law of X, w.r.t. P, is the harmonic measure on 0D.

Note that, in contrast to classical results from analysis, the first statement holds without
any smoothness condition on the boundary 0D. Thus, although boundary values of h
may not exist in the classical sense, they do exist along almost every trajectory of the

Markov chain!
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Generalized Borel-Cantelli Lemma

Another application of the almost sure convergence theorem is a generalization of the
Borel-Cantelli lemmas. We first prove a dichotomy for the asymptotic behavior of mar-

tingales with L'-bounded increments:

Theorem 4.7 (Asymptotics of martingales with ! bounded increments). Suppose

that (M,) is a martingale, and there exists an integrable random variable Y such that
|M,, — M,_1| <Y for any n € N.

Then for P-almost every w, the following dichotomy holds:

Either: The limit lim M, (w) exists in R,

n—oo

or: limsup M, (w) = +oco and liminf M, (w) = —occ.
n—o0

n—oo

The theorem and its proof are a generalization of Example 1 above.

Proof. Fora € (—o0,0) let T, = min{n > 0 : M, > a}. By the Optional Stopping

Theorem, (Mr, ,,) is @ martingale. Moreover,
My, pn > min(My,a —Y) for any n > 0,

and the right hand side is an integrable random variable. Therefore, (}/,,) converges
almost surely on {7}, = oo}. Since this holds for every a < 0, we obtain almost sure

convergence on the set

{liminf M, > —oo} = U{Ta:oo}.
a<0
acQ

Similarly, almost sure convergence follows on the set {lim sup M,, < oo}. O

Now let (F,,),>0 be an arbitrary filtration. As a consequence of Theorem 4.7] we obtain:
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Corollary 4.8 (Generalized Borel-Cantelli Lemma). If (A,,) is a sequence of events

with A, € F, for any n, then the equivalence

w € A, infinitely often = < Z P[A, | Foi](w) = o0

n=1

holds for almost every w € ().

Proof. Let S, = kz Iy, and T, = kz E[l4, | Fx—1]. Then S,, and T,, are almost surely
=1 =1

increasing sequences. Let S, = suI; S, and T, = sup T,, denote the limits on [0, oc].

The claim is that almost surely,
Seo = 00 <—= T, = oo. 4.2.4)

To prove (@.2.4) we note that S,, — 7T, is a martingale with bounded increments. There-
fore, almost surely, S,, — T}, converges to a finite limit, or (lim sup(.S,, — 7},) = oo and
liminf(.S,, — T,,) = —o0). In the first case, (4.2.4) holds. In the second case, S, = oo
and T,, = 00, SO holds, too. O

The assertion of Corollary generalizes both classical Borel-Cantelli Lemmas: If
(A,) is an arbitrary sequence of events in a probability space (£2,.4, P) then we can
consider the filtration F,, = (A4, ..., A,). By Corollary 4.§] we obtain:

1% Borel-Cantelli Lemma: 1f ) P[A,] < cothen ) P[A, | F,-1] < oo almost surely,

and therefore

P[A, infinitely often] = 0.

2" Borel-Cantelli Lemma: 1f 5" P[A,] = oo and the A, are independent then
Y P[A, | Foa] = > P[A,] = oo almost surely, and therefore

P[A, infinitely often] = 1.
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Upcrossing inequality and convergence theorem in continuous time

The upcrossing inequality and the supermartingale convergence theorem carry over im-
mediately to the continuous time case if we assume right continuity (or left continuity)
of the sample paths. Let u € (0, cc], and let (Z;),c[o,.) be a supermartingale in contin-
uous time w.r.t. a filtration (F5). We define the number of upcrossings of (Z;) over an
interval (a, b) before time ¢ as the supremum of the number of upcrossings over all time

discretizations (Zs)sc, where 7 is a partition of the interval [0, ¢]:

UP1Z] = sup UD[(Z,) sen).
wC[0,t]
finite

Note that if (Z,) has right-continuous sample paths and () is a sequence of partitions

of [0,¢] such that 0, t € 7o, 7, C 7,1 and mesh(7,) — 0 then

Uz = lim U*Y[(Z,)sen]-

n—o0

Theorem 4.9 (Supermatingale Convergence Theorem in continuous time). Suppose

that (Zs)scjo,u) IS a right continuous supermartingale.
(1). Upcrossing inequality: For anyt € [0,u) and a < b,

EU*Y] <

(2). Convergence Theorem: If sup E|[Z;] < oo, then the limit Z, = li/I‘n Z exists
s€[0,u) s,
almost surely, and Z,,_ is an integrable random variable.

Proof. (1). By the upcrossing inequality in discrete time,

BUCY[(Z,)ser,)] < E[(Z —a)T]  foranyn €N,

where (7,) is a sequence of partitions as above. The assertion now follows by the

Monotone Convergence Theorem.
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(2). The almost sure convergence can now be proven in the same way as in the discrete

time case.

O

More generally than stated above, the upcrossing inequality also implies that for a right-
continuous supermartingale (Z)cjo,) all the left limits 151% Zs, t € [0,u), exist simul-
taneously with probability one. Thus almost every sample path is cadlag (continue a
droite, limites a gauche, i.e., right continuous with left limits). By similar arguments,
the existence of a modification with right continuous (and hence cadlag) sample paths
can be proven for any supermartingale (Z) provided the filtration is right continuous

and complete, and s — F[Z,] is right continuous, cf. e.g. [XXXRevuz/Yor, Ch.IL,§2].

4.3 Uniform integrability and L' convergence

The Supermartingale Convergence Theorem shows that every supermartingale (Z,,) that
is bounded in L' converges almost surely to an integrable limit Z.,. However, L' con-

vergence does not necessarily hold:

Example. (1). Suppose that Z,, = [[_,Y; where the Y; are i.i.d. with E[Y;] = 1,
P[Y; # 1] > 0. Then, Z,, — 0 almost surely, cf. Example 2 in Section 4.2l On

the other hand, L' convergence does not hold as E[Z,,] = 1 for any n.

(2). Similarly, the exponential martingale M; = exp(B; — t/2) of a Brownian motion

converges to 0 almost surely, but E[M;] = 1 for any ¢.

L' convergence of martingales is of interest because it implies that a martingale se-
quence (M) can be extended to n = oo, and the random variables M,, are given as
conditional expectations of the limit M. Therefore, we now prove a generalization of
the Dominated Convergence Theorem that leads to a necessary and sufficient condition

for L' convergence.
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Uniform integrability

Let (€2, A, P) be a probability space. The key condition required to deduce L' conver-
gence from convergence in probability is uniform integrability. To motivate the defini-

tion we first recall two characterizations of integrable random variables:

Lemma 4.10. If X : Q — R is an integrable random variable on (), A, P), then
(1). [}L%EHXL |X| > ¢] =0, and
(2). for any € > O there exists 6 > 0 such that

E[|X|; Al < e forany A € Awith P[A] <.

The second statement says that the positive measure
Q(A) = E[IX]; 4,  AeA,

with relative density | X| w.r.t. P is absolutely continuous w.r.t. P in the following

sense: For any € > (0 there exists 6 > 0 such that

PA] <6 = QA <e.

Proof. (1). For an integrable random variable X the first assertion holds by the Mono-

tone Convergence Theorem, since | X| - Ijjx|>c} \(0asc 7 oo.

(2). Lete > 0. By (1),

ElIX|: Al = EIX|; An{X] = )] + BIX]: An{|X] <c}]
< E[|X]: [X] > d+c- P[4]
< iiE oo

provided ¢ € (0, 00) is chosen appropriately and P[A] < ¢/2c.
U
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Uniform integrability means that properties (1) and (2) hold uniformly for a family of

random variables:

Definition (Uniform integrability). A family {X; : i € I} of random variables on
(Q, A, P) is called uniformly integrable if and only if

sup E[| Xi|; | Xs| >¢ — O as c — 0.
el

Exercise (Equivalent characterization of uniform integrability). Prove that {X; :
i € I} is uniformly integrable if and only if sup F[|X;|; A] < oo, and the measures
Qi(A) = E[|X;| ; A] are uniformly absolutely continuous, i.c., for any ¢ > 0 there
exists 0 > 0 such that
P[A] <6 = supFE[|Xi]; 4] < e
iel

We will prove below that convergence in probability plus uniform integrability is equiv-
alent to L' convergence. Before, we state two lemmas giving sufficient conditions for
uniform integrability (and hence for L' convergence) that can often be verified in appli-

cations:

Lemma 4.11 (Sufficient conditions for uniform integrability). A family {X; : i € I}

of random variables is uniformly integrable if one of the following conditions holds:

(1). There exists an integrable random variable Y such that

|1 X;| <Y foranyi e I.

(2). There exists a measurable function g : R, — R such that

lim 9(x) = 00 and sup Elg(|X;])] < oo.

T—r00 €T icl
Proof. (1). If | X;| <Y then
sup E[| X5 | Xs| > ] < E[Y; Y > (.
i€l

The right hand side converges to 0 as ¢ — oo if Y is integrable.
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(2). The second condition implies uniform integrability, because

Yy
sup E[| X;|; | Xi] > ] < sup —— -sup E[g(|Xi])].
i€l y>c g(y) iel

O

The first condition in Lemma is the classical assumption in the Dominated Con-

vergence Theorem. The second condition holds in particular if

sup E[| Xi|P] < oo for some p > 1 (LP boundedness),
iel

or, if

sup E[|X;|(log | Xi[)T] < oo (Entropy condition)

el
is satisfied. Boundedness in L', however, does not imply uniform integrability, cf. the

examples at the beginning of this section.

The next observation is crucial for the application of uniform integrability to martin-

gales:

Lemma 4.12 (Conditional expectations are uniformly integrable). If X is an inte-

grable random variable on (), A, P) then the family

{EX|F]: FCA o-algebra}
of all conditional expectations of X given sub-c-algebras of A is uniformly integrable.
Proof. By Lemma[.10, for any £ > 0 there exists 6 > 0 such that

E(EX | F]I; [EIX [ F]|=d < E[E[|X||F]; [EX[F][=d 43.D
= EBIX|; [EX|F| = < ¢

holds for ¢ > 0 with P[|E[X | F]| > ¢] < 4. Since
1 1
PEWX | )l > d < “EEX | F]) < “E[IX]]

holds simultaneously for all o-algebras F C A if ¢ is sufficiently large. O
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Definitive version of Lebesgue’s Dominated Convergence Theorem

Theorem 4.13. Suppose that (X, )nen is a sequence of integrable random variables.
Then (X,,) converges to a random variable X w.r.t. the L* norm if and only if X,

converges to X in probability and the family {X,, : n € N} is uniformly integrable.

Proof. (1). We first prove the “if”” part of the assertion under the additional assumption
that the random variables | X, | are uniformly bounded by a finite constant ¢: For

e >0,

El|X, - X|] = E[|X,—X|: |X, = X| > ] + B[|X, — X|; [X, — X| <]
< 2-P[|X,— X|>¢] + e (4.3.2)

Here we have used that | X,,| < cand hence | X | < ¢ with probability one, because
a subsequence of (X,,) converges almost surely to X . For sufficiently large n, the
right hand side of #.3.2)) is smaller than 2¢. Therefore, F[ | X, — X|] — 0 as

n — Q.

(2). To prove the “if”” part under the uniform integrability condition, we consider the

cut-off-functions

() = (xANe)V(=c)
¢C

|
o
Qa.f
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For ¢ € (0, 00), the function ¢. : R — R is a contraction. Therefore,
|0e(X) — ¢e(X)| < | X, — X| for any n € N.
If X,, — X in probability then ¢.(X,) — ¢.(X) in probability. Hence by (1),
E[|pe(Xn) — 0e(X)|]] — 0 for any ¢ > 0. (4.3.3)

We would like to conclude that E| | X, — X|]| — 0 as well. Since (X,,) is
uniformly integrable, and a subsequence converges to X almost surely, we have

E[|X]] <liminf E[|X,|] < co by Fatou’s Lemma. We now estimate

E[[Xy — X[]
< E[Xn = 0e(Xn)[ ]+ El|¢e(Xn) = ¢e(X)|] + El|¢e(X) — X[ ]
< E[Xal; | Xal 2 d + El[¢e(Xn) — ¢o(X)| ]+ E[1X]; [X]| = .

Let € > 0 be given. Choosing c large enough, the first and the last summand on
the right hand side are smaller than /3 for all n by uniform integrability of { X, :
n € N} and integrability of X. Moreover, by (4.3.3)), there exists n(c) such that
the middle term is smaller than £/3 for n > ny(c). Hence E[ | X,, — X|] < ¢ for
n > ng, and thus X,, — X in L'.

(3). Now suppose conversely that X,, — X in L!. Then X,, — X in probability by

Markov’s inequality. To prove uniform integrability, we observe that
E[|X,|; 4 < E[|X]|; Al+ E[|X — X,| ] forany n € Nand A € A.
For £ > 0, there exist nyg € N and 6 > 0 such that

E[|X - X,|] < ¢/2 for any n > ny, and
E[|X]; Al < ¢/2 whenever P[A] < 6,

cf. Lemmal.10 Hence, if P[A] < § then sup,,-,, B[ |X,|; A] <e.
Moreover, again by Lemmal4. 10} there exist 04, . .., d,, > 0 such that for n < ny,

E[|X.|: Al < e if P[A] <6,
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Choosing 5 = min(d, 41, da, . . ., dp, ), We obtain

sup B[ | X,|; Al <e whenever P[A] < 0.

neN

Therefore, {X,, : n € N} is uniformly integrable by the exercise below the defi-
nition of uniform integrability on page
O

L! convergence of martingales

If X is an integrable random variable and (F,,) is a filtration then M,, = E[X | F,]
is a martingale w.r.t. (F,,). The next result shows that an arbitrary martingale can be

represented in this way if and only if it is uniformly integrable:

Theorem 4.14 (L' Martingale Convergence Theorem). Suppose that (M,,),>o is a

martingale w.r.t. a filtration (F,,). Then the following statements are equivalent:
(1). {M, : n > 0} is uniformly integrable.
(2). The sequence (M,,) converges w.r.t. the L' norm.

(3). There exists an integrable random variable X such that

M, = E[X | F,] foranyn > 0.

Proof.
(3) = (1) holds by Lemma4.12

(1) = (2): If the sequence (M,) is uniformly integrable then it is bounded in L!

because

sup E[|M,|] < sup E[|M,|; |[M,| >c+c¢c < 1+c¢
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for ¢ € (0,00) sufficiently large. Therefore, the limit M, = lim M,, exists al-
most surely and in probability by the almost sure convergence theorem. Uniform

integrability then implies
M, — M, inL'
by Theorem 4.13]
(2) = (3): If M,, converges to a limit M., in L! then
M, = E[My | F,] for any n > 0.

Indeed, M, is a version of the conditional expectation since it is J,,-measurable

and
E[M, ; A] = klim E[My; A] = E[M, ; A forany A € F, (4.3.4)
—00

by the martingale property.
O

A first consequence of the L! convergence theorem is a limit theorem for conditional

expectations:

Corollary 4.15. If X is an integrable random variable and (F,,) is a filtration then
E[X|F,)] — E[X|Fx]  almostsurely and in L',

where Fo, := o(J Fn).

Proof. Let M,, := E[X | F,]. By the almost sure and the L' martingale convergence
theorem, the limit M., = lim M,, exists almost surely and in L*. To obtain a measurable
function that is defined everywhere, we set M, := lim sup M,,. It remains to verify, that
M, is a version of the conditional expectation E[X | F,]. Clearly, M, is measurable

w.r.t. F. Moreover, forn > 0and A € F,,

E[My ; A] = E[M, ; A] = E[X ; A]
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by @.3.4). Since | J F,, is stable under finite intersections,
E[Ms; Al = E[X; A
holds for all A € o(|J F,,) as well. ]

Example (Existence of conditional expectations). The common existence proof for
conditional expectations relies either on the Radon-Nikodym Theorem or on the exis-
tence of orthogonal projections onto closed subspaces of the Hilbert space L*. Martin-
gale convergence can be used to give an alternative existence proof. Suppose that X is
an integrable random variable on a probability space (£2,.4, P) and F is a separable
sub-o-algebra of A, i.e., there exists a countable collection (A;);cy of events A; € A
such that F = o(A; : ¢ € N). Let

Fn = (A, ... Ay, n > 0.

Note that for each n > 0, there exist finitely many atoms By, ..., By € A (i.e. disjoint
events with | J B; = Q) such that 7, = o(By,..., B). Therefore, the conditional

expectation given JF,, can be defined in an elementary way:

EX|F):= > E[X|B]-Is,
i : P[Bj]#0
Moreover, by Corollary 4.15] the limit M, = lim F[X | F,,| exists almost surely and in

L', and M, is a version of the conditional expectation E[X | F].

You might (and should) object that the proofs of the martingale convergence theorems
require the existence of conditional expectations. Although this is true, it is possible
to state the necessary results by using only elementary conditional expectations, and
thus to obtain a more constructive proof for existence of conditional expectations given

separable o-algebras.

Another immediate consequence of Corollary4.15]is an extension of Kolmogorov’s 0-1

law:
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Corollary 4.16 (0-1 Law of P.Lévy). If (F,,) is a filtration on (2, A, P) then for any
event A € o(|JFn),

PA|F) — 1a P-almost surely. (4.3.5)

Example (Kolmogorov’s 0-1 Law). Suppose that F,, = o(Ay,...,.A,) with indepen-
dent o-algebras A; C A. If Ais a tail event, i.e., Aisin o(A, 1, An19,...) for every
n € N, then A is independent of F,, for any n. Therefore, the corollary implies that
P[A] = I, P-almost surely, i.e.,

P[A] € {0,1} for any tail event A.

The L! Martingale Convergence Theorem also implies that any martingale that is L?

bounded for some p € (1, 00) converges in L?:

Exercise (LP Martingale Convergence Theorem). Let (1/,,) be an (F,,) martingale
with sup E[|M,|? ] < oo for some p € (1, 0).

(1). Prove that (M,,) converges almost surely and in L', and M,, = E[M,, | F,] for
any n > 0.

(2). Conclude that |M,, — M. |? is uniformly integrable, and M,, — M, in L”.

Note that uniform integrability of | M, |P holds automatically and has not to be assumed !

Backward Martingale Convergence

We finally remark that Doob’s upcrossing inequality can also be used to prove that the
conditional expectations F[X | F,,] of an integrable random variable given a decreasing
sequence (F,,) of o-algebras converge almost surely to E[X | (] F,]. For the proof one

considers the martingale M_,, = E[X | F,] indexed by the negative integers:

Exercise (Backward Martingale Convergence Theorem and LLN). Let (F,,),>0 be

a decreasing sequence of sub-c-algebras on a probability space (€2, .4, P).
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(1). Prove that for any random variable X € L', A, P), the limit M_,, of the

sequence M_,, :== E[X | F,] as n — —oo exists almost surely and in L', and

M_, = E[X| ﬂ}"n] almost surely.

(2). Now let (X,,) be a sequence of i.i.d. random variables in £!(Q, A, P), and let
Fn=0(Sn, Sni1,-..) where S, = X; + ...+ X,,. Prove that

S
EX: | 7] = =22,

and conclude that the strong Law of Large Numbers holds:

S
— — FE[Xy] almost surely.
n
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Chapter 5

Stochastic Integration w.r.t.

Continuous Martingales

Suppose that we are interested in a continuous-time scaling limit of a stochastic dynam-

ics of type X((]h) = 20,

X]E;ﬁ—)l - Xlg;h) = U(Xlgh)) ’ \/E * k415 k= 07 17 27 R (501)

with i.i.d. random variables 7; € £? such that E[r;] = 0 and Var[n;] = 1, a continuous

function o : R — R, and a scale factor h > 0. Equivalently,

n

n—1
XMW = X+ Vh Y o(X) e, m=0,12,. (5.0.2)
k=0

If o is constant then as h N\ 0, the rescaled process (X ff/)h | )t>0 converges in distribution
to (o - B;) where (B;) is a Brownian motion. We are interested in the scaling limit for
general 0. One can prove that the rescaled process again converges in distribution, and

the limit process is a solution of a stochastic integral equation
t
Xy = Xo+ /U(XS) dBs, t>0. (5.0.3)
0
Here the integral is an It stochastic integral w.r.t. a Brownian motion (B;). Usually the

equation (3.0.3) is written briefly as

dX, = o(X,)dB,, (5.0.4)
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and interpreted as a stochastic differential equation. Stochastic differential equations
occur more generally when considering scaling limits of appropriately rescaled Markov
chains on R? with finite second moments. The goal of this section is to give a meaning
to the stochastic integral, and hence to the equations (3.0.3), (5.0.4) respectively.

Example (Stock prices, geometric Brownian motion). A simple discrete time model

for stock prices is given by
Xir1 — X = Xy g1, n; id.d.

To set up a corresponding continuous time model we consider the rescaled equation
(3.0.1) as h \, 0. The limit in distribution is a solution of a stochastic differential
equation

dX, = X;dB; (5.0.5)

w.r.t. a Brownian motion (B;). Although with probability one, the sample paths of
Brownian motion are nowhere differentiable, we can give a meaning to this equation by
rewriting it in the form (3.0.3) with an It6 stochastic integral.

A naive guess would be that the solution of (5.0.3)) with initial condition X, = 1 is
X; = exp B;. However, more careful considerations show that this can not be true! In

fact, the discrete time approximations satisfy
XM= U+ Vi) - XY fork > 0.

Hence (X ,gh)) is a product martingale:

n

X = H(l + Vhi) for any n > 0.

k=1
In particular, E[Xflh)] = 1. We would expect similar properties for the scaling limit
(X}), but exp By is not a martingale and E[exp(B;)] = exp(t/2).

It turns out that in fact, the unique solution of (5.0.5) with X, = 1 is not exp(B;) but
the exponential martingale

Xy = exp(By —t/2),

which is also called a geometric Brownian motion. The reason is that the irregularity of
Brownian paths enforces a correction term in the chain rule for stochastic differentials

leading to Itd’s famous formula, which is the fundament of stochastic calculus.
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5.1 Defining stochastic integrals: A first attempt

Let us first fix some notation that will be used constantly below: By a partition 7 of
R, we mean an increasing sequence 0 = ¢y < t; < ty < ... such thatsup, = co. The

mesh size of the partition is
mesh(7) = sup{|t; — t;_1]| : i € N}

We are interested in defining integrals of type
t
I, = /HS dXs, t >0, (5.1.1)
0

for continuous functions and, respectively, continuous adapted processes (H,) and (Xj).

For a given ¢ > 0 and a given partition 7 of R, we define the increments of (X) up to
time ¢ by

0Xs = Xy — Xons for any s € T,
where s’ := min{u € 7 : u > s} denotes the next partition point after s. Note that
the increments 0 X vanish for s > ¢. In particular, only finitely many of the increments

are not equal to zero. A nearby approach for defining the integral I; in (3.1.1)) would be

Riemann sum approximations:

Riemann sum approximations

There are various possibilities to define approximating Riemann sums w.r.t. a given

sequence (7,,) of partitions with mesh(m,) — 0, for example:

Variant 1 (non-anticipative): I} = Y. H0Xj,

SET

Variant 2 (anticipative): ft” = > Hg0X,,

SETY

Variant 3 (anticipative): Iot” = > %(HS + Hy)0Xs.

SETR
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Note that for finite ¢, in each of the sums, only finitely many summands do not vanish.

For example,

I' = Y HSX, = Y Hy- (Xopn— X).

SET SETn
s<t s<t

Now let us consider at first the case where H, = X, and £ = 1, i.e., we would like to
1

define the integral I = [ X, dX,. Suppose first that X : [0,1] — R is a continuous
0

function of finite variation, i.e.,

V(X)) = sup{Z\éXs\ : 7 partition ofRJr} < 00.

sem

Then for H = X and ¢ = 1 all the approximations above converge to the same limit as
n — oo. For example,

17 =17 = 2(5)(3)2 < VO(X) - sup [6X,],

SET.
SET "

and the right-hand side converges to 0 by uniform continuity of X on [0, 1]. In this case

the limit of the Riemann sums is a Riemann-Stieltjes integral

n—o0 n—o0

1
lim I’ = lim IT = / X, dX,,
0

which is well-defined whenever the integrand is continuous and the integrator is of finite
variation or conversely. The sample paths of Brownian motion, however, are almost
surely not of finite variation. Therefore, the reasoning above does not apply, and in fact

if X; = B, is a one-dimensional Brownian motion and H; = X; then

Bl =] = Y El@#B)] = Y ds = 1,
SETn SETn
i.e., the L'-limits of the random sequence (I7") and (I7") are different if they exist. Below
we will see that indeed the limits of the sequences (17), (I7') and (Ioln) do exist in L?,
and all the limits are different. The limit of the non-anticipative Riemann sums /'
is the It6 stochastic integral fol B, dB,, the limit of (I7) is the backward It6 integral
fol By JBS, and the limit of [, is the Stratonovich integral fol B, odB,. All three notions
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of stochastic integrals are relevant. The most important one is the Itd integral because
the non-anticipating Riemann sum approximations imply that the It0 integral |, Ot H,dB;
is a continuous time martingale transform of Brownian motion if the process (Hj) is

adapted.

Ito integrals for continuous bounded integrands

We now give a first existence proof for It6 integrals w.r.t. Brownian motion. We start

with a provisional definition that will be made more precise later:

Preliminary Definition. For continuous functions or continuous stochastic processes
(Hs) and (Xs) and a given sequence (r,,) of partitions with mesh(rw,) — 0, the Itd
integral of H w.r.t. X is defined by

t
/ H,dX, = lim Z HX,
0

SETn
whenever the limit exists in a sense to be specified.

Note that the definition is vague since the mode of convergence is not specified. More-
over, the Itd integral might depend on the sequence (7,,). In the following sections we
will see which kind of convergence holds in different circumstances, and in which sense

the limit is independent of (7,,).

To get started let us consider the convergence of Riemann sum approximations for the
t
1t6 integrals [ H, dB; of a bounded continuous (F) adapted process (H,)s>o W.L.t. an

0
(Fs) Brownian motion (By). Let (7,,) be a fixed sequence of partitions with m,, C 7,41

and mesh(7,) — 0. Then for the Riemann-Itd sums

I' = Y HB, = Y Hy(Byu— By)

SETY SETy
s<t

we have

I'—1" = > (H,—Hy,)0B,  foranym <n,

SETn
s<t
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where [s],, = max{r € m,, : r < s} denotes the next partition point in 7, below

s. Since Brownian motion is a martingale, we have E[0B, | 5] = 0 for any s € 7,,.

Moreover, E[(6B,)* | Fs] = ds. Therefore, we obtain by conditioning on F, F,
respectively:
E[([f - [tm)Q] = Z ZE[(HS - HLSJm)(HT - HLer>5BséBr]
e

= S E((H, — Hy,)%s] < ElV,]- > 0s = E[V,] -,

SETY SET
s<t s<t
where
Vi, = sup (Hy— H,)> — 0 as m — 0o

|s—r|<mesh(mm)
by uniform continuity of (H,) on [0,¢]. Since H is bounded, E[V,,] — 0 as m — oo,
and hence (I') is a Cauchy sequence in L*(Q, A, P) for any given ¢t > 0. Thus we

obtain:

Theorem 5.1 (It6 integrals for bounded continuous integrands, Variant 1). Suppose
that (Hy)s>o is a bounded continuous (Fs) adapted process, and (Bs)s>o is an (Fy)

Brownian motion. Then for any fixed t > 0, the Ito integral

t
/HS dB, = lim I} (5.1.2)
n—o0
0
exists as a limit in L*(Q, A, P). Moreover, the limit does not depend on the choice of a

sequence of partitions (m,) with mesh (m,) — 0.

Proof. An analogue argument as above shows that for any partitions 7 and 7 such that
7 D 7, the L? distance of the corresponding Riemann sum approximations I and I7 is
bounded by a constant C'(mesh(7)) that only depends on the maximal mesh size of the
two partitions. Moreover, the constant goes to 0 as the mesh sizes go to 0. By choosing

a joint refinement and applying the triangle inequality, we see that

1T — I ||l 12p) < 20(A)
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holds for arbitrary partitions 7, 7 such that max(mesh(7)), mesh(7)) < A. The asser-

tion now follows by completeness of L?(P). O

The definition of the Itd integral suggested by Theorem 3.1 has two obvious drawbacks:

Drawback 1: The integral fot H,dB, is only defined as an equivalence class in L*(Q, A, P),
i.e., uniquely up to modification on P-measure zero sets. In particular, we do not have a

pathwise definition of fot H(w) dBs(w) for a given Brownian sample path s — B, (w).

Drawback 2: Even worse, the construction above works only for a fixed integra-
tion interval [0,¢]. The exceptional sets may depend on ¢ and therefore, the process
t— f(f H, dB; does not have a meaning yet. In particular, we do not know yet if there

exists a version of this process that is almost surely continuous.

The first drawback is essential: In certain cases it is indeed possible to define stochastic
integrals pathwise, cf. Chapter [0 below. In general, however, pathwise stochastic inte-
grals cannot be defined. The extra impact needed is the Lévy area process, cf. the rough
paths theory developed by T. Lyons and others [ XXXLyons, Friz and Victoir, Friz and

Hairer].

Fortunately, the second drawback can be overcome easily. By extending the Itd isom-
etry to an isometry into the space M? of continuous L? bounded martingales, we can
construct the complete process ¢ +—> fot H, dB; simultaneously as a continuous martin-
gale. The key observation is that by the maximal inequality, continuous L? bounded

martingales can be controlled uniformly in ¢ by the L? norm of their final value.

The Hilbert space M2

Fix u € (0, 0] and suppose that for ¢ € [0,u], (}*) is a sequence of Riemann sum
approximations for fot H, dB; as considered above. It is not difficult to check that for
each fixed n € N, the stochastic process ¢ —> I;* is a continuous martingale. Our aim is
to prove convergence of these continuous martingales to a further continuous martingale

I, = fot H,dB,. Since the convergence holds only almost surely, the limit process
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will not necessarily be (F;) adapted. To ensure adaptedness, we have to consider the

completed filtration
F' = {Ae€A:P[AA B]=0 forsome B € F;}, t>0,

where A A B = (A\ B) U (B \ A) is the symmetric difference of the sets A and B.
Note that the conditional expectations given F; and F/ agree P-almost surely. Hence,
if (B;) is a Brownian motion resp. a martingale w.r.t. the filtration (F;) then it is also a

Brownian motion or a martingale w.r.t. (F7).

Let M?([0,u]) denote the space of all L?-bounded (F}’) martingales (M;)o<;<, on
(Q, A, P). By M2?(|0,u]) and M?3(]0,u]) we denote the subspaces consisting of all
continuous (respectively right continuous) martingales M € M?([0,u]). Recall that
by the L? martingale convergence theorem, any (right) continuous L?-bounded martin-

gale (M;) defined for ¢ € [0,u) can be extended to a (right) continuous martingale in
M2([0, ul).
Two martingales M, M € M?2([0,]) are called modifications of each other if
P[M, = M,] = 1 for any ¢ € [0, u).
If the martingales are right-continuous then two modifications agree almost surely, i.e.,
P[M, = MVt € [0,u]] = 1.

In order to obtain norms and not just semi-norms, we consider the spaces

MA([0,u]) = M*([0,u])/ ~ and  MZ([0,u]) = MZ([0,u])/ ~

of equivalence classes of martingales that are modifications of each other. We will

frequently identify equivalence classes and their representatives.

We endow the space M?([0,u]) with the inner product
(M7 N)M2([O,u}) = (MuaNu)L2 = E[MuNu]

As the process (M?) is a submartingale for any M € M?([0, u]), the norm correspond-

ing to the inner product is given by

IM 320y = EIM3I] = sup E[M{].

0<t<u
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Moreover, if (M;) is right continuous then by Doob’s L?-maximal inequality,

sup | M|

0<t<u

S 2- sup ”MtHLQ(Q7A7P) = 2”M”M2([0,u]) (513)
L2(Q,A,P) Ostsu

This crucial estimate shows that on the subspaces M? and M2, the M? norm is equiva-
lent to the L? norm of the supremum of the martingale. Therefore, the M? norm can be

used to control (right) continuous martingales uniformly in t!

Lemma 5.2 (Completeness). (I). The space M?([0,u]) is a Hilbert space, and the
linear map M — M, from M?([0,u]) to L*(S2, F., P) is onto and isometric.

(2). The spaces M?([0,u]) and M2([0,u]) are closed subspaces of M*([0,u)), i.e.,
if (M™) is a Cauchy sequence in M?([0,u]), or in M?3(|0,u]) respectively, then
there exists a (right) continuous martingale M € M?([0, u]) such that

sup |M" — M| — 0 in L*(Q, A, P).

te|0,u]

Proof.  (1). By definition of the inner product on M?([0,u]), the map M + M, is
an isometry. Moreover, for X € L?(Q, F,, P), the process M; = E[X | F,]
is in M*([0,u]) with M, = X. Hence, the range of the isometry is the whole
space L*(2, F,, P). Since L*(Q, F,, P) is complete w.r.t. the L? norm, the space
M?([0,u]) is complete w.r.t. the M? norm.

(2). If (M™) is a Cauchy sequence in M?2([0, u]) or in M3([0, u]) respectively, then by
(S.1.3D,

|M™ = M™||sup := sup |M— M" — 0 in L*(Q, A, P).
0<t<u
In particular, we can choose a subsequence (M ™) such that
P[||M™+1 — M™ || g >27%] < 27F forall k € N.
Hence, by the Borel-Cantelli Lemma,

P[ HMnk+1 - Mnk”sup < 27]6 eventually] = 17
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and therefore M;"* converges almost surely uniformly in ¢ as & — oo. The limit
of the sequence (M™) in M?([0,u]) exists by (1), and the process M defined by
lim M;**  if (M™) converges uniformly,
M, = (5.1.4)
0 otherwise,
is a continuous (respectively right continuous) representative of the limit. Indeed,

by Fatou’s Lemma,

IM™ ~ MBaowy < BLIM™ = M2, ] = Effim | M™ - M™|2,,]

sup sup

< liminf B[ | M™ — M™|2, ],
l—00

sup

and the right hand side converges to 0 as k — oo. Finally, M is a martingale w.r.t.
(FF), and hence an element in M? ([0, u]) or in M2 ([0, u]) respectively.
O

Remark. We point out that the (right) continuous representative (/) defined by
is a martingale w.r.t. the complete filtration (F}), but it is not necessarily adapted w.r.t.
(F1)-

Definition of Itd integral in M?

Let u € R*. For any bounded continuous (F;) adapted process (H;) and any sequence
(m,) of partitions of R, the processes
I' = Y H,(Bypn— Ban),  t€[0,u],
SETR
are continuous L? bounded martingales on [0, u]. We can therefore restate Theorem [3.1]

in the following way:

Corollary 5.3 (It6 integrals for bounded continuous integrands, Variant 2). Suppose
that (Hy)s>o is a bounded continuous (F) adapted process. Then for any fixed u > 0,
the Ito integral

/ HydB, = lim (I, (5.1.5)
0
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exists as a limit in M?2([0,u]). Moreover; the limit does not depend on the choice of a

sequence of partitions (m,) with mesh (m,) — 0.

Proof. The assertion is an immediate consequence of the definition of the M? norm,
Theorem [5.]and Lemmal[5.21 O

Similar arguments as above apply if Brownian motion is replaced by a bounded mar-
tingale with continuous sample paths. In the rest of this chapter we will work out the
construction of the Itd integral w.r.t. Brownian motion and more general continuous

martingales more systematically and for a broader class of integrands.

5.2 Ito’s isometry

Let (M;);>0 be a continuous (or, more generally, right continuous) martingale w.r.t. a
filtration (F;) on a probability space (2, A, P). We now develop a more systematic
approach for defining stochastic integrals fot Hg dM; of adapted processes (H;) w.r.t.
(My).

Predictable step functions

In a first step, we define the integrals for predictable step functions (H;) of type

—

n—

Ht(w) = Ai(w)I(ti,ti+1](t)

i

Il
o

withn € N,0 <t) <t <ty <...<t,, and bounded F; -measurable random vari-
ables A;,7=0,1,...,n — 1. Let & denote the vector space consisting of all stochastic

processes of this form.
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Definition (Ito integral for predictable step functions). For stochastic processes H €
& andt > 0 we define

l n—1
/Hs dM, = ZAi : (Mtiﬂ/\t - tht) = Z Ai : (Mtiﬂmt - Mti)-
. =0 '
The stochastic process HyM given by
t
(HM), = /Hs dM; fort €0, 0]
0

is called the Ito integral of H w.r.t. M.

Note that the map (H, M) — H,M is bilinear. The process H, M is a continuous time
martingale transform of M w.r.t. H. It models for example the net gain up to time ¢

if we hold A; units of an asset with price process (M;) during each of the time intervals

(ti, tisa].

Lemma 5.4. For any H € &, the process H M is a continuous (F;) martingale up to

timet = oo.

Similarly to the discrete time case, the fact that A; is predictable, i.e., F;,-measurable,

is essential for the martingale property:

Proof. By definition, H,M is continuous and (F;) adapted. It remains to verify that
E[(HeM), | Fs] = (HeM)s forany 0 < s < t. (5.2.1)

We do this in three steps:

(1). At first we note that (5.2.1) holds for s,t € {to,11,...,t,}. Indeed, since A; is

Ji,-measurable, the process

—_

j_

(HOM)tj = Ai' (Mti_H _Mti)a j :0,]_,...,”,

~
Il
o
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is a martingale transform of the discrete time martingale (1/;,), and hence again

a martingale.

(2). Secondly, suppose s,t € [t;,t;41] for some j € {0,1,2,...,n — 1}. Then
E[(H M), = (H M) | Fo] = E[A;- (M, = My) [ Fy] = A;- E[M; = M, [ Fy] = 0
because A; is F;,-measurable and hence F,-measurable, and (M, ) is a martingale.

(3). Finally, suppose that s € [t;,t;1] and t € [ty, t;q1] With j < k.

Then by the tower property for conditional expectations and by (1) and (2),

E[(HOM)t | ‘Fs] = E[E[E[(HOM)t | ftk] |~th+1] |~Fs]
& BE(HM)y | Fy) | F) € E[(HM),,, | F
@ (H.M),.

J+1

O

Remark (Riemann sum approximations). Non-anticipative Riemann sum approxi-

mations of stochastic integrals are It6 integrals of predictable step functions: If (H,) is

an adapted stochastic process and ™ = {¢¢, 1, ..., t,} is a partition then
n—1 t
Z Hti ’ (Mti+1/\t - Mti/\t) = /H;I’ dMs (522)
i=0 )

t:,ti+1] 1S @ process in &.

n—1
where H™ := " H,, - I
i=0
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It6’s isometry for Brownian motion

Recall that our goal is to prove that non-anticipative Riemann sum approximations
for a stochastic integral converge. Let (m,) be a sequence of partitions of [0, ¢] with
mesh(7,) — 0. By the remark above, the corresponding Riemann-Itd sums /™ defined
by (5.2.2)) are integrals of predictable step functions H™. Hence in order to prove that

the sequence (I™) converges in the Hilbert space M? it suffices to show that

(1). (H™) is a Cauchy sequence w.r.t. an appropriate norm on the vector space &,

and

(2). the “Itd map” J : & — M? defined by
J(H) = HM = /HS M,
0

is continuous w.r.t. this norm.

It turns out that we can even identify explicitly a simple norm on & such that the It6

map is an isometry. We first consider the case where (M,) is a Brownian motion:

Theorem 5.5 (Itd’s isometry for Brownian motion). [f (B;) is an (F;) Brownian mo-
tion on (X, A, P) then for any u € [0, o], and for any process H € &,

2

1Ho Bl 3200 = E /Hs dB, =F /Hf ds| = HHH;(P@AM) (5.2.3)
0 0

Proof. Suppose that H = Z?;Ol A Iyyq, ywithn € N, 0 <ty <) <...<t,and

A; bounded and F;,-measurable. With the notation 6; B := By, nu — B, nu, We obtain

u 2 n—1 2 n—1
E ( / Hsst) = E <ZAZ-5¢B> = Y E[AiA;-0:B&B]. (524)
0 i=0 i,k=0
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By the martingale property, the summands on the right hand side vanish for i # k.

Indeed, if, for instance, ¢ < k then
E[A;Axd;BépB] = E[A;A0;B - E[6xB | Fi,]] = 0.
Here we have used in an essential way, that A, is F;, -measurable. Similarly,
E[A? - (6:;B)’] = E[AZE[(6:;B)* | Fi]] = E[A? - yt]

by the independence of the increments of Brownian motion. Therefore, by we

obtain
w 2 n—1 u
E (/ Hsst) :ZE[A?~(ti+1/\u—ti/\u)]:E{/ Hfds}
0 =0 0
The assertion now follows by definition of the /2 norm. U

Theorem [5.5] shows that the linear map
T 6= MA0,u)),  T(H) = (/ H, st) ,
0 rel0,u]

is an isometry if the space & of simple predictable processes (s,w) — H,(w) is en-

dowed with the L2 norm

u 1/2
IH | 2(Pere.) = F U H? ds}
0

on the product space €2 x (0, u). In particular, J respects P ® A classes, i.e., if Hy(w) =
H,(w) for P ® A-almost every (w, s) then [ HdB = [ HdB P-almost surely. Hence
J also induces a linear map between the corresponding spaces of equivalence classes.
As usual, we do not always differentiate between equivalence classes and functions, and

so we denote the linear map on equivalence classes again by J:

T+ ECLAP@A\ow) — M([0,4]),
1T (H)|arzqoy = 1H|22(Porg..))- (5.2.5)
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Ito’s isometry for martingales

An It6 isometry also holds if Brownian motion is replaced by a continuous square-
integrable martingale ();). More generally, suppose that (M;);> is a right continuous

square integrable (F;) martingale satisfying the following assumption:

Assumption A. There exists a non-decreasing adapted continuous process ¢ +— (M),
such that (M) = 0 and M? — (M), is a martingale.

For continuous square integrable martingales, the assumption is always satisfied. In-
deed, assuming continuity, the “angle bracket process” (M), coincides almost surely
with the quadratic variation process [M]; of M, cf. Section [6.3] below. For Brownian

motion, Assumption A holds with
(B); = t.
Note that for any 0 < s < ¢, Assumption A implies
E[(M,— M)?*|F] = E[M} = MZ|F,] = E[(M), — (M),|FJ. (52.6)

Since t — (M);(w) is continuous and non-decreasing for a given w, it is the distribution

function of a unique positive measure (M )(w, dt) on R,

Theorem 5.6 (It6’s isometry for martingales). Suppose that (M;);>¢ is a right con-
tinuous (JF;) martingale with angle bracket process (M) satisfying Assumption A. Then
for any u € [0, 0], and for any process H € &,

([ )

where d{M) denotes integration w.r.t. the positive measure with distribution function
F(t) = (M)

2
||H°M||M2([O,u]) =F

= F { /O ’ H? d<M>S] (5.2.7)

For Brownian motion (B); = t, so (5.2.7) reduces to (3.2.3).
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Proof. The proof is similar to the proof of Theorem above. Suppose again that
H=Y"0A Ty, withn € N0 <ty <t <...<t,and A, bounded and F; -
measurable. With the same notation as in the proof above, we obtain by the martingale
properties of M and M? — (M),

it1]

E[A; AL ;M 6, M] = 0 fori # k, and

BlA? - (:M)*] = E[AJE[(0:M)* | F]] = E[AIE[6(M) | ]| = E[A7 - 6:{M)].

cf. (3.2.6). Therefore,

E (/OuHdes)zl - E (flAicSiM>2 = nz_ E [A; Ay, 6:;M 6, M]
= jz_:E[Af(Si(M)] - E [/Oum d(M)s}

For a continuous square integrable martingale, Theorem [5.6/implies that the linear map
J & — M([0,u]), JT(H) = (/ H, dMS) ,
0 r€[0,u]

is an isometry if the space & of simple predictable processes (s,w) — H,(w) is en-

dowed with the L? norm

u 1/2
Hlinoa = B || 2 a0
0
on the product space 2 x (0, u) endowed with the positive measure
Popy(dwdt) = P(dw) (M)(w,dt). (5.2.8)

Again, we denote the corresponding linear map induced on equivalence classes by the

same letter 7.
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Definition of It6 integrals for square-integrable integrands

From now on we assume that ();) is a continuous square integrable (F;) martingale

with angle bracket process (M);. We fix u € [0, oo] and consider the isometry

J & C L x (0,u), Pary) — MZ([0,u]),. (5.2.9)
H — HM

mapping an elementary predictable process H to the continuous martingale
t
(H M)y = / H dM;.
0

More precisely, we consider the induced map on equivalence classes.

Let &, denote the closure of the space & in L*(Q2 x (0,u), Pjyy). Since 7 is linear with
T E)l 2oy = [1H | z2@x0u),Ppyy)  forany H € E,
there is a unique extension to a continuous (and even isometric) linear map
J 6 C LXQx(0,u),Pan) —  MZ[0,u]).

This can be used to define the It6 integral for any process in &, i.e., for any process that

can be approximated by predictable step functions w.r.t. the LQ(P< M)) norm:
t
H,B = J(H), / H,dB; = (H4B);.
0

Explicitly, we obtain the following definition of stochastic integrals for integrands in &,:

Definition (It6 integral). For H € &, the process H,M = ( fot Hy dM;)ic(0,4) is the up

to modifications unique continuous martingale on [0, u] satisfying

(HM);, = lim (H*M), inL*(P)  foranytc[0,u]

n—oo

whenever (H™) is a sequence of elementary predictable processes such that H" — H
in L2<Q X (O, u), P<M>).
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Remark. (1). By construction, the map H > H,M is an isometry from &, endowed
with the L?(Psy) norm to M2([0, u]). If t — (M), is absolutely continuous, then
the closure &, of the elementary processes actually contains any (F;’) adapted

process (w,t) — H,(w) that is square-integrable w.r.t. Py, see XXX below.

(2). The definition above is consistent in the following sense: If H,M is the stochastic
integral defined on the time interval [0, v] and u < v, then the restriction of H, M

to [0, u] coincides with the stochastic integral on [0, u].

For 0 < s <t we define
t
/ H,dM, = (H M), — (HeM)s.

Exercise. Verify that for any H € &,

t t t t
/ Hr dMT = / H,n dBr — / ](073)(T‘)HT dMT = / -[(s,t)(r)Hr dM,n.
s 0 0 0
Having defined the It6 integral, we now show that bounded adapted processes with
left-continuous sample paths are contained in the closure of the simple predictable pro-
cesses, and the corresponding stochastic integrals are limits of predictable Riemann sum
approximations. As above, we consider a sequence (7,,) of partitions of R, such that

mesh(m,) — 0.

Theorem 5.7 (Approximation by Riemann-Ité sums). Ler u € (0, 00), and suppose
that (Hy)ieo,u) is an (F{) adapted stochastic process on (2, A, P) such that (t,w) —
Hy(w) is product-measurable and bounded. If t — H, is P-almost surely left continuous
then H is in &, and

t
/0 H, dM, = lim > Ho(Mype — M), t € [0,ul, (5.2.10)

SETR

w.r.t. convergence uniformly in t in the L?(P) sense.
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Remark. (1). In particular, a subsequence of the predictable Riemann sum approxi-

mations converges uniformly in ¢ with probability one.
(2). The assertion also holds if H is unbounded with sup,, |H,| € L*(P).

Proof. For any t € [0, u], the Riemann sums on the right hand side of (3.2.10)) are the
stochastic integrals fot H? dM; of the predictable step functions

HY == Y Ho-Iow(t), neN
SETR,s<U

By left-continuity, H}> — H; as n — oo for any ¢ € [0, u], P-almost surely. Therefore,

H" — H P -almost surely, and, by dominated convergence,
H" — H in LQ(P<M>).

Here we have used that the sequence (H") is uniformly bounded since H is bounded by

assumption. Now, by It6’s isometry,

/HSdMS = lim [ H!dM, in M2(]0,u)).
0

n—oo 0

Identification of admissible integrands

Let u € (0,00]. We have already shown that if © < oo then any product-measurable
adapted bounded process with left-continuous sample paths is in &,. More generally,
we will prove now that if M; = B, is a Brownian motion then any adapted process
in £L%(P ® Ap,y)) is contained in &,, and hence “integrable” w.r.t. (B;). Let £L2(0,u)
denote the linear space of all product-measurable, (/) adapted stochastic processes
(w,t) — Hy(w) defined on © x (0, u) such that

E[/ Hfdt] < o0.
0

The corresponding space of equivalence classes of P®\ versions is denoted by L2 (0, u).

Lemma 5.8. L2(0, u) is a closed linear subspace of L*(P @ \(o.))-
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Proof. Tt only remains to show that an L?(P ® \) limit of (F}") adapted processes again
has an (F}") adapted P ® \-version. Hence consider a sequence H™ € £2(0,u) with
H™ — H in L*(P ® \). Then there exists a subsequence (H™) such that H;"*(w) —
H,(w) for P @ A-almost every (w, t) €  x (0,u). The process H defined by H,(w) :=
lim H"™ (w) if the limit exists, H,(w) := 0 otherwise, is an (F}) adapted version of
H. U

We can now identify the class of integrands H for which the stochastic integral H, B is

well-defined as a limit of integrals of predictable step functions in M?2([0, u]):

Theorem 5.9 (Admissible integrands for Brownian motion). For any u € (0, oo),

&, = LX(0,u).

Proof. Since & C L2(0,u) it only remains to show the inclusion “2”. Hence fix a
process H € £2(0,u). We will prove in several steps that H can be approximated by

simple predictable processes w.r.t. the L?(P ® A(g)) norm:

(1). Suppose first that H is bounded and has almost surely continuous trajectories.
Then for u < oo, H is in &, by Theorem 5.7l For v = oo, H is still in &,
provided there exists ¢y € (0, 00) such that H; vanishes for ¢ > .

(2). Now suppose that (H;) is bounded and, if u = oo, vanishes for ¢ > ¢,. To
prove H € &, we approximate H by continuous adapted processes. To this end
let ¢, : R — [0,00),n € N, be continuous functions such that ¢(s) = 0 for
s ¢ (0,1/n)and [7_tpn(s)ds = 1. Let H" := H x 1y, i.e.,

1/n
HW) = [ Hedonle) de (5.2.11)
0
where we set [{; := 0 for¢ < 0. We prove that

(@) H" — H in L*(P ® A(g,4)), and
(b) H* € &, forany n € N.
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Combining (a) and (b), we see that H is in &, as well.
(a) Since H isin L*(P ® A(.,)), we have
/ Hy(w)*dt < oo (5.2.12)
0

for P-almost every w. It is a standard fact from analysis that (5.2.12)) implies

/ |H"(w) — Hy(w)*dt  — 0 as n — oo.
0

By dominated convergence, we obtain

E[/ |H[L—Ht|2dt] — 0 as n — 0o (5.2.13)
0

because H is bounded, the sequence (H,,) is uniformly bounded, and H and
H" vanish fort > ty + 1.

(b) This is essentially a consequence of part (1) of the proof. We sketch how to

verify that H" satisfies the assumptions made there:

The sample paths ¢ — H]'(w) are continuous for all w.

|H}| is bounded by sup | H]|.

The map (w,t) — H}'(w) is product measurable by and Fu-
bini’s Theorem, because the map (w, t,¢) — H;_.(w)1-(w) is product
measurable.

If the process (H;) is progressively measurable, i.e., if the map (s, w) —
Hy(w) (s € (0,t),w € ) is measurable w.r.t. the product o-algebra
B(0,t) ® FF for any t > 0, then (H) is (FF) adapted by (3.2.11))
and Fubini’s Theorem. This is for example the case if (H;) is right

continuous or left continuous.
In general, one can prove that ( H,) has a progressively measurable mod-
ification, whence (H[) has an (F/") adapted modification. We omit the

details.

(3). We finally prove that general H € £2(0,u) are contained in &,. This is a conse-

quence of (2), because we can approximate /1 by the processes

H]' == (H;An)V (=n)) - Lon(t), n € N.
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These processes are bounded, they vanish for ¢ > n, and H" — H in L2(P ®
Ao,u))- By (2), H™ is contained in &, for any n, so H is in &, as well.

O

Remark (Riemann sum approximations). For discontinuous integrands, the predict-
able Riemann sum approximations considered above do not converge to the stochastic
integral in general. However, one can prove that for u < oo any process H € L2(0,u)
is the limit of the simple predictable processes

2"—1 127"y

th = Z 2"/( H, ds - I(ig—nu,(¢+1)2*"u] (t)
i=1

i—1)2-"u

w.r.t. the L*(P ® \p,)) norm, cf. [XXXSteele: “Stochastic calculus and financial ap-
plications”, Sect 6.6]. Therefore, the stochastic integral fot H dB can be approximated

for t < u by the correspondingly modified Riemann sums.

For continuous martingales, a similar statement as in Theorem [5.9] holds provided the
angle bracket process is absolutely continuous. Let £2(0, u; M) denote the linear space

of all product-measurable, (F/") adapted stochastic processes (w, t) — H;(w) such that

E UOUHE d(M),

The corresponding space of equivalence classes w.r.t. Py is denoted by L2(0, u; M).

< o0.

Exercise (Admissible integrands w.r.t. martingales). Suppose that (1/;) is a contin-
uous square integrable (F;) martingale. Show that if almost surely, ¢ — (M), is abso-
lutely continuous, then the closure &, of the elementary processes w.r.t. the L*(P, M))
norm is given by

E, = L2(0,u; M).

5.3 Localization

Square-integrability of the integrand is still an assumption that we would like to avoid,

since it is not always easy to verify or may even fail to hold. The key to extending
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the class of admissible integrands further is localization, which enables us to define a
stochastic integral w.r.t. a continuous martingale for any continuous adapted process.
The price we have to pay is that for integrands that are not square integrable, the Itd

integral is in general not a martingale, but only a local martingale.

Throughout this section we assume that )/, is a continuous square integrable martingale

with absolutely continuous angle bracket process (M );.

Local dependence on integrand and integrator

The approximations considered in the last section imply that the stochastic integral de-

pends locally both on the integrand and on the integrator in the following sense:

Corollary 5.10. Suppose that T : Q2 — [0, 00| is a random variable, M, M are square
integrable martingales with absolutely continuous angle bracket processes (M), (M ),
and H, H are processes in L2(0,00; M), L2(0, co; M ) respectively, such that almost
surely, H, = H, forany t € [0,T) and M; = M, forany t € [0, T']. Then almost surely,

t t
/ H,dM, = / H, dM, foranyt € [0,T)]. (5.3.1)
0 0

Proof. We go through the same approximations as in the proof of Theorem [5.9above:

(1). Suppose first that H; and I:Tt are almost surely continuous and bounded, and there
exists tg € R, such that H, = I:Q = 0 fort > ty. Let (m,) be a sequence of
partitions with mesh(7,,) — 0. Then by Theorem [5.7]

t
/OHdM = JE&ZH Myn — M),  and

SETR
s<t

t
/ HdM = lim Y H,-(Myy — M,)
0 Tk%ooseﬂn
s<t
with P-almost sure uniform convergence on finite time-intervals along a common

subsequence. For ¢ < T the right-hand sides coincide, and thus (5.3.1)) holds true.
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(2). Now suppose that H and H are bounded and H, = ﬁt = 0 for t > ty. Then the

approximations

1/n . I/n _
Hz? :/ Htfewn(g) de, Hz? :/ Ht*ewn(g)
0 0

(with 1),, defined as in the proof of Theorem and H; := ﬁt = 0fort < 0)
coincide for ¢ < T'. Hence by (1), on {t < T},

t t t N t
/ HdM = lim/ H"dM = = lim/ H"dM = / H dM,
0 0 0 0

where the convergence holds again almost surely uniformly in ¢ along a subse-

quence.

(3). Finally, in the general case the assertion follows by approximating // and H by

the bounded processes

HY = (HeAn)V (=n)) - Toa(t), HY = (HeAn)V (=n)) - To.(2).

It6 integrals for locally square-integrable integrands

Let M be a continuous square integrable martingale with absolutely continuous angle
bracket process (M), and let T : 2 — [0, o] be an (F[) stopping time. We will also
be interested in the case where T" = co. Let £2,,.(0,T; M) denote the linear space

consisting of all stochastic processes (¢,w) — H;(w) defined for ¢t € [0,T'(w)) such that

the trivially extended process

~ H, fort<T,
Ht =
0 fort > T,

is product measurable in (¢, w), adapted w.r.t. the filtration (F/), and

t s Hy(w) isin £2.([0,T(w)),d(M)(w)) for P-ae. w. (5.3.2)
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Here for u € (0, 00, the space L2 ([0, ), d(M)(w)) consists of all measurable func-
tions f : [0, u) — [—00, o0 such that [; f(¢)? d(M),(w) < oo forany s € (0,u). In
particular, it contains all continuous functions.

From now on, we use the notation H, - I;;.7y for the trivial extension (ﬁt)0§t<oo of
a process (H¢)o<t<r beyond the stopping time 7'. Locally square integrable adapted

processes allow for a localization by stopping times:

Lemma 5.11 (Localization by stopping). If (H;)o<i<r is a process in E?IJOC(O, T; M)
then there exists an increasing sequence (T,)nen of (FL) stopping times such that T =

sup 1,, almost surely, and
Hy Iyt € L£2(0,00; M) foranyn € N.

Proof. One easily verifies that the random variables 7;, defined by
t
T, = inf{0§t<T:/ Hfd<M>SZn}/\T, n €N, (5.3.3)
0

are (F[) stopping times. Moreover, for almost every w, the function ¢ > H(w) is
in £2_([0,T),d(M)(w)). Hence the function ¢ — fot Hy(w)? d{M), is increasing and
finite on [0, 7 (w)), and therefore T, (w)  T(w) as n — oo. Since T}, is an (F})
stopping time, the process H, - Ij;r,y is (F})-adapted, and by (3.3.3),
E U (H - Isery)? d(M)S] =FE {
0

Tn
H? d<M>S} <n for any n.
0

O

A sequence of stopping times as in the lemma will also be called a localizing sequence.
We can now extend the definition of the Itd integral to locally square-integrable adapted

integrands:

Definition (It6 integral with locally square integrable integrand). For a process H €
L2, (0,T; M), the Ité stochastic integral w.r.t. the martingale M is defined for t €

a,loc

[0,T) by

t t
/0 H,dM; = /0 H- [{5<T} d M foranyt € [0,T] (5.3.4)
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whenever T is an (F[) stopping time such that H, - Loy € L£2(0, 00; M).

Theorem 5.12. For H € £2,,.(0,T; M) the Ité integral t — [, H,dM, is almost surely

a,loc

well defined by (5.3.4) as a continuous process on [0, T).

Proof. We have to verify that the definition does not depend on the choice of the local-
izing stopping times. This is a direct consequence of Corollary [5.10k Suppose that T
(<7 are both in £3(0, oo; M).
Since the two trivially extended processes agree on [0,7" A T'), Corollary implies

and T are stopping times such that H; - [ (t<T} and H; - [

that almost surely,
t t
/0 Hy - Iy dM, = /0 H, - I{s<T} dM, forany t € [0, T A T).

Hence, by Lemma[5.11] the stochastic integral is well defined on [0, T'). O

Stochastic integrals as local martingales

It6 integrals w.r.t. square integrable martingales are not necessarily martingales if the
integrands are not square integrable. However, they are still local martingales in the

sense of the definition stated below.

Definition (Predictable stopping time). An (F7) stopping time T is called predictable
iff there exists an increasing sequence (Ty)ren consisting of (FF') stopping times such
that Ty, < T on {T # 0} for any k, and T' = sup Tj.

Example (Hitting time of a closed set). The hitting time 7'y of a closed set A by a
continuous adapted process is predictable, as it can be approximated from below by the
hitting times 7’4, of the neighbourhoods Ay = {z : dist(z, A) < 1/k}. On the other

hand, the hitting time of an open set is not predictable in general.
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Definition (Local martingale). Suppose that T : Q) — [0, 00| is a predictable stopping
time. A stochastic process M;(w) defined for 0 < t < T'(w) is called a local martingale
up to time T, if and only if there exists an increasing sequence (1},) of stopping times
with T' = sup T}, such that forany k € N, T, < T on {T > 0}, and the stopped process
(Minr, ) is a martingale for t € [0, 00).

Recall that by the Optional Stopping Theorem, a continuous martingale stopped at a
stopping time is again a martingale. Therefore, any continuous martingale (M;):>o is a
local martingale up to 7" = oco. Even if (}/;) is assumed to be uniformly integrable, the

converse implication fails to hold:

Exercise (A uniformly integrable local martingale that is not a martingale). Let
r € R3 with x # 0, and suppose that (B;) is a three-dimensional Brownian motion with
initial value By = x. Prove that the process M; = 1/|B,| is a uniformly integrable local

martingale up to 7" = oo, but (1/;) is not a martingale.

On the other hand, note that if (M/;) is a continuous local martingale up to 7" = oo, and
the family { M7, : k € N} is uniformly integrable for each fixed t > 0, then (M) is a

martingale, because for 0 < s <t
E[M;| Fs] = lim E[Mjg, | Fs] = lim Mg, = M,
k—o0 k—o0

with convergence in L.

As a consequence of the definition of the Itd integral by localization, we immediately

obtain:

Theorem 5.13 (It6 integrals as local martingales). Suppose that 'T' is a predictable

2
a,loc

stopping time w.r.t. (FF). Then for any H € L£2,,.(0,T; M), the It6 integral process

t— fot H, dM; is a continuous local martingale up to time T
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Proof. We can choose an increasing sequence (7},) of stopping times such that 7, < T'
on {T" > 0} and H, - Iyycr,y € L2(0,00; M) for any k. Then, by definition of the Ito
integral,

tATy tATy,

H,dM, = Hy - Iroemyy dM, almost surely for any k € N,
0 0

and the right-hand side is a continuous martingale in M?([0, 00)). O

The theorem shows that for a predictable (F7) stopping time 7', the Itd map H +
f0° H dM extends to a linear map

J L2 (O,T, M) _>Mc,]oc([07T))7

loc

2
where L

(0, T; M) is the space of equivalence classes of processes in £2 (0, T; M)
that coincide for Pppy-a.e. (w,t), and M, .([0,7")) denotes the space of equivalence
classes of continuous local (F/") martingales up to time 7' w.r.t. P-almost sure coin-
cidence. Note that different notions of equivalence are used for the integrands and the

integrals.

We finally observe that continuous local martingales (and hence stochastic integrals
w.r.t. continuous martingales) can always be localized by a sequence of bounded mar-

tingales in M?([0, oo):

Exercise (Localization by bounded martingales). Suppose that (1/,) is a continuous

local martingale up to time 7', and (7}) is a localizing sequence of stopping times.

(1). Show that
T = Tu Ainf{t >0 : |M,| >k} Ak

is another localizing sequence, and for all k, the stopped processes (M . /\Tk) 000)
te|0,00

are bounded martingales in M2([0, 0)).

(2). Show that if T = oo then T}, := inf{t > 0 : |M,| > k} is also a localizing

sequence for M.

University of Bonn 2015/2016



CHAPTER 5. STOCHASTIC INTEGRATION W.R.T. CONTINUOUS
178 MARTINGALES

Approximation by Riemann-It6 sums

If the integrand (H;) of a stochastic integral [ H dB has continuous sample paths then
local square integrability always holds, and the stochastic integral is a limit of Riemann-

It6 sums: Let (7,) be a sequence of partition of R, with mesh(m,) — 0.

Theorem 5.14. Suppose that T is a predictable stopping time, and (H;)o<i<T is a
stochastic process defined for t < T. If the sample paths t — H,(w) are continuous on

0, T'(w)) for any w, and the trivially extended process Hy - I i1y is (F) adapted, then

H isin L2, ,.(0,T; M), and for any t > 0,
t
/ H,dM, = lim > H,- (Myy—M,)  on{t<T} (5.3.5)
0 oo SETR
s<t

with convergence in probability.

Proof. Let |t], = max{s € m, : s < t} denote the next partition point below ¢. By

continuity,

Hy-Iyery = nh_)H;O Hyyy,, - I<ry.

Hence (H; - Iy<ry) is (F{) adapted. It is also product-measurable, because

Hyy, - Tgery = Y He Tsery - T () - To.o0) (T — 1),

SETy,

By continuity, t — Hy(w) is locally bounded for every w, and thus H isin £2 (0, T; M).

Moreover, suppose that (7}) is a sequence of stopping times approaching 7" from below

in the sense of the definition of a predictable stopping time given above. Then

Ty = T, Ainf{t > 0:|H,| >k}, keN,
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is a localizing sequence of stopping times with H; - I,y in £2(0,T; M) for any F,
and fk T Therefore, by definition of the Ito integral and by Theorem [5.7]

t t t
/OHSdMS - /OHS-I{S@} dM, = /0 H, - Ip,7,, dM,
= lim Y H, - (Mgn — M,) on {t < T}
n~>oos€7m

s<t

w.r.t. convergence in probability. Since

P =0,

<\t <7}
k

we obtain (3.3.3)). O
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Chapter 6
Ito’s formula and pathwise integrals

Our approach to Itd’s formula in this chapter follows that of [Follmer: Stochastic Anal-
ysis, Vorlesungsskript Uni Bonn WS91/92]. We start with a heuristic derivation of the

formula that will be the central topic of this chapter.

Suppose that s — X is a function from [0, ¢] to R, and F' is a smooth function on R. If
(7,) is a sequence of partitions of the interval [0, ¢] with mesh(7,,) — 0 then by Taylor’s

theorem

1
F(Xy)-F(X,) = F'(X,) (Xy—X,)+ §F"(XS) -(Xy — X,)? +higher order terms.
Summing over s € 7, we obtain

F(Xy) — F(Xo) = Z F'(X,) (Xg — X,) + %F”(XS) Xy — X)* ... (6.0.1)

SETR

We are interested in the limit of this formula as n — oo.

(a) Classical case, e.g. X continuously differentiable For X € C' we have
dX,

Xy — X, = y (s —s5) +O(s — §'|?), and
s

(Xg — X)? = O(ls— 5.
Therefore, the second order terms can be neglected in the limit of (6.0.1) as mesh(7,) —

0. Similarly, the higher order terms can be neglected, and we obtain the limit equation
t

F(X;) — F(X,) = / F'(X,) dX,, (6.0.2)

0

180
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or, in differential notation,
dF (X;) = F'(X;) dXy, (6.0.3)

Of course, (6.0.3) is just the chain rule of classical analysis, and (6.0.2)) is the equivalent
chain rule for Stieltjes integrals, cf. Section [6.1] below.

(b) X; Brownian motion If (X;) is a Brownian motion then
B[( Xy — X,)?] = & —s.

Summing these expectations over s € 7, we obtain the value ¢ independently of n. This
shows that the sum of the second order terms in (6.0.1)) can not be neglected anymore.
Indeed, as n — oo, a law of large numbers type result implies that we can almost surely
replace the squared increments (X, — X )? in (6.0.1) asymptotically by their expectation
values. The higher order terms are on average O(|s’ — s|*/?) whence their sum can be
neglected. Therefore, in the limit of (6.0.1)) as n — oo we obtain the modified chain

rule
t t

1
F(X;) — F(Xo) = /F’(Xs) dXs + 5 /F”(Xs) ds (6.0.4)
0 0
with probability one. The equation (6.0.4)) is the basic version of 1t6’s celebrated for-

mula.

In Section[6.1] we will first introduce Stieltjes integrals and the chain rule from Stieltjes
calculus systematically. In Section we prove a general version of Itd’s formula for
continuous functions with finite quadratic variation in dimension one. Here the setup
and the proof are still purely deterministic. As an aside we obtain a pathwise definition
for stochastic integrals involving only a single one-dimensional process due to Follmer.
After computing the quadratic variation of Brownian motion in Section[6.3] we consider
first consequences of Itd’s formula for Brownian motions and continuous martingales.
Section contains extensions to the multivariate and time-dependent case, as well as

further applications.
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6.1 Stieltjes integrals and chain rule

In this section, we define Lebesgue-Stieltjes integrals w.r.t. deterministic functions of
finite variation, and prove a corresponding chain rule. The resulting calculus can then

be applied path by path to stochastic processes with sample paths of finite variation.

Lebesgue-Stieltjes integrals

Fix u € (0,00], and suppose that ¢ — A; is a right-continuous and non-decreasing
function on [0, u). Then A; — A is the distribution function of the positive measure p

on (0, u) determined uniquely by

wal(s,t]] = Ay — Ag forany 0 < s <t < w.

t
Therefore, we can define integrals of type [ H, dA, as Lebesgue integrals w.r.t. the

1
loc

measure f14. We extend p trivially to the interval [0, u), so £;.([0,u), pa) is the space
of all functions H : [0,u) — R that are integrable w.r.t. ;14 on any interval (0,¢) with
t < u. Then for any u € [0, o] and any function H € L. ([0, u), 1), the Lebesgue-

Stieltjes integral of H w.r.t. A is defined by

t
/Hr dA, = /HT (s () pealdr) for0 <s<t<u.

It is easy to verify that the definition is consistent, i.e., varying u does not change the
t

definition of the integrals, and that ¢ — f H,. dA, is again a right-continuous function.
0

For an arbitrary right-continuous function A : [0,u) — R, the (first order) variation of

A on an interval [0, ¢) is defined by
‘/;5(1)<A) ‘= Sup Z‘As’m& - As/\t| for0 <t < u,
T senm

where the supremum is over all partitions 7 of R,. The function ¢ — A, is said to be

(locally) of finite variation on the interval [0, u) iff Vt(l)(A) < oo forany t € [0, u).
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Any right-continuous function of finite variation can be written as the difference of two

non-decreasing right-continuous functions. In fact, we have

A = A — A (6.1.1)

with
AC = s Y (A = An)t = VA +A), 612
AY = Y o= A = VA -A) 619

sem

Exercise. Prove that if A, is right-continuous and is locally of finite variation on [0, u)
then the functions V;(l) (A), At] and At\" are all right-continuous and non-decreasing for

t < u.

Remark (Hahn-Jordan decomposition). The functions At/ — AO/ and A}‘ — A}‘ are
again distribution functions of positive measures p; and i, on (0, u). Correspondingly,

Ay — Ay is the distribution function of the signed measure
palB) = pi[B) - palBl. B e B(0,u), (6.1.4)

and Vt(l) is the distribution of the measure |pa| = p — ;. Itis a consequence of (6.1.3)
and (6.1.6) that the measures p}; and 11, are singular, i.e., the mass is concentrated on
disjoint sets ST and S~. The decomposition (6.1.7) is hence a particular case of the
Hahn-Jordan decomposition of a signed measure p of finite variation into a positive and
a negative part, and the measure || is the total variation measure of pu, cf. e.g. [Alt:

Lineare Funktionalanalysis].

We can now apply (6.1.1) to define Lebesgue-Stieltjes integrals w.r.t. functions of finite
variation. A function is integrable w.r.t. a signed measure x if and only if it is integrable
w.r.t. both the positive part ™ and the negative part ;1~. The Lebesgue integral w.r.t. u
is then defined as the difference of the Lebesgue integrals w.r.t. u* and p~. Correspond-
ingly, we define the Lebesgue-Stieltjes integral w.r.t. a function A, of finite variation as

the Lebesgue integral w.r.t. the associated signed measure /i 4:
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Definition. Suppose that t — A, is right-continuous and locally of finite variation on

[0,u). Then the Lebesgue-Stieltjes integral w.r.t. A is defined by
t
/HT dA, = /HT (s q(7) dAT/ - /HT (s q(r) dAT\, 0<s<t<u,

for any function H € L},.((0,u), |dA|) where
Lioe((0,u), [dA]) == Lioe((0,0), dA”) 0 L1 (0, 1), dA™)

is the intersection of the local L' spaces w.r.t. the positive measures dA” = pi and
dA> = i, on [0,u), or, equivalently, the local L* space w.r.t. the total variation mea-

sure |dA| = |pal.

n—1
Remark. (1). Simple integrands: It H, = ) ¢; - I, 4., is a step function with
i=0
0<ty<ti <...<t,<wandcy,cq,...,c,_1 € Rthen

t n—1
/HS dA, = Z i+ (A ine — Atar)-
) i=0

(2). Continuous integrands,; Riemann-Stieltjes integral: If H : [0, u) — R is a contin-

uous function then the Stieltjes integral can be approximated by Riemann sums:

t
/HS dA, = lim > H,- (Avne— A, t€[0,u),
n—o0 c
0 SCTn

s<t

for any sequence (7, ) of partitions of R, such that mesh(r,) — 0. For the proof

note that the step functions

H! = Y H-Iow(r), re0u),
et
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converge to H, pointwise on (0, u) by continuity. Moreover, again by continuity,
H, is locally bounded on [0, u),and hence the sequence H" is locally uniformly

bounded. Therefore,

/ H;L[(O’t} (T) dAT — / Hr[(o,t} (T) dAT
for any ¢ < n by the dominated convergence theorem.

(3). Absolutely continuous integrators: If A, is an absolutely continuous function on

[0, u) then A, has locally finite variation

t
v(4) = /\A;\ds < 00 fort € [0, u).

0

The signed measure 4 with distribution function A; — A is then absolutely

continuous w.r.t. Lebesgue measure with Radon-Nikodym density

d
%(t) = A for almost every t € [0, u).

Therefore,
Lioe([0,u), [dA]) = Lo ([0, u), |A'|dt),

and the Lebesgue-Stieltjes integral of a locally integrable function H is given by

t t
/Hs dA, = /HSA’S ds fort € [0,u).
0 0

In the applications that we are interested in, the integrand will mostly be continuous,

and the integrator absolutely continuous. Hence Remarks (2) and (3) above apply.

The chain rule in Stieltjes calculus

We are now able to prove It0’s formula in the special situation where the integrator has
finite variation. In this case, the second order correction disappears, and Itd’s formula

reduces to the classical chain rule from Stieltjes calculus:
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Theorem 6.1 (Fundamental Theorem of Stieltjes Calculus). Suppose that A

[0,u) — R is a continuous function of locally finite variation. Then for any F € C*(R),

F(A) — F(Ay) = / F'(A,) dA, Yt eo,u). (6.1.5)

0

Proof. Let t € [0,u) be given. Choose a sequence of partitions (m,) of R, with
mesh(m,) — 0, and let

0A, == Agni — Asne for s € m,,

where, as usual, s’ denotes the next partition point. By Taylor’s formula, for s € m,

with s < ¢t we have

F(Ayn) = F(A) = F(A)0A, + SF"(Z)- (A,

where Z, is an intermediate value between A, and Ay ,;. Summing over s € 7,, we

obtain
/ 1 " 2
F(A;) = F(Ay) = EZF (A)OA, + 5;1«" (Z.)(6A,)2. (6.1.6)
s<t s<t

t

As n — oo, the first (Riemann) sum converges to the Stieltjes integral [ F'(A,) dA; by
0

continuity of F’(A,), cf. Remark (2) above.

To see that the second sum converges to zero, note that the range of the continuous
function A restricted to [0, t] is a bounded interval. Since £ is continuous by assump-
tion, F” is bounded on this range by a finite constant c. As Z, is an intermediate value

between A, and A, A, we obtain

STFUZY(GA)?| < Y (64, < e VU(A) - sup|A].

SETR

SET SETTy s<t

s<t s<t
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Since V;'"(A) < o0, and A is a uniformly continuous function on [0, ], the right hand
side converges to 0 as n — oo. Hence we obtain (6.1.3) in the limit of (6.1.6) as

n — 00. |

To see that (6.1.3)) can be interpreted as a chain rule, we write the equation in differential

form:

dF(A) = F'(A)dA. (6.1.7)

In general, the equation (6.1.7) is to be understood mathematically only as an abbrevia-
tion for the integral equation (6.1.3). For intuitive arguments, the differential notation is
obviously much more attractive than the integral form of the equation. However, for the
differential form to be useful at all, we should be able to multiply the equation (6.1.7)
by another function, and still obtain a valid equation. This is indeed possible due to the
next result, which states briefly that if d/ = H dA then also G dI = GH dA:

Theorem 6.2 (Stieltjes integrals w.r.t. Stieltjes integrals). Suppose that I, = [ H,dA,
0
where A : |0,u) — R is a function of locally finite variation, and H € L}, ([0, u),|dA]).

loc

Then the function s +— I, is again right continuous with locally finite variation

t
v < [ 1H| |dA| < oo, and, for any function G € L}, ([0,u), |dI|),
0

loc

¢ ¢
/Gs G— /GSHS dA, fort € 10,u). (6.1.8)
0 0

Proof. Right continuity of /; and the upper bound for the variation are left as an exercise.

We now use Riemann sum approximations to prove (6.1.8)) if G is continuous. For a

partition 0 = £y < t; < ... <ty = t, we have

n_1 n—1 tit1 t
> G, — 1) =Y G- / H,dA, = /GLSJHS dA,
=0 =0 t 0
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where |s| denotes the largest partition point < s. Choosing a sequence (7,,) of parti-

tions with mesh(m,,) — 0, the integral on the right hand side converges to the Lebesgue-

t
Stieltjes integral [ G3H; dAs by continuity of G and the dominated convergence the-
0

t
orem, whereas the Riemann sum on the left hand side converges to f G, dI,. Hence

0
(6.1.8) holds for continuous G. The equation for general G € L] ([0, u), |dI|) follows
then by standard arguments. L

6.2 Quadratic variation and It6’s formula

Our next goal is to derive a generalization of the chain rule from Stieltjes calculus to
continuous functions that are not of finite variation. Examples of such functions are
typical sample paths of Brownian motion. As pointed out above, an additional term will

appear in the chain rule in this case.

Quadratic variation

Consider once more the approximation (6.1.6) that we have used to prove the funda-
mental theorem of Stieltjes calculus. We would like to identify the limit of the last sum
S° F"(Z,)(6A,)? when A has unfinite variation on finite intervals. For F” = 1 this

SETR
limit is called the quadratic variation of A if it exists:

Definition. Ler u € (0,00] and let (7,) be a sequence of partitions of R, with
mesh(7,) — 0. The quadratic variation [X|; of a continuous function X : [0,u) — R

w.r.t. the sequence (,) is defined by

[(X]e = Jim Y (Xgne = Xon)?  fort €[0,u)

SETY

whenever the limit exists.

WARNINGS (Dependence on partition, classical 2-variation)
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(1). The quadratic variation should not be confused with the classical 2-variation de-
fined by

V(X)) = sup Y [Xone — Xondl?

sem
where the supremum is over all partitions 7. The classical 2-variation Vt(z) (X)
is strictly positive for any function X that is not constant on [0, ¢] whereas [X];

vanishes in many cases, cf. Example (1) below.

(2). In general, the quadratic variation may depend on the sequence of partitions con-

sidered. See however Examples (1) and (3) below.

Example. (1). Functions of finite variation: For any continuous function A : [0, u) —

R of locally finite variation, the quadratic variation along (7,,) vanishes:
[Al, =0 forany ¢t € [0,u).
In fact, for 0 A, = Agry — Agpy We have

Z 164,12 < VV(A) - sup|dd,| — 0 asn — 0o

SET

SETY s<t

by uniform continuity and since V,"" (A) < 0.

(2). Perturbations by functions of finite variation: If the quadratic variation [X]; of X

w.r.t. (m,) exists, then [X + A]; also exists, and
(X + 4], = [X]..
This holds since
DX+ AP =D (0X)+2) 6X0A+ > (5A),

and the last two sums converge to 0 as mesh(w,) — 0 by Example (1) and the

Cauchy-Schwarz inequality.

(3). Brownian motion: If (B;):>o is a one-dimensional Brownian motion then P-
almost surely,
By =t forallt > 0
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w.r.t. any fixed sequence () of partitions such that mesh(m,) — 0, cf. Theorem
6.6l below.

t

(4). Ito processes: If I, = [ H, dB is the stochastic integral of a process H €
0

£2

a10c(0,00) w.r.t. Brownian motion then almost surely, the quadratic variation

w.r.t. a fixed sequence of partitions is

t
1], = /H2 ds for all ¢ > 0.
0

(5). Continuous martingales: [M] exists and is almost surely finite, see below.

Note that in Examples (3), (4) and (5), the exceptional sets may depend on the sequence
(7). If it exists, the quadratic variation [X]; is a non-decreasing function in ¢. In

particular, Stieltjes integrals w.r.t. [ X | are well-defined provided [X] is right continuous.

Lemma 6.3. Suppose that X : [0,u) — R is a continuous function. If the quadratic

variation [ X|; along (,,) exists for t € [0,u), and t — [X]; is continuous then

t
d Ho (Xonu—X)? — /HS d[X],  asn— oo (6.2.1)
SETY 0
s<t

for any continuous function H : [0,u) — R and any t > 0.

Remark. Heuristically, the assertion of the lemma says that

“/Hd[X] = /H(dX)Q”,

i.e., the infinitesimal increments of the quadratic variation are something like squared
infinitesimal increments of X. This observation is crucial for controlling the second

order terms in the Taylor expansion used for proving the It6-Doeblin formula.

Proof. The sum on the left-hand side of (6.2.1)) is the integral of H w.r.t. the finite

positive measure

Mn = Z(Xs’/\t - Xs)2 ' 55

SETn
s<t
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on the interval [0, ¢). The distribution function of i, is

Fuu) =: > (Xon— X% ue(0,.
=t

Asn — oo, F,,(u) — [X], for any u € [0, ¢] by continuity of X. Since [X], is a contin-
uous function of u, convergence of the distribution functions implies weak convergence

of the measures j,, to the measure d[X] on [0, ¢) with distribution function [X]. Hence,

/Hs,unds H/Hd asn — oo

for any continuous function H : [0,¢] — R. O

It6’s formula and pathwise integrals in R!

We are now able to complete the proof of the following purely deterministic (pathwise)
version of the one-dimensional Itd6 formula going back to [Follmer: Calcul d’Itd sans
probabilités, Sém. Prob XV, LNM850XXX]:

Theorem 6.4 (Itd’s formula without probability). Suppose that X : [0,u) — Ris a
continuous function with continuous quadratic variation [X| w.r.t. (m,). Then for any
function F that is C? in a neighbourhood of X ([0,u)), and for any t € [0,u), the Ito

integral
t

/F/(XS) dX, = nh_g)lo E FI<XS) o (Xs//\t — Xs) (6.2.2)
0 SETY
s<t

exists, and Ito’s formula
t t
FO) - POt = [P axc+y [Fogdx, 623
0 0
holds. In particular, if the quadratic variation [ X| does not depend on () then the Ito
integral (6.2.2)) does not depend on (w,,) either.
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Note that the theorem implies the existence of f f(Xs) dX, for any function f €
0
C(R)! Hence this type of Ito integrals can be defined in a purely deterministic way

without relying on the Itd isometry. Unfortunately, the situation is more complicated in

higher dimensions, cf. ?? below.

Proof. Fix t € [0,u) and n € N. As before, for s € 7, we set 0.X; = Xgnr — Xone

where s’ denotes the next partition point. Then as above we have

F(X) - F(Xo) = > F/(X,)0X,+5 ZF” (ZI)(6X,)?

SETn s€7rn
s<t s<t
(6.2.4)
= ) FI(X,)0X,+ - ZF” )(0X.)*+ > R™,
SET SEﬂ'n SETY
s<t s<t s<t
(6.2.5)
where Z™ is an intermediate point between X, and X,/ ;, and R™ .= L (ZS(")) -

F"(X)) - (5X )2. As n — oo, the second sum on the right hand side of (6.2.4) con-
verges to f F"(X,)d[X], by Lemmal6.3l We claim that the sum of the remainders R."
0

(n)

converges to 0. To see this note that Z; ~ = X, for some r € [s, s’ A t], whence

1
[RO| = [F"(Z8) = F'(X)| - (0X.)° < gen(6X0)%

where

co= s FU(X) - ()]
a,be(0,t]
|a—b|<mesh(my)

As n — o0, &, converges to 0 by uniform continuity of F” o X on the interval [0, ¢].
Thus

1
Z|R§")\ < 5&,12(5)(3)2 — 0 as well,

SET
s<t

because the sum of the squared increments converges to the finite quadratic variation
[XT:-
We have shown that all the terms on the right hand side of (6.2.4) except the first
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t

Riemann-Itd6 sum converge as n — oo. Hence, by (6.2.4), the limit f F'(X) dX

0
of the Riemann It6 sums also exists, and the limit equation (6.2.2) holds. O

Remark. (1). In differential notation, we obtain the It chain rule

2).

AF(X) = F/(X)dX + %F”(X) d[X]

which includes a second order correction term due to the quadratic variation. A

justification for the differential notation is given in Section 2?.

For functions X with [X] = 0 we recover the classical chain rule dF'(X) =

F'(X) dX from Stieltjes calculus as a particular case of It6’s formula.

Example. (1). Exponentials: Choosing F'(z) = e” in It6’s formula, we obtain

2).

t t

1
Xt _ X0 /eXS dXSJré/eXS d[X]s,
0 0

or, in differential notation,
de® = X dX + %eX d[X].
Thus e* does not solve the Ito differential equation
A7z = ZdX (6.2.6)

if [X] # 0. An appropriate renormalization is required instead. We will see below

that the correct solution of (6.2.6) is given by
Zy = exp (X — [X]/2),
cf. the first example below Theorem
Polynomials: Similarly, choosing F'(x) = x™ for some n € N, we obtain
dX" = nX"'dX + 7”("2_ 2

Again, X™ does not solve the equation dX" = nX" ! dX. Here, the appropriate

X" 21X

renormalization leads to the Hermite polynomials : X :", cf. the second example
below Theorem
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The chain rule for anticipative integrals

The form of the second order correction term appearing in [t6’s formula depends cru-
cially on choosing non-anticipative Riemann sum approximations. For limits of antic-
ipative Riemann sums, we obtain different correction terms, and hence also different

notions of integrals.

Theorem 6.5. Suppose that X : [0,u) — R is continuous with continuous quadratic
variation [X| along (w,)). Then for any function F that is C? in a neighbourhood of
X([0,w)) and for any t > 0, the backward Ité integral

t
/F/(Xs) AXs = nh_{lolo ZF/(XS//\t) ’ (Xs’/\t - XS)7
0 SETY

s<t

and the Stratonovich integral

t

/ F/(X,) 0dX, = lim Z%(F’(Xs) 4 F (Xans) - (Xone — X)

0 SETy
s<t
exist, and
t t
F(Xy) — F(Xo) = /F’(Xs) dX, — /F”(Xs)d[X]S (6.2.7)
0 0
t
= /F’(Xs) o dX,. (6.2.8)
0

Proof. The proof of the backward Itd formula (6.2.7)) is completely analogous to that of
It6’s formula. The Stratonovich formula (6.2.8)) follows by averaging the Riemann sum

approximations to the forward and backward It6 rule. L

Note that Stratonovich integrals satisfy the classical chain rule

odF(X) = F'(X) odX.
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This makes them very attractive for various applications. For example, in stochastic dif-
ferential geometry, the chain rule is of fundamental importance to construct stochastic
processes that stay on a given manifold. Therefore, it is common to use Stratonovich
instead of Itd calculus in this context, cf. the corresponding example in the next sec-
tion. On the other hand, Stratonovich calculus has a significant disadvantage against It6

calculus: The Stratonovich integrals
) 1
/ H, 0dB, = lim ) 5 (Hs + Hype)(Byne — Bs)

w.r.t. Brownian motion typically are not martingales, because the coefficients %(HS +

Hg n) are not predictable.

6.3 Ito’s formula for Brownian motion and martingales

Our next aim is to compute the quadratic variation and to state 1t6’s formula for typical
sample paths of Brownian motion. More generally, we will show that the quadratic

variation exists almost surely for continuous local martingales.

Let (7,) be a sequence of partitions of R, with mesh(m,) — 0. We note first that for
any function ¢t — X, the identity

XP—Xg =) (X2, —X2) = V420 (6.3.1)

SET
s<t

with
‘/tn = Z(XS//\t — XS)Q and .[tn = ZXS : (XS//\t - XS)

SETn SETn
s<t s<t

holds. The equation (6.3.)) is a discrete approximation of 1td’s formula for the function

F(z) = 2?. The remainder terms in the approximation vanish in this particular case.

Note that by (6.3.1)), the quadratic variation [X]; = lim,,_,», V;" exists if and only if the

Riemann sum approximations /;* to the It6 integral fot X, dX, converge:

n—o0 n—oo

t
3[X], = lm V" < 3 / X,dX, = lim I]".
0
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Now suppose that (X;) is a continuous martingale with E[X?] < oo for any ¢ > 0.
Then the Riemann sum approximations (/;*) are continuous martingales for any n € N.
Therefore, by the maximal inequality, for a given u > 0, the processes (/;*) and (V")
converge uniformly for ¢ € [0, u] in L?(P) if and only if the random variables I" or V"

respectively converge in L?(P).

Quadratic variation of Brownian motion

For the sample paths of a Brownian motion B, the quadratic variation [B] exists almost
surely along any fixed sequence of partitions (7, ) with mesh(w,) — 0, and [B]; =t
a.s. In particular, [B] is a deterministic function that does not depend on (7,). The
reason is a law of large numbers type effect when taking the limit of the sum of squared

increments as 1. — 0Q.

Theorem 6.6 (P. Lévy). If (B;) is a one-dimensional Brownian motion on (2, A, P)

then as n — oo

sup Z (Bane— B —t| — 0 P-a.s. and in L*(Q, A, P)  (6.3.2)

t€[0,u] semn

s<t

forany u € (0, 00), and for each sequence (m,,) of partitions of R with mesh(m,) — 0.

Warning. (1). Although the almost sure limit in (6.3.2) does not depend on the se-

quence (7,), the exceptional set may depend on the chosen sequence!

(2). The classical quadratic variation V,*(B) = sup, 3_._ (6B,)? is almost surely

sem

infinite for any ¢ > 0. The classical p-variation is almost surely finite if and only

ifp> 2.
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Proof. (1). L*-convergence for fixed t: As usual, the proof of L? convergence is com-
paratively simple. For V;* = >~ (§B,)? with 0 B, = By — Bgat, We have

SETY

B[V = Y E[(6B)"] = ) bs =t, and

Var[Vi'] = Y Var[(0B,)*] = > E[((0B,)* — 6s)%]
= E[(Z*>-1)3- 2(55)2 < const. - t - mesh(m,,)

where Z is a standard normal random variable. Hence, as n — oo,
Vi—t =V—E[V — 0 in LQ(Q,A,P).

Moreover, by (6.3.1), V;* — V™ = I}* — I" is a continuous martingale for any
n,m € N. Therefore, the maximal inequality yields uniform convergence of V"

to ¢ for ¢ in a finite interval in the L?(P) sense.

(2). Almost sure convergence if »  mesh(m,) < oo: Similarly, by applying the max-
imal inequality to the process V;* — V™ and taking the limit as m — oo, we

obtain

P

2
te[0,u] €

2
sup [V/" —t| > 5] < ZE[(V/*—1)?] < const. -t mesh(m,)

for any given ¢ > 0 and u € (0,00). If > mesh(m,) < oo then the sum of

the probabilities is finite, and hence sup |V;/* — ¢t| — 0 almost surely by the
te[0,u]
Borel-Cantelli Lemma.

(3). Almost sure convergence if > mesh(m,) = oo: In this case, almost sure conver-
gence can be shown by the backward martingale convergence theorem. We refer
to Proposition 2.12 in [Revuz, YorXXX], because for our purposes almost sure
convergence w.r.t arbitrary sequences of partitions is not essential.

O
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1to’s formula for Brownian motion

By Theorem [6.6] we can apply Theorem to almost every sample path of a one-

dimensional Brownian motion (B;):

Theorem 6.7 (Itd’s formula for Brownian motion). Suppose that F' € C?*(I) where

I C R be an open interval. Then almost surely,

t t
F(B,) — F(By) = /F’(Bs) st+%/F”(Bs) ds  forallt<T, (6.3.3)

0 0

where T' = inf{t > 0 : B, & I} is the first exit time from I.

Proof. For almost every w, the quadratic variation of ¢ — B, (w) along a fixed sequence
of partitions is ¢. Moreover, for any r < T'(w), the function F' is C? on a neighbourhood
of {By(w) : t € [0,7]}. The assertion now follows from Theorem [6.7] by noting that
the pathwise integral and the It6 integral as defined in Section [3 coincide almost surely
since both are limits of Riemann-Itd sums w.r.t. uniform convergence for ¢ in a finite

interval, almost surely along a common (sub)sequence of partitions. L

Consequences

t
(1). Doob decomposition in continuous time: The Itd integral M} = [ F'(B;) dB;
0

is a local martingale up to 7', and M/ is a square integrable martingale if / = R
and F”’ is bounded. Therefore, (6.3.3) can be interpreted as a continuous time
Doob decomposition of the process (F'(B;)) into the (local) martingale part M*
and an adapted process of finite variation. This process takes over the role of the

predictable part in discrete time.

In particular, we obtain:
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Corollary 6.8 (Martingale problem for Brownian motion). Brownian motion is a so-
2

1
lution of the martingale problem for the operator £ = 32 with domain Dom(.%) =
x
{F € C*R) : 9 is boundedy}, i.e., the process

MF = F(B) - F(By) — / (L1)(B,) ds

is a martingale for any F' € Dom(.%).

The corollary demonstrates how It6’s formula can be applied to obtain solutions of

martingale problems, cf./ below for generalizations.

(2). Kolmogorov’s forward equation: Taking expectation values in (6.3.3)), we recover

Kolmogorov’s equation
E[F(B))] = E[F(By)] + /t E[(ZLF)(Bs)] ds Vi>0

for any F' € CZ(R). In differential form,

d 1 P
SEF(B)] = $EI(F")(B)]

(3). Computation of expected values: The 1td formula can be applied in many ways to

compute expectation values:

Example. (a) For any n € N, the process

t t

1
Bf—%/BQ‘st - n-/Bg—lst
0 0

is a martingale. By taking expectation values for ¢ = 1 we obtain the recur-
sion

/ n(n —1) /

nin - 1) / BBy ds = " / S22 s BB

0 0

E[B{]
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for the moments of the standard normally distributed random variable B5;.
Of course this identity can be obtained directly by integration by parts in the

Gaussian integral [ 2" - e=*"/2 dx.

(b) For a € R, the process

2

t t
exp(aBy) — %/ exp(aBs) ds = a/ exp(aBs) dBs
0 0

is a martingale because E[fot exp(2aBs) ds] < oo. Denoting by T, =
min{t > 0 : B; = b} the first passage time to a level b > 0, we obtain the
identity
T 2
E {/0 exp(aBs) ds} = ?(eab - 1) for any a > 0

by optional stopping and dominated convergence.

1t6’s formula is also the key tool to derive or solve stochastic differential equations

for various stochastic processes of interest:

Example (Brownian motion on S'). Brownian motion on the unit circle S* =

{z € C : |z| = 1} is the process given by
Zy = exp(iBy) = cos By +i-sin By

where (B;) is a standard Brownian motion on R!. 1t0’s formula yields the stochas-

tic differential equation

1

12
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where t(z) = iz is the unit tangent vector to S' at the point z, and n(z) = z is the
outer normal vector. If we would omit the correction term —%n(Zt) dt in (6.3.4),
the solution to the s.d.e. would not stay on the circle. This is contrary to classical
o.d.e. where the correction term is not required. For Stratonovich integrals, we

obtain the modified equation
OdZt == t(Zt) e} dBt,

which does not involve a correction term!

Quadratic variation of continuous martingales

Next, we will show that the sample paths of continuous local martingales almost surely
have finite quadratic variation. Let ()/;) be a continuous local martingale, and fix a
sequence (7,,) of partitions of R, with mesh(m,) — 0. Let

V' = > (Myp — Ma)?

SETY

denote the quadratic variation of M along 7,,. Recall the crucial identity

M= Mg = Y (Miy— M) = Vi + 21} (6.3.5)
SETY
where I}' = Zseﬂn M (Mg — Mg,y) are the Riemann sum approximations to the It6

integral fot M dM. The identity shows that V," converges (uniformly) as n — oo if and

only if the same holds for /;*. Moreover, in this case, we obtain the limit equation

t
M? — M? = [M], + 2/0 M, dM, (6.3.6)

which is exactly Itd’s equation for F(x) = z°.

Theorem 6.9 (Existence of quadratic variation). Suppose that (M,) is a continuous
local martingale on (), A, P). Then there exist a continuous non-decreasing process

t — [M]; and a continuous local martingale t — fot M dM such that as n — oo,

sup |[V]' = [M]s| — 0 and sup
s€[0,t] s€[0,t]

Ig—/ MdM‘ — 0
0
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in probability for any t > 0, and in L?(P) respectively if M is bounded. Moreover, the
identity (6.3.6) holds.

Notice that in the theorem, we do not assume the existence of an angle bracket process
(M ). Indeed, the theorem proves that for continuous local martingales, the angle bracket
process always exists and it coincides almost surely with the quadratic variation process

[M] ! We point out that for discontinuous martingales, (M) and [M] do not coincide.

Proof. We first assume that M is a bounded martingale: |M;| < C for some finite
constant C'. We then show that (I,,) is a Cauchy sequence in the Hilbert space M?([0, t])
for any given ¢ € R,. To this end let n, m € N. We assume without loss of generality
that 7, C m,, otherwise we compare to a common refinement of both partitions. For
s € m,, we denote the next partition point in 7, by &, and the previous partition point
in 7, by |$|m. Fixt > 0. Then

=1 = ) (M, = Myy,) (Myn — M,), and hence

SETy
s<t

1" _ImH?\J?([O,t}) = L [(Itn _Itm)Q]
- ZE (M, — Myg),.)* (Myp — M,)?

SETR
s<t

1/2

< E[éfn}”?E[(Z((SMSV)Z] , (6.3.7)

where §,, := sup{|M; — M,|* : |s — r| < mesh(m,,)}. Here we have used that the

non-diagonal summands cancel because M is a martingale.

Since M is bounded and continuous, dominated convergence shows that E[62] — 0 as

m — 0o. Furthermore,

E (Z((SMS)2> = E|) (M) + E| Y (5Mr)2(5M3)2]
< ACPE | (0M,)| + 2E|) (6M,)°E Z((SMs)z\]-}”

< 6C*E[M? - M]] < 6C* < oo.
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Here we have used that by the martingale property,

> (M)’ = E[M}—M;] < C*  and

S

E

E|) (6M)*|F.| = E[M?-M|F,] < C*

s>r

By ©.3.7), ||[I" — Imewg([O,t]) — 0 as n,m — oo. Hence (I7)scjo, converges uni-
formly as n — oo in the L*(P) sense. By (6.3.3), (V,")sejo,4 converges uniformly as
n — oo in the L?(P) sense as well. Hence the limits [ M dM and [M] exist, the

stochastic integral is in M?2([0, ¢]), and the identity (6.3.6)) holds.

It remains to extend the result from bounded martingales to local martingales. If M is a
continuous local martingale then there exists a sequence of stopping times 7} 1 oo such
that the stopped processes (M, a¢)1>0 are continuous bounded martingales. Hence the
corresponding quadratic variations [Mr, »e] converge uniformly in the L?(P) sense for
any finite ¢ and k. Therefore, the approximations V;" for the quadratic variation of M
converge uniformly in the L?(P) sense on each of the random intervals [0, T}, A ¢], and
thus for any €, > 0,
P ng)H/S"—[M]S\ >e| < Pt>Ty] + P s3£)|VS”—[M]S\ >el <6
s< s<T},

for k, n sufficiently large. 0J

Having shown the existence of the quadratic variation [M/] for continuous local martin-

gales, we observe next that [/] is always non-trivial if M is not constant:

Theorem 6.10 (Non-constant continuous martingales have non-trivial quadratic
variation). Suppose that (M,) is a continuous local martingale. If [M]; = 0 almost

surely for some t > 0, then M is almost surely constant on the interval |0, t|.

Proof. Again, we assume at first that M is a bounded martingale. Then the It6 integral
Jo M dM is a martingale as well. Therefore, by (€.3.6)),

1M = Mol 3oy = E[(Me — Mo)*] = E[M; — Mg] = E[[M],] = 0,

University of Bonn 2015/2016



204 CHAPTER 6. ITO’S FORMULA AND PATHWISE INTEGRALS

i.e., My, = My for any s € [0, t]. In the general case, the assertion follows once more by

localization. [l

The theorem shows in particular that every local martingale with continuous finite vari-
ation paths is almost surely constant, i.e., the Doob type decomposition of a continu-
ous stochastic process into a local martingale and a continuous finite variation pro-
cess starting at 0 is unique up to equivalence. As a consequence we observe that the
quadratic variation is the unique angle bracket process of M. In particular, up to mod-

ification on measure zero sets, [M] does not depend on the chosen partition sequence

()

Corollary 6.11 (Quadratic variation as unique angle bracket process). Suppose that
(M,) is a continuous local martingale. Then [M] is the up to equivalence unique contin-

uous process of finite variation such that [M|y = 0 and M? —[M); is a local martingale.

Proof. By (6.3.6), M? — [M]; is a continuous local martingale. To prove uniqueness,
suppose that (A,) and (A,) are continuous finite variation processes with Ay = Ay = 0
such that both Mf — A, and Mf — Kt are local martingales. Then A; — Kt 1S a continuous
local martingale as well. Since the paths have finite variation, the quadratic variation of
A — A vanishes. Hence almost surely, A; — Zt = Ay — ZO = 0 for all ¢. ]

From continuous martingales to Brownian motion

A remarkable consequence of Itd’s formula for martingales is that any continuous local
martingale (M;) (up to T = oc) with quadratic variation given by [M], = ¢ for any

t > 0 is a Brownian motion ! In fact, for 0 < s <t and p € R, Itd’s formula yields

t

t
. . . p2 .
eszt _ eszS — ip/@Zer er o > /eszr d?”

S S
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where the stochastic integral can be identified as a local martingale. From this identity
it is not difficult to conclude that the increment M; — M, is conditionally independent

of FM with characteristic function
ElePMi=Mo)) — o=p*(t=9)/2 for any p € R,

i.e., (M;) has independent increments with distribution M; — My ~ N(0,t — s).

Theorem 6.12 (P. Lévy 1948). A continuous local martingale (M,):c(0,) is a Brownian

motion if and only if almost surely,

[M]; =t  foranyt > 0.

Exercise (Lévy’s characterization of Brownian motion). Extend the sketch above to
a proof of Theorem [6.12]

Lévy’s Theorem is the basis for many important developments in stochastic analysis
including transformations and weak solutions for stochastic differential equations. An
extension to the multi-dimensional case with a detailled proof, as well as several appli-

cations, are contained in Section [TT.1] below.

One remarkable consequence of Lévy’s characterization of Brownian motion is that ev-
ery continuous local martingale can be represented as a time-changed Brownian motion

(in general possibly on an extended probability space):

Exercise (Continuous local martingales as time-changed Brownian motions). Let
(M})1ej0,00) be a continuous local martingale, and assume for simplicity that ¢ — [M],
is almost surely strictly increasing with lim; . [M]; = oco. Prove that there exists a

Brownian motion (B;);c[o,o0) such that
M, = By,  fort € [0,00). (6.3.8)

Hint: Set B, = My, where T, = [M]~(a) = inf{t > 0 : [M]; = a}, and verify by

Lévy’s characterization that B is a Brownian motion.
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In a more general form, the representation of continuous local martingales as time-
changed Brownian motions is due to Dambis and Dubins-Schwarz (1965), cf. [37/] or
Section below for details. Remarkably, even before Itd, Wolfgang Doeblin, the
son of Alfred Doeblin, had developed an alternative approach to stochastic calculus
where stochastic integrals are defined as time changes of Brownian motion. Doeblin
died when fighting as a French soldier at the German front in World War II, and his
results that were hidden in a closed envelope at the Académie de Sciences have become
known and been published only recently, more than fifty years after their discovery, cf.
[Doeblin, Sur I’équation de Kolmogoroff, 1940/2000], [ Yor: Présentation du pli cacheté,
C.R.Acad.Sci. Paris 2000].

6.4 Multivariate and time-dependent It6 formula

We now extend It6’s formula to R?-valued functions and stochastic processes. Let
u € (0,00] and suppose that X : [0,u) — D, X, = (XV,..., X?), is a continu-
ous function taking values in an open set D C R?. As before, we fix a sequence (7,,) of
partitions of R, with mesh(m,,) — 0. For a function F' € C?(D), we have similarly as

in the one-dimensional case:

F(Xgn) — F(X,) = VF(X,) (Xon — X,) + (6.4.1)

5 2 g (XD, = X)X, - XO) + R

for any s € m,, with s < ¢t where the dot denotes the Euclidean inner product R is the
remainder term in Taylor’s formula. We would like to obtain a multivariate [t6 formula
by summing over s € m, with s < ¢ and taking the limit as n — oo. A first problem

that arises in this context is the identification of the limit of the sums

> 9(X)sX e XY
SETy
s<t

for a continuous function g : D — R as n — oc.
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Covariation

Suppose that XY : [0,u) — R are continuous functions with continuous quadratic

variations [X]; and [Y]; w.r.t. (7).

Definition. The function
(X, Y] = lim > (Xuns — Xont) Yone = Yene), £ € [0,0),
ngﬁnSEWn

is called the covariation of X and Y w.r.t. (7,,) if the limit exists.

The covariation [ X, Y], is the bilinear form corresponding to the quadratic form [X];.

In particular, [X, X] = [X]. Furthermore:

Lemma 6.13 (Polarization identity). The covariation [X,Y|; exists and is a continu-
ous function in t if and only if the quadratic variation [ X + Y|, exists and is continuous

respectively. In this case,
1
(X, Y] = 5([)( + Y] = [X]e = [Y]o)
Proof. Forn € N we have

2 OXGY, = ) (0X 40V = > (6X,)7 = ) (0YL)%

SET SETR SET SETT

The assertion follows as n — oo because the limits [ X|; and [Y]; of the last two terms

are continuous functions by assumption. U

Remark. Note that by the polarization identity, the covariation [X, Y|, is the difference

of two increasing functions, i.e., ¢t — [X, Y], has finite variation.

Example. (1). Functions and processes of finite variation: If Y has finite variation
then [ X, Y], = 0 for any ¢ > 0. Indeed,

> 0X.6Y,

SETn

< sup [0X,[- Y |6V

SETY

SETn
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and the right hand side converges to 0 by uniform continuity of X on [0,¢]. In

particular, we obtain again

X +Y] = [X]|+[Y]+2[X,Y] = [X].

(2). Independent Brownian motions: 1f (B,) and (B,) are independent Brownian mo-

tions on a probability space (€2, A, P) then for any given sequence (),

[B,E]t = lim Zstdés =0 forany ¢ > 0
nree SETn

P-almost surely. For the proof note that (B, + B;)/v/2 is again a Brownian

motion, whence

[B,B; = [(B+B)/vV2),— %[B]t — %[E]t =t— % — % =0 almost surely.

t
(3). It6 processes: If I, = fot G,dB; and F;, = f H, dB, with continuous adapted
0

processes (G,) and (H,) and Brownian motions (B,) and (B,) then

I,J; = 0 if B and B are independent, and (6.4.2)

t
1,J], = / G,H,ds  if B=DB, (6.4.3)
0

cf. Theorem ?? below.

More generally, under appropriate assumptions on GG, H, X and Y, the identity

[[7 J]t = /GsHs d[va]s

0

t t
holds for It integrals I; = [ G5 dX, and J, = [ H dYs, cf. e.g. Corollary ??.
0 0

1to to Stratonovich conversion

The covariation also occurs as the correction term in It compared to Stratonovich inte-

grals:
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Theorem 6.14. [f the It integral

SETY
s<t

t
[ XY = i Y xa,
0

and the covariation [ X, Y| exists along a sequence () of partitions with mesh(r,) —

t A
0 then the corresponding backward It6 integral [ X, dY; and the Stratonovich integral
0

t
f X, odY; also exist, and
0

t
/&&;z/&m+mﬂh and
0

t
1
/XS Od}/; = /XS}/;+§[X,Y],5
0

Proof. This follows from the identities
> XondY, = D XY+ ) XY, and

> %(Xs + Xon)0Y, = > X6V, + % > XY,

It6’s formula in R?

By the polarization identity, if [X];, [Y]; and [X + Y; exist and are continuous then

[X, Y] is a continuous function of finite variation.

Lemma 6.15. Suppose that X,Y and X + Y are continuous function on [0,u) with

continuous quadratic variations w.r.t. (7). Then

t
ZHS(XS/M—XS)(YS/M—YS) — /HS d[X,Y]s asn — oo
0

SETy
s<t
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for any continuous function H : [0,u) — R and any t > 0.

Proof. The assertion follows from Lemmal6.3]by polarization. L

By Lemma [6.15 we can take the limit as mesh(7w,) — 0 in the equation derived by
summing over all s € m, with s < t. In analogy to the one-dimensional case,

this yields the following multivariate version of the pathwise It6 formula:

Theorem 6.16 (Multivariate It6 formula without probability). Suppose that
X : [0,u) = D C R is a continuous function with continuous covariations
[X® X0, 1<i,j <d wrt (7,). Then forany F € C*(D) andt € [0, u),

t d t
1 O*F : ,
F(Xy) = F(X0)+/VF(Xs)-dXS+§ ) /31’-83:-()(8) d[x®, x9),,
0 4,j= 0 v J

where the Ité integral is the limit of Riemann sums along (r,,):

t
/ VF(X,)-dX, = lim Y VF(X,) (Xopn — X). (6.4.4)
0 SETR

s<t

The details of the proof are similar to the one-dimensional case and left as an exercise
to the reader. Note that the theorem shows in particular that the Itd integral in (6.4.4) is

independent of the sequence () if the same holds for the covariations [X (), X )],

Remark (Existence of pathwise It6 integrals). The theorem implies the existence of
the It integral j b(X,) - dX, if b = VF is the gradient of a C? function F' : D C
R? - R. In con(t)rast to the one-dimensional case, not every C'! vector field b : D — R¢
is a gradient. Therefore, for d > 2 we do not obtain existence of fot b(Xs) - dX; for

any b € C*(D,R?) from It6’s formula. In particular, we do not know in general if the
integrals [ 2£(X,) dX" 1 < i < d, exists and if

0 dz;
t d t 6F
/VF(XS)-dXS = Z/a (X,) dX®.
L
0

i=1 0
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If (X) is a Brownian motion this is almost surely the case by the existence proof for It6

integrals w.r.t. Brownian motion from Section

Example (It6’s formula for Brownian motion in R¢). Suppose that B; = (Bfl) e de) )
is a d-dimensional Brownian motion defined on a probability space (€2, .4, P). Then the

d . . . .
), cee Bt( ) are independent one-dimensional Brownian mo-

component processes B\’
tions. Hence for a given sequence of partitions (m,,) with mesh(7w,) — 0, the covari-
ations [B®W, BU)] 1 < i,j < d, exists almost surely by Theorem [6.6] and the example
above, and

[B(i), B(j)] = 14y Yt >0

P-almost surely. Therefore, we can apply Itd’s formula to almost every trajectory. For

an open subset D C R? and a function F' € C?(D) we obtain:

t t
1
F(B;) = F(BO)+/VF(BS)-dBS+§/AF(BS)ds Vi < Tpe P-as. (6.4.5)
0 0
where Tpe = inf{t > 0 : B, ¢ D} denotes the first exit time from D. As in
the one-dimensional case, (6.4.3) yields a decomposition of the process F'(B;) into a
continuous local martingale and a continuous process of finite variation, cf. Section ??

for applications.

Product rule, integration by parts

As a special case of the multivariate It6 formula, we obtain the following integration by

parts identity for It0 integrals:

Corollary 6.17. Suppose that X,Y : [0,u) — R are continuous functions with contin-

uous quadratic variations [ X| and [Y], and continuous covariation [X,Y]. Then

[ (Y.
XY, — XYy = /<X> -d(XsYs> VXY,  foramyte[0,u). (6.4.6)

0 S
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t t
If one, or, equivalently, both of the 1t6 integrals [ YydX and [ X, dY; exist then (6.4.6)
0 0

vields
t

t
XY, — XYy = / Y, dX, + / X, dY, + [X,Y].. (6.4.7)
0 0

Proof. The identity (6.4.6) follows by applying It0’s formula in R? to the process (X;, Y;)
and the function F'(x,y) = xy. If one of the integrals fot Y dX or f(f X dY exists, then

the other exists as well, and

t t t
v\ (X

/ -d = /YSdXS+/XSdYS.
x) \¥ J J

0

O

As it stands, (6.4.7)) is an integration by parts formula for Itd integrals which involves the

correction term [X, Y. In differential notation, it is a product rule for It6 differentials:
d(XY) = XdY +YdX + [X,Y].

Again, in Stratonovich calculus a corresponding product rule holds without the correc-
tion term [X, Y
od(XY) = X odY +Y odX.

Remark / Warning (Existence of [ X dY, Lévy area). Under the conditions of the
t t

theorem, the Itd integrals [ X dY and [ Y dX do not necessarily exist! The following
0 0

statements are equivalent:

t
(1). The Itd integral [ Y, dX, exists (along (7,)).
0

t
(2). The Itd integral [ X, dY; exists.
0
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(3). The Lévy area A;(X,Y') defined by

t

A(X)Y) = / (VdX — X dY) = lim Y (V,AX, - X,AY,)
n—o0
0 SETn
s<t

exists.

Hence, if the Lévy area A;(X,Y’) is given, the stochastic integrals [ X dY and [V dX
can be constructed pathwise. Pushing these ideas further leads to the rough paths theory

developed by T. Lyons and others, cf. [Lyons, St. Flour], [Friz: Rough paths theory].

Example (Integrating finite variation processes w.r.t. Brownian motion). If (H,) is
an adapted process with continuous sample paths of finite variation and (B;) is a one-

dimensional Brownian motion then [H, B] = 0, and hence

t t
H,B, — HyBy = / H, dB; + / B, dH,.
0 0
This integration by parts identity can be used as an alternative definition of the stochastic
t

integral [ H dB for integrands of finite variation, which can then again be extended to
0

general integrands in £2(0, ¢) by the It6 isometry.

Time-dependent It6 formula

The multi-dimensional [t6 formula can be applied to functions that depend explicitly
on the time variable ¢ or on the quadratic variation [X];. For this purpose we simply
add t or [X], respectively as an additional component to the function, i.e., we apply the

multi-dimensional It6 formula to Y; = (¢, X;) or Y; = (¢, [X];) respectively.

Theorem 6.18. Suppose that X : [0, u) — R? is a continuous function with continuous
covariations [X, X)), along (), and let F € C?*(A([0,u))xR%). IfA: [0,u) — R

is a continuous function of finite variation then the integral
t
/ V.F(A,, X,)-dX, = lim Y V.F(A,, X,) (Xon — X,)

n—oo
0 SETn

s<t
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exists, and the Ito formula

t

F(A, X,) = F(O,XO)—i—/VxF(AS,XS)-dXS—i— ZF(AS,X)dAS £6.4.8)
0 0
- @ x0)
Z/ax o (Aq, X,) d[X®, X V)], (6.4.9)

2]7

holds for any t > 0. Here OF /Oa denotes the derivative of F(a,x) w.r.t. the first com-
ponent, and V . F and 0*F/dx;0x; are the gradient and the second partial derivatives
w.r.t. the other components. The most important application of the theorem is for A; = t.

Here we obtain the time-dependent It6 formula

oF

= . @) x @)
dF(t, X)) = VoF(t X0) - dX, + —-(t, X,) d ]Z_ axlax] (t, X,) d[X®, X,
(6.4.10)
Similarly, if d = 1 and A, = [ X, then we obtain
OF oF 10*F
dF ([X]:, Xz) = E([X]taXt) dt + (% + 5@) ([XTe, Xe) d[XTs. (6.4.11)

If (X)) is a Brownian motion and d = 1 then both formulas coincide.

Proof. LetY; = (Y, vV . V) = (4, X,). Then [Y© Y], = 0 forany ¢ > 0
and 0 < ¢ < d because Y;(O) = A, has finite variation. Therefore, by Itd’s formula in
Rd-l-l’

1 0*F ‘ .
F(A, X,) = F(Ay, Xo)+ I, + = Ay, X)) d[X®, X0,
( t) t) ( 05 0)+ t_'_ 2ij 6[[’261']( ) ) [ ) ]
where
1 As’ - As
L = lim Y V¥"F(A,X,)- N
oo SETY XS//\t - XS
s<t
) oF
= TLIL)H()IO Z 9a (AS7X )(As’/\t - As) + vaF(Aéth) : (Xs’/\t - Xs) .
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The first sum on the right hand side converges to the Stieltjes integral fot ‘?9—5 (A, Xs)dAs
as n — oo. Hence, the second sum also converges, and we obtain (6.4.7) in the limit as

n — 00. |

Note that if h(t, z) is a solution of the dual heat equation

oh  10°h
—t 55 = fort > R 4.12
8t+28:c2 0 ort >0,z € R, 6 )
then by (6.4.11),
t
oh
h([X]t7Xt) = h(07X0)+/%<[X]37X3> dXs

0

In particular, if (X;) is a Brownian motion, or more generally a local martingale, then
h([X];, X;) is also a local martingale. The next example considers two situations where

this is particular interesting:
Example. (1). It6 exponentials: For any o € R, the function
h(t,z) = exp(azx — a’t/2)
satisfies and Oh/0x = «ah. Hence the function
7\ = exp (aXt — %az[X]t)
is a solution of the It6 differential equation

Az = aZ™ dX,

) — 1. This shows that in Itd calculus, the functions Zt(a)

with initial condition Zéa
are the correct replacements for the exponential functions. The additional factor
exp(—a?[X];/2) should be thought of as an appropriate renormalization in the
continuous time limit.

For a Brownian motion (X;), we obtain the exponential martingales as general-

ized exponentials.

University of Bonn 2015/2016
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(2). Hermite polynomials: Forn = 0,1, 2, ..., the Hermite polynomials

o 1
hn(t7 .T) = da™ exp(ozx - 5042t)‘a:0

also satisfy (6.4.12). The first Hermite polynomials are 1, z, 22 — ¢, 2® — 3tx, .. ..
Note also that

exp(az — a’t/2) = Z %hn(t, x)

n=0

by Taylor’s theorem. Moreover, the following properties can be easily verified:

ar s

h, (1 — z2/2 1) e /2
(1,2) e”*(—1) e

ho(t,z) = t"%h,(1,2/V/t) foranyt >0,z € R, (6.4.14)
Ohy, Ohy  10%hy,

— nh,_
oz a1 ot 2 022

for any x € R, (6.4.13)

= 0. (6.4.15)

For example, holds since
exp(ar — a?/2) = exp(—(z — a)?/2) exp(z?/2)

yields

n

d
hy(1,z) = exp(z?/2)(—1)" — exp(—5%/2 ,
(1, z) p(z”/2)(-1) T p(—6°/ )B:w

and (6.4.14)) follows from

exp(az —a’t/2) = exp(avt- (z/Vt) — (aV1)?/2)
_ Zi—?t”ﬂhn(l,x/ﬁ).

n=0

By (©.4.13) and (6.4.14), h,, is a polynomial of degree n. For any n > 0, the

function

H™ = h,([X];, X;)

is a solution of the It6 equation

dH™ = nH" Y dX,. (6.4.16)

Stochastic Analysis Andreas Eberle



6.4. MULTIVARIATE AND TIME-DEPENDENT ITO FORMULA 217

Therefore, the Hermite polynomials are appropriate replacements for the ordinary

)

monomials ™ in Itd calculus. If X, = 0 then HO(" = 0 for n > 1, and we obtain

inductively
t t s
7Y =1, HY = / ax,, HY = / HY dX, = / / dX, dX,,
0 0 0
and so on.

Corollary 6.19 (It6 1951). If X : [0, u) — R is continuous with X = 0 and continuous

quadratic variation then for t € [0, u),

t sn 52
1
/// dXsy -+ dXs,, dX,, = —ha([X]y, X3)-
n!
0 0 0

Proof. The equation follows from (6.4.16]) by induction on 7. O

Iterated It integrals occur naturally in Taylor expansions of 1t6 calculus. Therefore, the
explicit expression from the corollary is valuable for numerical methods for stochastic

differential equations, cf. Section ?? below.
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Chapter 7

Brownian Motion and Partial

Differential Equations

The stationary and time-dependent It6 formula enable us to work out the connection of
Brownian motion to several partial differential equations involving the Laplace operator
in detail. One of the many consequences is the evaluation of probabilities and expec-
tation values for Brownian motion by p.d.e. methods. More generally, 1t6’s formula
establishes a link between stochastic processes and analysis that is extremely fruitful in

both directions.

Suppose that (B;) is a d-dimensional Brownian motion defined on a probability space
(Q, A, P) such that every sample path ¢ — B;(w) is continuous. We first note that It’s
formula shows that Brownian motion solves the martingale problem for the operator

1
L = §A in the following sense:

Corollary 7.1 (Time-dependent martingale problem). The process
t

M} = F(t,B;) — F(0, By) — / (88—]; + %AF) (s, Bs) ds
0

is a continuous (FP) martingale for any C? function F : [0,00) x RY — R with
bounded first derivatives. Moreover, M¥ is a continuous local martingale up to Tpc =
inf{t >0 : B; & D} forany F € C*([0,00) x D), D C R? open.

218
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Proof. By the continuity assumptions one easily verifies that M* is (FF) adapted.

Moreover, by the time-dependent It6 formula (6.4.10),
t
M = /VxF(S, B,) - dB, fort < Tpe,
0

which implies the claim. [

Choosing a function F' that does not explicitly depend on ¢, we obtain in particular that

M}I = F(B,) — F(By) —/%AF(BS) ds

0

is a martingale for any f € CZ(R?), and a local martingale up to The for any F €

C2(D).

7.1 Dirichlet problem, recurrence and transience

As a first consequence of Corollary [7.Tlwe can now complete the proof of the stochastic
representation for solutions of the Dirichlet problem that has been already mentioned in
Section [3.2] above. By solving the Dirichlet problem for balls explicitly, we will then

study recurrence, transience and polar sets for multi-dimensional Brownian motion.

The Dirichlet problem revisited

Suppose that b € C*(D) N C(D) is a solution of the Dirichlet problem
Ah =0 onD, h=f ondD, (7.1.1)

for a bounded open set D C R? and a continuous function f : 9D — R. If (B;) is under
P, a continuous Brownian motion with By = = P,-almost surely, then by Corollary [7.1]

the process h(B;) is a local (FP) martingale up to The. By applying the optional
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stopping theorem with a localizing sequence of bounded stopping times .S,, * Tpc, we
obtain
h(z) = E.[h(By)] = E.[h(Bs,)] for any n € N.

Since P,[Tpc < oo] = 1 and h is bounded on D, dominated convergence then yields

the stochastic representation
h(z) = Eu[MBr,.)] = Ei[f(Br,.)] for any z € R

We thus have shown:

Theorem 7.2 (Stochastic representation for solutions of the Dirichlet problem).
Suppose that D is a bounded open subset of R, f is a continuous function on the
boundary 0D, and h € C*(D) N C(D) is a solution of the Dirichlet problem (Z1.1).
Then

h(z) = E,[f(Br)] foranyx € D.

We will generalize this result substantially in Theorem [Z.5]below. Before, we apply the

Dirichlet problem to study recurrence and transience of Brownian motions:

Recurrence and transience of Brownian motion in R

Let (B;) be a d-dimensional Brownian motion on (£2,.4, P) with initial value B, =
xo, o # 0. For r > 0 let

T, = inf{t >0 : |B =r}.

We now compute the probabilities P[T, < Tp] for a < |zg| < b. Note that this is a
multi-dimensional analogue of the classical ruin problem. To compute the probability

for given a, b we consider the domain
D = {zeR: a<|z| <b}.
For b < oo, the first exit time 7pc is almost surely finite,

The = min(Ta,Tb), and P[Ta < Tb] = PHBTDC| :CL].
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Suppose that b € C(U) N C?(U) is a solution of the Dirichlet problem

1 if|z] =a,
Ah(z) =0 forallx € D, h(z) = (7.1.2)
0 if|z] =b.

Then h(B;) is a bounded local martingale up to 7pc and optional stopping yields
PIT, <Ty] = E[MBr,.)] = h(z). (7.1.3)

By rotational symmetry, the solution of the Dirichlet problem (Z.1.2)) can be computed
explicitly. The Ansatz h(xz) = f(|z|) leads us to the boundary value problem
d*f

e +

d—1df

2| dr

(lz]) = 0, fla) =1,f(b) =0,

for a second order ordinary differential equation. Solutions of the o.d.e. are linear

combinations of the constant function 1 and the function

S ford =1,
P(s) == Qlogs ford=2,

s2=4  ford > 3.
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Figure 7.1: The function ¢(s) for different values of d: red (d = 1), blue (d = 2) and
purple (d = 3)

Hence, the unique solution f with boundary conditions f(a) = 1 and f(b) = O is

¢(b) — o(r)

1) = 5o =ala)

Summarizing, we have shown:

Theorem 7.3 (Ruin problem in R?). For a,b > 0 with a < |xo| < b,

o0 —olml)
Ple<tl = So—of@ ™
PT, < 0] = 1 ford <2

(a/lxo)42  ford > 2.

Proof. The first equation follows by [6.4.12 Moreover,

1 ford <2

P[T, < oo] = lim P[T, < Tj] =
b |zol)/é(a)  ford = 3.

O
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Corollary 7.4. For a Brownian motion in R? the following statements hold for any

initial value x, € R%:

(1). If d < 2 then every non-empty ball D C R is recurrent, i.e., the last visit time of

D is almost surely infinite:
Ly = sup{t>0: B,e D} = P-a.s.
(2). If d > 3 then every ball D is transient, i.e.,

L; < o© P-a.s.

(3). If d > 2 then every point © € R? is polar, i.e.,

P[3t>0: By=x] = 0.

We point out that the last statement holds even if the starting point z( coincides with z.
The first statement implies that a typical Brownian sample path is dense in R?, whereas

by the second statement, tlim | B;| = oo almost surely for d > 3.
—0Q

Proof.

(1),(2) The first two statements follow from Theorem [7.3]and the Markov property.
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(3). For the third statement we assume w.l.o.g. x = 0. If xy # 0 then

P[TQ < OO] = lim P[TQ <Tb]

b—oo

for any a > 0. By Theorem [7.3]
P[Ty, < Ty < Cibr>1£P[Ta <Ty =0 ford > 2,
whence T, = oo almost surely. If 2y = 0 then by the Markov property,
P[3t>¢e : Bi=0] = E[Pg.[Ty < x]] =0
for any € > 0. thus we again obtain

P[Ty < ] = li{l(l]P[Elt>5 : By=0] = 0.

O

Remark (Polarity of linear subspaces). For d > 2, any (d — 2) dimensional subspace
V' C R4 is polar for Brownian motion. For the proof note that the orthogonal projection
of a one-dimensional Brownian motion onto the orthogonal complement V* is a 2-

dimensional Brownian motion.

7.2 Boundary value problems, exit and occupation times

The connection of Brownian motion to boundary value problems for partial differential

equations involving the Laplace operator can be extended substantially:

The stationary Feynman-Kac-Poisson formula

Suppose that f : 0D — R,V : D — Rand g : D — [0, 00) are continuous functions
defined on an open bounded domain D C RY, or on its boundary respectively. We

assume that under P,, (B;) is Brownian motion with P,[By = z| = 1, and that

T
E, exp/V(BS) ds| < oo forany = € D, (7.2.1)
0
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where 1" = T'pe is the first exit time from D.

Note that (7Z.2.1)) always holds if V' is non-negative.

Theorem 7.5. Ifu € C?(D) N C(D) is a solution of the boundary problem

%Au(gj) = V(z)u(x) — g(z) forx € D

(71.2.2)
u(z) = f(x) forx € 0D, (7.2.3)
and (Z.2.1) holds then
- T
u(z) = E, |exp —/V(BS) ds |- f(Br)| + (7.2.4)
oy s ¢
E, /exp —/V Bs)ds | - g(By) dt
[0 0
forany z € D.

Remark. Note that we assume the existence of a smooth solution of the boundary value

problem (Z.2.2). Proving that the function u defined by is a solution of the b.v.p.
without assuming existence is much more demanding.
Proof. By continuity of V' and (By), the sample paths of the process

t

A = / V(B.) ds

0

are C'! and hence of finite variation for t < 7. Let

Xt = €7Atu(Bt)7 t < T.
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Applying Itd’s formula with F'(a, b) = e~ %u(b) yields the decomposition
1
dX, = e M"Vu(B,)-dB; — e Mu(By) dA, + §e’AtAu(Bt) dt
1
= e Vu(B,) - dBy + et <§Au -V u) (B,) dt

of X, into a local martingale up to time 7" and an absolutely continuous part. Since u
is a solution of (Z.2.2)), we have %Au — Vu = —g on D. By applying the optional
stopping theorem with a localizing sequence T,, ,/* T of stopping times, we obtain the
representation
Ty
u(z) = E[Xo] = E.[Xp]+ E, / ~Ag(By) dt

0
Tn

= EJe " u(Byg)] + E, / e~ Mg(By) dt
0
for x € D. The assertion (Z.2.4) now follows provided we can interchange the limit
as n — oo and the expectation values. For the second expectation on the right hand
side this is possible by the monotone convergence theorem, because g > 0. For the first

expectation value, we can apply the dominated convergence theorem, because

T
}e‘ATnu(BTn)} < exp /V_(BS) ds | - sup [u(y)] Vn € N,
0 yeD
and the majorant is integrable w.r.t. each P, by Assumption[Z.2.1l O

Remark (Extension to diffusion processes). A corresponding result holds under ap-
propriate assumptions if the Brownian motion (B;) is replaced by a diffusion process
(X:) solving a stochastic differential equation of the type dX; = o(X;) dB; + b(X;) dt,
and the operator 1A in (Z.2.2) is replaced by the generator

Z 045 (0) g+ W) -V ale) = o))

of the diffusion process, cf. ??. The theorem hence establishes a general connection
between Itd diffusions and boundary value problems for linear second order elliptic

partial differential equations.
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By Theorem[Z.5lwe can compute many interesting expectation values for Brownian mo-

tion by solving appropriate p.d.e. We now consider various corresponding applications.

Let us first recall the Dirichlet problem where V' = 0 and ¢ = 0. In this case,
u(r) = E.[f(B;)]. We have already pointed out in the last section that this can be
used to compute exit distributions and to study recurrence, transience and polarity of
linear subspaces for Brownian motion in R¢. A second interesting case of Theorem

is the stochastic representation for solutions of the Poisson equation:

Poisson problem and mean exit time

If V and f vanish in Theorem [Z3] the boundary value problem (Z.2.2) reduces to the

boundary value problem
1
§Au = —g onD, u=0 onD,

for the Poisson equation. The solution has the stochastic representation
T
u(z) = E, /g(Bt) dt|, x €D, (7.2.5)
0
which can be interpreted as an average cost accumulated by the Brownian path before
exit from the domain D. In particular, choosing ¢ = 1, we can compute the mean exit

time

from D for Brownian motion starting at = by solving the corresponding Poisson prob-

lem.

Example. If D = {z € R? : |z| < r} is a ball around 0 of radius 7 > 0, then the

solution u(x) of the Poisson problem

1 -1 forl|z|<r
—Au(x) =
2 0 for |z| =r
can be computed explicitly. We obtain
2 12
E.T] = u(z) = % forany z € D.
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Occupation time density and Green function

If (B;) is a Brownian motion in R¢ then the corresponding Brownian motion with ab-
sorption at the first exit time from the domain D is the Markov process (X;) with state
space D U {A} defined by

B, fort<T
Xt = )
A fort>T

where A is an extra state added to the state space. By setting g(A) = 0, the stochastic

representation (Z.2.3)) for a solution of the Poisson problem can be written in the form

u(z) = E, /Q(Xt) dt| = /(pf)g)(x) dt, (7.2.6)
0 0
where
pP(z,A) = P[X, € A], A C R%measurable,

is the transition function for the absorbed process (X;). Note that for A C R¢,
pP(z,A) = P[B, € Aandt < T] < py(z, A) (7.2.7)

where p, is the transition function of Brownian motion on R%. For ¢t > 0 and z € R¢,
the transition function p;(x, @) of Brownian motion is absolutely continuous. There-
fore, by (Z.2.7), the sub-probability measure p” (z, ®) restricted to R is also absolutely
continuous with non-negative density

D —d/2 v —y/?
p(z,y) < pe(z,y) = (2mt)" 7" exp )

The function p? is called the heat kernel on the domain D w.r.t. absorption on the

boundary. Note that
Gy = [P Gey)de
0

is an occupation time density, i.e., it measures the average time time a Brownian mo-

tion started in x spends in a small neighbourhood of y before it exits from the Domain
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D. By (7.2.6)), a solution u of the Poisson problem %Au = —gonD,u=0o0ndD,can

be represented as
u(zr) = /GD(x,y)g(y) dy forz € D.
D

This shows that the occupation time density G”(z,y) is the Green function (i.c.,
the fundamental solution of the Poisson equation) for the operator % with Dirichlet

boundary conditions on the domain D.

Note that although for domains with irregular boundary, the Green’s function might not

exist in the classical sense, the function GP(z,y) is always well-defined!

Stationary Feynman-Kac formula and exit time distributions

Next, we consider the case where ¢ vanishes and f = 1 in Theorem Then the
boundary value problem takes the form

1
§Au =Vu onD, u=1 onodD. (7.2.8)

The p.d.e. %Au = Vu is a stationary Schrodinger equation. We will comment on the
relation between the Feynman-Kac formula and Feynman’s path integral formulation of
quantum mechanics below. For the moment, we only note that for the solution of (?7?),

the stochastic representation

u(z) = E, |exp —/V(Bt) dt

holds for z € D.

As an application, we can, at least in principle, compute the full distribution of the exit
time 7. In fact, choosing V' = « for some constant o > 0, the corresponding solution
u, of (Z.2.8) yields the Laplace transform

U () = Ey[e 7] / " (dt) (7.2.9)
0

of iy = P,oT™ 1,

University of Bonn 2015/2016



230 CHAPTER 7. BROWNIAN MOTION AND PDE

Example (Exit times in R'). Suppose d = 1 and D = (—1,1). Then (Z2.8) with

V = areads
1
§ug($) = auy(z) forz e (—=1,1), ua(l) = un(—1) = 1.

This boundary value problem has the unique solution

ua(z) = cosh(z - v2a)
“ cosh(v/2a)

forz € [-1,1].

By inverting the Laplace transform (Z.2.9)), one can now compute the distribution g,
of the first exit time 7" from (—1, 1). It turns out that y, is absolutely continuous with
density

1 (e o]

(1) = 4n+1+xe_(4+21t+) + 4n+1—l‘6_(4+21t : , t>0.
213
Tt

n=—oo

Figure 7.2: The density of the first exit time 7' depending on the starting point x &
[—1,1] and the time ¢ € (0, 2].
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Boundary value problems in R and total occupation time

Suppose we would like to compute the distribution of the total occupation time

]OIA(BS) ds

of a bounded domain A C R? for Brownian motion. This only makes sense for d > 3,
since for d < 2, the total occupation time of any non-empty open set is almost surely

infinite by recurrence of Brownian motion in R! and R?. The total occupation time is of
the form [ V(B;) ds with V' = I,. Therefore, we should in principle be able to apply

0
Theorem [7.3] but we have to replace the exit time 7" by +o0o and hence the underlying
bounded domain D by R

Corollary 7.6. Suppose d > 3 and let V : R — [0, 00) be continuous. If u € C*(R?)

is a solution of the boundary value problem

1
—Au = Vu onR% lim u(zx) = 1 (7.2.10)
then
u(z) = E, |exp —/V(Bt) dt for any v € R

Proof. Applying the stationary Feynman-Kac formula on an open bounded subset D C

R?, we obtain the representation
T,

u(z) = E, |u(Br,.)exp | — / V(By) dt (7.2.11)
0

by Theorem[Z.3] Now let D,, = {x € R? : |z| < n}. Then Tpc  coasn — co. Since

d > 3, Brownian motion is transient, i.e., tlim | B;| = 00, and therefore by (Z.2.10)
— 00

lim w(Br ) =1 P,-almost surely for any .
n—o0 n
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Since u is bounded and V' is non-negative, we can apply dominated convergence in

(Z.2.11)) to conclude
o

u(z) = E, |exp —/V(Bt) dt

O

Let us now return to the computation of occupation time distributions. consider a
bounded subset A C R%, d > 3, and let

o0

vo(x) = E, |exp —a/]A(BS) ds ||, a >0,
0

denote the Laplace transform of the total occupation time of A. Although V' = «al, is
not a continuous function, a representation of v, as a solution of a boundary problem
holds:

Exercise. Prove that if A C R? is a bounded domain with smooth boundary A and
u, € CHRY) N C?(RY\ DA) satisfies

1
~Au, = alsu, onR?\ 9A, lim wuy(7) = 1, (7.2.12)

then v, = u,,.

Remark. The condition u,, € C'(IR?) guarantees that u,, is a weak solution of the p.d.e.
(Z2.10) on all of R? including the boundary OU .

Example (Total occupation time of the unit ball in R3). Suppose A = {z € R? :
|x| < 1}. In this case the boundary value problem (Z.2.10) is rotationally symmetric.
The ansatz u,(z) = fa(|]z|), yields a Bessel equation for f, on each of the intervals
(0,1) and (1, 00):

%f;’(rHrlf;(r) = afa(r) forr <1, %fg(r)wlfa(r) =0 forr>1
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Taking into account the boundary condition and the condition u,, € C*(R%), one obtains

the rotationally symmetric solution

( tanh(v/2
py (BmhV29) ) e 1, 00),
V2«
Uuo(z) = sinh(v2ar) o forr € (0,1
\/QOéfOSh V2« (0.1)
forr =0

[ cosh(v/2a)
of (Z.2.10Q), and hence an explicit formula for v,. In particular, for x = 0 we obtain the
simple formula

Ey |exp —oz/IA(Bt) dt = Uuy(0) = ————.

cosh(v2a)

0
The right hand side has already appeared in the example above as the Laplace transform
of the exit time distribution of a one-dimensional Brownian motion starting at 0 from the
interval (—1, 1). Since the distribution is uniquely determined by its Laplace transform,
we have proven the remarkable fact that the total occupation time of the unit ball for a

standard Brownian motion in R3 has the same distribution as the first exit time from the

unit ball for a standard one-dimensional Brownian motion:

. 3
/I{|B]§3<1} dt ~ inf{t >0 : |BY| > 1}.
0
This is a particular case of a theorem of Ciesielski and Taylor who proved a correspond-

ing relation between Brownian motion in R%*2 and R for arbitrary d.

7.3 Heat Equation and Time-Dependent Feynman-Kac

Formula

1t6’s formula also yields a connection between Brownian motion (or, more generally, so-
lutions of stochastic differential equations) and parabolic partial differential equations.
The parabolic p.d.e. are Kolmogorov forward or backward equations for the correspond-

ing Markov processes. In particular, the time-dependent Feynman-Kac formula shows
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that the backward equation for Brownian motion with absorption is a heat equation with

dissipation.

Brownian Motion with Absorption

Suppose we would like to describe the evolution of a Brownian motion that is absorbed
during the evolution of a Brownian motion that is absorbed during an infinitesimal time
interval [t, ¢ + dt] with probability V (¢, z)dt where x is the current position of the pro-
cess. We assume that the absorption rate V (t,z) is given by a measurable locally-

bounded function
V :[0,00) x R* — [0,00).
Then the accumulated absorption rate up to time ¢ is given by the increasing process

t
A = /V(S,BS) ds, t>0.
0

We can think of the process A; as an internal clock for the Brownian motion determining

the absorption time. More precisely, we define:

Definition. Suppose that (By):>o is a d-dimensional Brownian motion and T is a with
parameter 1 exponentially distributed random variable independent of (B;). Let A be
a separate state added to the state space R%. Then the process (X;) defined by

B or A, < T,
X, = ¢ for A
A forA; > T,

is called a Brownian motion with absorption rate V (t, x), and the random variable
¢ :=inf{t>0: A>T}

is called the absorption time.
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A justification for the construction is given by the following informal computation: For

an infinitesimal time interval [¢, ¢ + dt] and almost every w,

Pl¢ <t+dt](Bs)sz0.¢ > tl(w) = PlAya(w) 2T | A(w) <T]

by the memoryless property of the exponential distribution, i.e., V (¢, x) is indeed the

infinitesimal absorption rate.

Rigorously, it is not difficult to verify that (X;) is a Markov process with state space
R? U {A} where A is an absorbing state. The Markov process is time-homogeneous if

V (¢, x) is independent of .
For a measurable subset D C R? and ¢ > 0 the distribution y, of X, is given by
w[D] = P[X;€D] = P[B;€D and A; <T]
= E[P[A, <T|(By)]; B, € D] (7.3.1)

t
= FE |exp —/V(S,Bs)ds ; Bre D
0
Itd’s formula can be used to prove a Kolmogorov type forward equation:

Theorem 7.7 (Forward equation for Brownian motion with absorption). The sub-

probability measures (i, on R? solve the heat equation

0 1
S = 3hm =Vt e (7.3.2)

in the following distributional sense:

[ t@tds) - [ fayaldo) = / [ GAT@ = V(s,2)5@)pulda) ds

for any function f € CZ(R?).
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Here C?(RY) denotes the space of C2-functions with compact support. Under additional
regularity assumptions it can be shown that z; has a smooth density that solves (Z.3.1)
in the classical sense. The equation (Z.3.1)) describes heat flow with cooling when the

heat at x at time ¢ dissipates with rate V (¢, x).

Proof. By (3D,
[ #dn = Elexo(-4): f(B0) (7.33)

for any bounded measurable function f : R? — R. For f € C2(R?), an application of

[t6’s formula yields

t t

e M f(By) = f(BO)+Mt+/e‘ASf(BS)V(s,BS)ds+%/e‘ASAf(BS) ds,
0 0

for t > 0, where (M) is a local martingale. Taking expectation values for a localizing
sequence of stopping times and applying the dominated convergence theorem subse-

quently, we obtain

t

Bl f(B)] = B (B0l + [ Bl (507 = V(s o)) (B ds.

0

Here we have used that A f(z)—V (s, z) f(z) is uniformly bounded for (s, z) € [0, ¢] x

R?, because f has compact support and V is locally bounded. The assertion now follows

by (Z.3.3). ]

Exercise (Heat kernel and Green’s function). The transition kernel for Brownian mo-

tion with time-homogeneous absorption rate V (z) restricted to R? is given by

¢
p(v,D) = E, |exp —/V(BS) ds| ; Bie D
0

(1). Prove that for any ¢ > 0 and * € RY, the sub-probability measure p} (z, ®) is

absolutely continuous on R? with density satisfying

0 < pY(a,y) < (2mt) 2 exp(—|a — yP/ (21).
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(2). Identify the occupation time density

GV (z,y) = /ptv(fc,y) dt
0

as a fundamental solution of an appropriate boundary value problem. Adequate

regularity may be assumed.

Time-dependent Feynman-Kac formula

In Theorem [7.7] we have applied Itd’s formula to prove a Kolmogorov type forward
equation for Brownian motion with absorption. To obtain a corresponding backward

equation, we have to reverse time:

Theorem 7.8 (Feynman-Kac). Fixt > 0, and let f : R? = RandV, g : [0,1] x RY —

R be continuous functions. Suppose that f is bounded, g is non-negative, and V' satisfies

t
E, eXp/V(t—s,BS)_ ds| < oo forall z € RY. (7.3.4)
0

Ifu € CH2((0,t] x RY) N C([0,t] x RY) is a bounded solution of the heat equation

%(s,x) = %Au(s,x) —V(s,x)u(s,z) + g(s, x) fors € (0,t],z € RY,

(7.3.5)
w@0,2) = f(2),

then u has the stochastic representation

t

u(t,z) = E, |f(B:)exp —/V(t—s,Bs)ds +
0

t T
E, /g(t —r, B,) exp —/V(t —s,Bs)ds | dr
0 0
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Remark. The equation (7.3.3) describes heat flow with sinks and dissipation.

Proof. We first reverse time on the interval [0, ¢|. The function

u(s,z) = u(t—s,z)
solves the p.d.e.
ou ou 1
%(s,x) = —E(t —s,x) = — (§Au —Vu +g) (t—s,x)

1 .
S (§Aa —Va+ g) (s,2)
on [0, t] with terminal condition @(¢,z) = f(x). Now let X, = exp(—A,)u(r, B,) for

r € [0,¢t], where
A, = /V(S,BS) ds = /V(t—s,BS) ds.
0 0

By Itd’s formula, we obtain for 7 € [0, ¢],

T

r i1
X. - X, = M, — /6_‘4”"71(7“, B,) dA, + /e_A”" <% + 5&1) (r, B,) dr
S
0 0

T

i1 A
= M, + /eAT (% + éAﬁ — V?l) (r, B,) dr

0
= Mr o /e_ATg(Tv B?") dr
0

with a local martingale (M- )-¢[o,q Vanishing at 0. Choosing a corresponding localizing
sequence of stopping times 7;, with T,, ¢, we obtain by the optional stopping theorem

and by dominated convergence,

u(t,z) = au(0,z) = E.[Xo]
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O

Remark (Extension to diffusion processes). Again a similar result holds under a ap-
propriate regularity assumptions for Brownian motion replaced by a solution of a s.d.e.

dX; = o(X;)dB; + b(X;)dt and A replaced by the corresponding generator, cf. ??.

Occupation times and arc-sine law

The Feynman-Kac formula can be used to study the distribution of occupation times
of Brownian motion. We consider an example where the distribution can be computed
explicitly: The proportion of time during the interval [0, ¢| spent by a one-dimensional

standard Brownian motion (B;) in the interval (0, co). Let

t

A = M{s€0,4 : B,>0}) = /1(0,00)(33) ds.

Theorem 7.9 (Arc-sine law of P.Lévy). Foranyt > 0 and 6 € [0, 1],

Figure 7.3: Density of A, /t.
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Note that the theorem shows in particular that a law of large numbers does not hold!

Indeed, for each ¢ > 0,

t

Py %/I(Om)(BS) ds—% > A 0 ast — 00.
0

Even for large times, values of A;/t close to 0 or 1 are the most probable. By the func-

tional central limit theorem, the proportion of time that one player is ahead in a long

coin tossing game or a counting of election results is also close to the arcsine law. In

particular, it is more then 20 times more likely that one player is ahead for more than

98% of the time than it is that each player is ahead between 49% and 51% of the time

[Steele].

Before proving the arc-sine law, we give an informal derivation based on the time-
dependent Feynman-Kac formula.

The idea for determining the distribution of A; is again to consider the Laplace trans-

forms
u(t7 .T}) = Em[exp(_ﬁAt)L 6 > 0.
By the Feynman-Kac formula, we could expect that u solves the equation
ou 10%u
— = - 7.3.6
ot 2 0x? ( )

with initial condition u(0, ) = 1. To solve the parabolic p.d.e. (Z.3.6), we consider

another Laplace transform: The Laplace transform

va(z) = /e_“tu(t, x)dt = E, /e_“t_“‘ dt|, a>0,
0 0
of a solution u(¢, z) of (Z.3.6) w.r.t. . An informal computation shows that v, should
satisfy the o.d.e.
]- " —at 1 82u
ava - 5](0,00)1}@ = € 5@ — 5](0,00)21 (t, 0) dt
0

= /e‘at%(t, o)dt = e “u(t,e)[° —a/e_“tu(t, o) dt
0

0
= 11— av,,
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i.e., v, should be a bounded solution of
1
v, — §Ug + Bloola = g (7.3.7)
where g(x) = 1 for all z. The solution of (Z.3.7)) can then be computed explicitly, and

yield the arc-sine law by Laplace inversion.

Remark. The method of transforming a parabolic p.d.e. by the Laplace transform into
an elliptic equation is standard and used frequently. In particular, the Laplace trans-
form of a transition semigroup (p:);>o is the corresponding resolvent (g4 )a>0, §o =

fooo e~ “'p; dt, which is crucial for potential theory.

Instead of trying to make the informal argument above rigorous, one can directly prove

the arc-sine law by applying the stationary Feynman-Kac formula:
Exercise. Prove Lévy’s arc-sine law by proceeding in the following way:

(1). Let g € Cy(R). Show that if v, is a bounded solution of (Z.3.7) on R \ {0} with
vy € CHR) N C?*(R\ {0}) then

o0

vo(x) = E, /g(Bt)e_at_BAt dt for any x € R.

0

(2). Compute a corresponding solution v, for g = 1, and conclude that

[e.9]

/e_atEO[e_BA‘] dt =

0

1

Vala+8)

(3). Now use the uniqueness of the Laplace inversion to show that the distribution i,

of A;/t under P, is absolutely continuous with density

1

fagi(s) = Wﬁ
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Chapter 8

Stochastic Differential Equations:

Explicit Computations

Suppose that (B;):> is a given Brownian motion defined on a probability space (€2, A, P).

We will now study solutions of stochastic differential equations (SDE) of type

where b and o are continuous functions defined on R, x R? or an appropriate subset.

Recall that 7"’ denotes the completion of the filtration F? = o(B, |0 < s < 1)
generated by the Brownian motion. Let 7" be an (]—"tB’P) stopping time. We call a
process (t,w) +— X;(w) defined for ¢t < T'(w) adapted w.r.t. (]:P ’P), if the trivially

extended process )A(/t = X - Iyi<7y defined by

~ X; fort<T
Xt = y
0 fort > T

is (F")-adapted.
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Definition. An almost surely continuous stochastic process (t,w) — X;(w) defined for
t € [0,T(w)) is called a strong solution of the stochastic differential equation (8.0.1) if
it is (F2F')-adapted, and the equation
t t
X, = Xo+ /b(s, X,)ds + /cr(s, X,)dB, forte0,T) (8.0.2)
0 0

holds P-almost surely.

The terminology “strong” solution will be explained later when we introduce “weak”
solutions. The point is that a strong solution is adapted w.r.t. the filtration (FtB ’P) gener-
ated by the Brownian motion. Therefore, a strong solution is essentially (up to modifi-
cation on measure zero sets) a measurable function of the given Brownian motion! The
concept of strong and weak solutions of SDE is not related to the analytic definition of

strong and weak solutions for partial differential equations.

In this section we study properties of solutions and we compute explicit solutions for

one-dimensional SDE. We start with an example:

Example (Asset price model in continuous time). A nearby model for an asset price

process (Sy,)n—0,1.2,.. in discrete time is to define S,, recursively by
Sn+1 - Sn - an(507 ceey Sn)Sn + Un(507 sy Sn)Snnn—i—l

with i.i.d. random variables 7;,7 € N, and measurable functions «,,, o, : R* — R.
Trying to set up a corresponding model in continuous time, we arrive at the stochastic

differential equation

dSt = OétSt dt + UtSt dBt (803)

with an (F;)-Brownian motion (B;) and (F}") adapted continuous stochastic processes
(cow)i>0 and (oy)¢>0, Where (F) is a given filtration on a probability space (€2, .4, P).
The processes «; and o, describe the instantaneous mean rate of return and the volatility.

Both are allowed to be time dependent and random.
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In order to compute a solution of ([8.0.3]), we assume S; > 0 for any ¢ > 0, and divide
the equation by S;:

1
§ dSt = Oy dt + oy dBt (804)
t

We will prove in Section [8.1] that if an SDE holds then the SDE multiplied by a contin-
uous adapted process also holds, cf. Theorem[8.1l Hence is equivalent to (8.0.3)
if §; > 0. If would be a classical ordinary differential equation then we could
use the identity d log S; = s% dS; to solve the equation. In Itd calculus, however, the
classical chain rule is violated. Nevertheless, it is still useful to compute d log S; by

It6’s formula. The process (,S;) has quadratic variation

. t
[S]; = /UTST dB,| = /a,%s,? dr for any ¢ > 0,
0 t 0

almost surely along an appropriate sequence (7,,) of partitions with mesh(m,) — 0. The
t
first equation holds by (8.0.3), since ¢ — [ .S, dr has finite variation, and the second

0
identity is proved in Theorem [B.1] below. Therefore, It6’s formula implies:

1 1
legSt = §d5t—2—52
t t

1
= Oy dt+0't dBt — 50’3 dt

d[S];

= p dt + oy dBy,

where p; := oy — 02 /2, i.e.,
t t

log S; — log Sy = /,us dS—l—/Us dBg,
0

o

or, equivalently,
t t

Sy = Sp-exp /us ds+/05 dB, | . (8.0.5)

0 0
Conversely, one can verify by Itd’s formula that (S;) defined by (8.0.3)) is indeed a

solution of (8.0.3). Thus we have proven existence, uniqueness and an explicit repre-
sentation for a strong solution of (8.0.3)). In the special case when oy, = ovand 0, = o

are constants in ¢ and w, the solution process

S, = Spexp (0B, + (a — 0°/2)t)
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is called a geometric Brownian motion with parameters o and o.

Figure 8.1: Three one dimensional geometric Brownian motions with a? = 1 and o0 =
0.1 (blue), 0 = 1.0 (red) and o = 2.0 (magenta).

8.1 Stochastic Calculus for Ité processes

By definition, any solution of an SDE of the form (8.0.1)) is the sum of an absolutely

continuous adapted process and an It6 stochastic integral w.r.t. the underlying Brownian

motion, i.€.,
Xy = A+ 1, fort < T, (8.1.1)
where
t t
A = /Ks ds and I, = /HS dB, (8.1.2)
0 0

with (H,),<r and (K, ). almost surely continuous and (F;>"')-adapted. A stochas-

tic process of type (8.1.I) is called an It6 process. In order to compute and analyze
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solutions of SDE we will apply Itd’s formula to Itd processes. Since the absolutely con-
tinuous process (A;) has finite variation, classical Stieltjes calculus applies to this part

of an Itd process. It remains to consider the stochastic integral part (1;):

Stochastic integrals w.r.t. Ité6 processes

Let (m,) be a sequence of partitions of R, with mesh(m,) — 0. Recall that for ¢ > 0,

t
I, = /Hs dB, = lim > H,- (Byn — By)
0 SETn

s<t

w.r.t. convergence in probability on {t < T'}, cf. Theorem [5.14l

Theorem 8.1 (Composition rule and quadratic variation). Suppose that T is a pre-

dictable stopping time and (H,);~r is almost surely continuous and adapted.

(1). For any almost surely continuous, adapted process (Gy)o<i<r, and for any t > 0,

t

lim Y G(Ion — 1) = / G.H, dB, (8.1.3)
n—oo c

SC&Tn 0

s<t

with convergence in probability on {t < T'}. Moreover, if H is in L2(|0, a]) and G
is bounded on |0, a] x Q for some a > 0, then the convergence holds in M?([0, a])
and thus uniformly for t € [0, a] in the L*(P) sense.

(2). Foranyt > 0, the quadratic variation [I]; along () is given by

t
[ = lim Y (Ton— 1) = /Hf ds (8.1.4)
SETn 0
s<t

w.r.t. convergence in probability on {t < T'}.

XXX gleich [I, J] berechnen, Beweis analog
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Remark (Uniform convergence). Similarly to the proof of Theorem[3.14]one can show
that there is a sequence of bounded stopping times 7, * T" such that almost surely along
a subsequence, the convergence in (8.1.3) and (8.1.4) holds uniformly on [0, T} for any
ke N.

Proof. (1). We first fix @ > 0 and assume that H is in £2([0,a)) and G is bounded,
s’ At
left-continuous and adapted on [0, 00) X . Since Iy — I, = f H, dB,, we

obtain .

> Gullop — 1) = /GmnHr dB,

SETY 0
s<t

where |r|, = max{s € m, : s < r}is the next partition point below r.
As n — oo, the right-hand side converges to ft G,H, dB, in M?([0,a]) because
G, H, — G,H, in L*(P® Ao,a)) by conti(;luity of G and dominated conver-
gence.

The assertion in the general case now follows by localization: Suppose (S;) and

(T}) are increasing sequences of stopping times with 7}, ,* T and H,Ij<s,y €
£2([0,00)), and let

Ty = Sp AT Ainf{t >0 : |G| >k} A k.
Then T}, /* T, the process H* := Hy <7,y isin £2([0, 00)) the process G =
G'I{i<T,y is bounded, left-continuous and adapted, and

S

I, = / H® dB,., G, = G for any s € [0, 1]
0

holds almost surely on {¢ < T},}. Therefore as n — oo,

ZGS<[S//\t - [s) = ZGL(JC) (IS//\t - [s)

SET SETn
s<t s<t

t t
— / GPH® 4B, = / G,.H, dB,
0 0
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(2).

uniformly for ¢ < T}, in L(P). The claim follows, since

P = 0.

{t< T\ Jit < T}

We first assume that H is in £2([0, o)), continuous and bounded. Then for s €

Tn,s
A

s'At
0ly = Igpy — I, = H,.dB, = H85BS+Rgn)

s'At
where R\ := [ (H, — Hy,;,) dB,. Therefore,

S

> (1) = Y HX(0B)*+2> RMWHGSB,+ Y (RM)

SETY SETn SET SETY
s<t s<t s<t s<t

Since [B]; = t almost surely, the first term on the right-hand side converges
t

to [ HZ? ds with probability one. It remains to show that the remainder terms
0

converge to 0 in probability as n — oo. This is the case, since

s'At
B[S R0P] = SE(RD? = Y [ ElH, - H ) dr
t s
— [ Bl ~ e 0
0

by the It6 isometry and continuity and boundedness of /1, whence Z(Rsn) )2 =0
in £! and in probability, and R™WH. 5B, — 0in the same sense by the Schwarz
inequality.

For H defined up to a stopping time 7', the assertion now follows by a localization

procedure similar to the one applied above.
O

The theorem and the corresponding composition rule for Stieltjes integrals suggest that

we may define stochastic integrals w.r.t. an Itd process

t t
X, = X0+/HSdBS+/KSds, t<T,
0 0
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in the following way:

Definition. Suppose that (By) is a Brownian motion on (2, A, P) w.r.t. a filtration (F),
Xy is an (FL)-measurable random variable, T is a predictable (FF)-stopping time,
and (Gy), (H;) and (K;) are almost surely continuous, (F') adapted processes defined
fort < T. Then the stochastic integral of (G;) w.r.t. (X;) is the Ito process defined by

t t t

/GS dX, = /GSHS dB; + /GSKS ds, t<T.

0 0 0

By Theorem [8.1] this definition is consistent with a definition by Riemann sum approx-
imations. Moreover, the definition shows that the class of It6 processes w.r.t. a given
Brownian motion is closed under taking stochastic integrals! In particular, strong solu-

tions of SDE w.r.t. It processes are again It6 processes.

Calculus for Ito processes

We summarize calculus rules for It processes that are immediate consequences of the
definition above and Theorem [8.1t Suppose that (X;) and (Y;) are It6 processes, and
(Gy), (Gy) and (H,) are adapted continuous process that are all defined up to a stopping

time 7". Then the following calculus rules hold for Itd stochastic differentials:
Linearity:
dX +c¢Y) = dX +cdY forany c € R,

(G+cH)dX = GdX +cHdX for any ¢ € R.

Composition rule:
dY = GdX = GdY = GGdX,

Quadratic variation:

dY = GdX = d[Y] = G*d[X],
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Itd rule: For any function F' € C?(R, x R),

2
dF(t,X) = g—f(t,X) dX + aa—f(t,X) dt + %%(t,X) d[X]

All equations are to be understood in the sense that the corresponding stochastic inte-
grals over any interval [0, ], ¢ < T, coincide almost surely.

The proofs are straightforward. For example, if

t
Y= Yo+ [ Gux,
0

and

t t
Xy = X0+/sts+/Hsst
0 0

then, by the definition above, for ¢t < 7',

t t
Y, = YO+/Gssts+/GsHsst,
0 0
and hence

t t

t t
/ G, dY, = / G.G.K, ds + / G.G.H,dB, = / GG, dX,
0 0

0 0

and
° t

t
Y], = /GSHS dB,| = /G§H§ ds = /G§ d[X]s.
0 ¢ 0 0
Moreover, Theorem [8.1] guarantees that the stochastic integrals in It6’s formula (which
are limits of Riemann-It6 sums) coincide with the stochastic integrals w.r.t. [t processes

defined above.

Example (Option Pricing in continuous time I). We again consider the continuous
time asset price model introduced in the beginning of Chapter [8l Suppose an agent is
holding ¢, units of a single asset with price process (5;) at time ¢, and he invests the

remainder V; — ¢;S; of his wealth V; in the money market with interest rate ;. We
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assume that (¢;) and (R;) are continuous adapted processes. Then the change of wealth

in a small time unit should be described by the It6 equation
d‘/;g - (bt dSt + Rt(‘/;g - (tht) dt

Similarly to the discrete time case, we consider the discounted wealth process

t

Vi := exp —/des Vi.
0

t

Since ¢t — f R, ds has finite variation, the It6 rule and the composition rule for stochas-
0

tic integrals imply:

t
AV, = exp | — Rds dV, — exp —/des RV, dt

0
t

= exp /RS ds | ¢; dS; — exp —/RS ds | RipySy dt

0 0
t

= ¢ | exp /des dS; — exp —/des RS, dt
0

- (bt dSt7

where gt is the discounted asset price process. Therefore,
V, — \70 = /gbs dgs vVt > 0 P-almost surely.

As a consequence, we observe that if (:9;) is a (local) martingale under a probability
measure P, that is equivalent to P then the discounted wealth process (V;) is also a
local martingale under P.,. A corresponding probability measure P, is called an equiv-
alent martingale measure or risk neutral measure, and can be identified by Girsanov’s
theorem, cf. Section[9.3]below. Once we have found P,, option prices can be computed
similarly as in discrete time under the additional assumption that the true measure P for

the asset price process is equivalent to P, see Section
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The It6-Doeblin formula in R!

We will now apply 1t6’s formula to solutions of stochastic differential equations. Let
b,o € C(Ry x I) where I C R is an open interval. Suppose that (B;) is an (F;)-
Brownian motion on (€2, A, P), and (X;)o<;<7 is an (F}")-adapted process with values

in I and defined up to an (F/") stopping time 7" such that the SDE

t t
X — Xy = /b(s,XS) ds + /O’(S,XS) dB, foranyt < T (8.1.5)
0 0

holds almost surely.

Corollary 8.2 (Doeblin 1941, 1t6 1944). Let F' € C1?(R . x I). Then almost surely,

F(t,X,) — F(0,X,) = /(O'F/)(S,XS)dBS (8.1.6)
0

t
o1
+/ (88—75 + 502}7’” + bF') (s,Xs)ds  foranyt <T,

where F' = OF/Ox denotes the partial derivative w.r.t. x.

Proof. Let (,) be a sequence of partitions with mesh(m, ) — 0. Since the process ¢ —
t

Xo + [ b(s, X;) ds has sample paths of locally finite variation, the quadratic variation
0

of (X}) is given by

t

X], = /.a(s,Xs)st :/a(s,xs)ms Vt<T

t 0
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w.r.t. almost sure convergence along a subsequence of (7, ). Hence It6’s formula can be

applied to almost every sample path of (X;), and we obtain

t t
F(t,X,) — F(0,Xy) = /F,(S,XS) dXS+/%—€(s,XS)ds+%/F”(S,XS) d[X],
0

0 0
t t t t

_ / (0F")(s, X,) dBs + / (bF')(s, X,) ds + / %—f(s,xs) ds+% / (02F")(s, X,) ds

0 0 0 0

t

for all t < T, P-almost surely. Here we have used (8.1.3) and the fact that the Ito
integral w.r.t. X is an almost sure limit of Riemann-Itd sums after passing once more to

an appropriate subsequence of (7, ). O

Exercise (Black Scholes partial differential equation). A stock price is modeled by a
geometric Brownian Motion (.S;) with parameters «, 0 > 0. We assume that the interest
rate is equal to a real constant 7 for all times. Let ¢(¢, z) be the value of an option at
time ¢ if the stock price at that time is S; = x. Suppose that c(¢, S;) is replicated by a
hedging portfolio, i.e., there is a trading strategy holding ¢, shares of stock at time ¢ and
putting the remaining portfolio value V; — ¢;S; in the money market account with fixed

interest rate 7 so that the total portfolio value V; at each time ¢ agrees with c(t, S;).

“Derive” the Black-Scholes partial differential equation

de de 1, ,0%
oc el - - = .
5 (t,x) + ro- (t,x) + 50 5 (t,x) = re(t,x) (8.1.7)
and the delta-hedging rule
oc
O = %(t, St) (=: Delta). (8.1.8)

Hint: Consider the discounted portfolio value Vt = e "V, and, correspondingly, the
discounted option value e~"'c(t, S;). Compute the Ito differentials, and conclude that
both processes coincide if c is a solution to (81.7) and ¢, is given by (8.1.8)).
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Martingale problem for solutions of SDE

The 1t6-Doeblin formula shows that if (X}) is a solution of (8.1.3) then

t
ME = PlX) — F0.X0) — [(2F)(6.X) ds
0
is a local martingale up to 7" for any F' € C'?(R, x I) and

(ZF)(t,x) = %U(t,l‘)QF//(t,ZE) +b(t,x)F'(t,x).

In particular, in the time-homogeneous case and for 7' = oo, any solution of (8.1.3))
solves the martingale problem for the operator ZF = %UQF” +bF" with domain C3 ().
Similarly as for Brownian motion, the martingales identified by the It6-Doeblin formula
can be used to compute various expectation values for the It6 diffusion (X;). In the next

section we will look at first examples.

Remark (Uniqueness and Markov property of strong solutions). If the coefficients
are, for example, Lipschitz continuous, then the strong solution of the SDE (8.1.3) is
unique, and it has the strong Markov property, i.e., it is a diffusion process in the
classical sense (a strong Markov process with continuous sample paths). By the It6-
Doeblin formula, the generator of this Markov process is an extension of the operator
(£,C3(1).

Although in general, uniqueness and the Markov property may not hold for solutions of
the SDE (8.1.3)), we call any solution of this equation an It6 diffusion.

8.2 Stochastic growth

In this section we consider time-homogeneous It diffusions taking values in the inter-
val I = (0,00). They provide natural models for stochastic growth processes, e.g. in
mathematical biology, financial mathematics and many other application fields. Ana-
logue results also hold if [ is replaced by an arbitrary non-empty open interval.

Suppose that (X;)o<:<7 is a strong solution of the SDE
dXt = b(Xt) dt —+ O'(Xt) dBt fOI‘ t e [0, T),

Xo = o,
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with a given Brownian motion (B;), o € (0, 00), and continuous time-homogeneous
coefficients b, o : (0,00) — R. We assume that the solution is defined up to the explo-
sion time

T =supT.,, 1., =inf{t>0]X;¢ ()}

e,r>0

The corresponding generator is
/ ]‘ 2 1
ZLF = bF' + 3¢ .

Before studying some concrete models, we show in the general case how harmonic func-
tions can be used to compute exit distributions (e.g. ruin probabilities) and to analyze

the asymptotic behaviour of X; ast¢ 7 T.

Scale functions and exit distributions

To determine the exit distribution from a finite subinterval (&, 7) C (0, 00) we compute
the harmonic functions of .. For h € C?(0, c0) with i/ > 0 we obtain:

2b 2b
Zh =0 <<= hn'= _ﬁh/ < (logh') = %

Therefore, the two-dimensional vector space of harmonic functions is spanned by the

constant function 1 and by the function

s(z) = / exp | — / f_lzsji dy | d=.

s(x) is called a scale function of the process (X}). It is strictly increasing and harmonic
on (0, 00). Hence we can think of s : (0,00) — (s(0), s(c0)) as a coordinate transfor-
mation, and the transformed process s(.X;) is a local martingale up to the explosion time
T'. Applying the martingale convergence theorem and the optional stopping theorem to

s(X;) one obtains:

Theorem 8.3. Foranye,r € (0,00) with e < xo < r we have:
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(1). The exit time T., = inf{t € [0,T) : X; & (&,7)} is almost surely less than T..

(2). PII.<T,)] = P[Xy, =¢] = M

The proof of Theorem [8.3]is left as an exercise.

Remark. (1). Note that any affine transformation s(z) = c¢s(x) + d with constants
c > 0 and d € R is also harmonic and strictly increasing, and hence a scale
function. The ratio (s(r) — s(z))/(s(r) — s(e)) is invariant under non-degenerate

affine transformations of s.

(2). The scale function and the ruin probabilities depend only on the ratio b(x) /o (z)?.

Recurrence and asymptotics

We now apply the formula for the exit distributions in order to study the asymptotics of

one-dimensional non-degenerate 1td diffusions as ¢t ,* T'. For ¢ € (0, z() we obtain

PIT. <T|] = P[T. <T, forsomer € (xy,o0)]
s(r) = s(xo)

r—00 r—00 S(T)— (5 ’

In particular, we have
P[X;=¢eforsomet € [0,T)] = P[I.<T] =1

if and only if s(c0) = lifm s(r) = oo.
):

Similarly, one obtains for r € (zg, 0o
P[X;=rforsomet € [0,T)] = P[T, <T] =1

if and only if s(0) = h{(l(l) s(e) = —o0.
Moreover,

it 20 566)
N l\o rl/‘oo s(r) — s(e)

)

P[X; —ocast /T = P

UNin <1}

e>0r<oco
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and

= lim lim M

PX;—0ast ~T] = P Jin oy — (o)

UM <1}

r<oo e>0

Summarizing, we have shown:

Corollary 8.4 (Asymptotics of one-dimensional It6 diffusions).
(1). If s(0) = —o0 and s(00) = oo, then the process (X3) is recurrent, i.e.,
P X;=y forsomete|0,T) =1 forany xy,y € (0,00).
(2). If s(0) > —o0 and s(00) = oo then }1/‘1511 X; = 0 almost surely.

(3). If s(0) = —o0 and s(00) < oo then }1/‘1511 X; = oo almost surely.

(4). If s(0) > —o0 and s(c0) < oo then

P |lim x, = o| = 5() =s(0)
2 s(00) — s(0)
and )
P |lim X, = 0| = 280 =30
2 5(c0) — 5(0
Intuitively, if s(0) = —oo, in the natural scale the boundary is transformed to —oo,

which is not a possible limit for the local martingale s(X;), whereas otherwise s(0) is

finite and approached by s(X;) with strictly positive probability.

Example. Suppose that b(z)/o(z)? ~ vr~ as x 7 oo and b(x)/o(x)?* =~ dz~! as
x N\, 0 holds for 7,5 € R in the sense that b(z)/o(z)?> — vz~ ! is integrable at co and
b(z)/o(x)* — 6x~! is integrable at 0. Then s'(z) is of order z727 as x ,* oo and of

order 2% as x \, 0. Hence

IV
w‘l —

s(o) = 0 <<= ~74< %, s(0) = —00 = ¢

In particular, recurrence holds if and only if v < % and 9 >

N[
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More concrete examples will be studied below.

Remark (Explosion in finite time, Feller’s test). Corollary[8.4]does not tell us whether
the explosion time 7' is infinite with probability one. It can be shown that this is always
the case if (X) is recurrent. In general, Feller’s test for explosions provides a necessary
and sufficient condition for the absence of explosion in finite time. The idea is to com-
pute a function g € C(0, 00) such that e *g(X;) is a local martingale and to apply the
optional stopping theorem. The details are more involved than in the proof of corollary

above, cf. e.g. Section 6.2 in [Durrett: Stochastic calculus].

Geometric Brownian motion

A geometric Brownian motion with parameters & € R and ¢ > 0 is a solution of the
s.d.e.
dSt = OéSt dt + O'St dBt (821)

We have already shown in the beginning of Section ?? that for By = 0, the unique

strong solution of (8.2.1)) with initial condition Sy = x is
St = ,CCO . eXp (O'Bt + (O[ — 0'2/2)t) .

The distribution of S, at time ¢ is a lognormal distribution, i.e., the distribution of c- e
where c is a constant and Y is normally distributed. Moreover, one easily verifies that
(S;) is a time-homogeneous Markov process with log-normal transition densities
1 (log(y/x) — pt)?
pe(z,y) = ——=exp | — 5
V2rto? 2to

where ;1 = a — 02 /2. By the Law of Large Numbers for Brownian motion,

)7 t7x7y>07

4+oo ifpu>0
lim St =
t—o0 O

if p<0
If 1+ = 0 then (.5;) is recurrent since the same holds for (B;).
We now convince ourselves that we obtain the same results via the scale function:
The ratio of the drift and diffusion coefficient is
bz)  ar o«

2 2 O'QI"

o(x) (o)
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and hence
/ 2 —2a/0?
s'(z) = const.-exp | — [ ——dy | = const.-x :
oy
xo
Therefore,
s(0) = 0 = 2a/0*<1, s(0) = oo <= 2a/o®>1,

which again shows that S; — oo for a > 02/2, S; — 0 for a < ¢%/2, and S; is

recurrent for o = 02 /2.

Feller’s branching diffusion

Our second growth model is described by the stochastic differential equation
dXt = BXt dt + 0/ Xt ch XO = Xog, (822)

with given constants 5 € R,o > 0, and values in R,. Note that in contrast to the
equation of geometric Brownian motion, the multiplicative factor /X, in the noise term
is not a linear function of X;. As a consequence, there is no explicit formula for a
solution of (8.2.2]). Nevertheless, a general existence result guarantees the existence of
a strong solution defined up to the explosion time

T = sup Tgr\(e,r),

e,r>0

cf. 2?. SDEs similar to (8.2.2)) appear in various applications.

Example (Diffusion limits of branching processes). We consider a Galton-Watson
branching process Z}' with time steps ¢ = 0, h,2h, 3h, ... of size h > 0, i.e., Zl is a
given initial population size, and
z
ZPy, =Y Nit/h fort=k-hk=012 ..
i=1
with independent identically distributed random variables N; ;.72 > 1,k > 0. The

random variable Z, describes the size of a population in the k-th generation when N;
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is the number of offspring of the i-th individual in the /-th generation. We assume that

the mean and the variance of the offspring distribution are given by
E[N;;) = 1+ Bh and Var[N;] = o?

for finite constants 3,0 € R.

We are interested in a scaling limit of the model as the size h of time steps goes to 0. To
establish convergence to a limit process as h ~\, 0 we rescale the population size by £,

i.e., we consider the process
X = h-Zy, t €[0,00).
The mean growth (“drift”) of this process in one time step is
BIX! — X! F) = h-EB(Z}y, — 20| Fl) = hnhZ) = hBX],
and the corresponding condition variance is
Var[Xfy, - XP | F) = b2 Nar[Zl, - 20| FY) = W0*Z8 = hoX],

where F' = o(N;;|i > 1,0 <1 < k) fort =k - h. Since both quantities are of order
O(h), we can expect a limit process (X;) as h \, 0 with drift coefficient 5 - X, and
diffusion coefficient v/02X,, i.e., the scaling limit should be a diffusion process solving
a s.d.e. of type (8.2.2)). A rigorous derivation of this diffusion limit can be found e.g. in

Section 8 of [Durrett: Stochastic Calculus].

We now analyze the asymptotics of solutions of (8.2.2)). The ratio of drift and diffusion

coefficient is 3z /(co+/z)? = /o, and hence the derivative of a scale function is
s'(z) = const. - exp(—28z/0).

Thus s(0) is always finite, and s(co) = oo if and only if 5 < 1. Therefore, by Corollary

[8.4] in the subcritical and critical case 3 < 1, we obtain

lim X; = 0 almost surely,
t T
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whereas in the supercritical case 5 > 1,

P LII/H%Xt = 0} >0 and P blfHTlXt = oo} > 0.
This corresponds to the behaviour of Galton-Watson processes in discrete time. It can
be shown by Feller’s boundary classification for one-dimensional diffusion processes
that if X; — 0 then the process actually dies out almost surely in finite time, cf. e.g.
Section 6.5 in [Durrett: Stochastic Calculus]. On the other hand, for trajectories with
Xy — 00, the explosion time 7' is almost surely infinite and X, grows exponentially as

t — o0.

Cox-Ingersoll-Ross model

The CIR model is a model for the stochastic evolution of interest rates or volatilities.

The equation is
th = (Oé — ﬁRt) dt + g/ Rt dBt RO = Ty, (823)

with a one-dimensional Brownian motion (B;) and positive constants «, 3,0 > 0. Al-
though the s.d.e. looks similar to the equation for Feller’s branching diffusion, the
behaviour of the drift coefficient near 0 is completely different. In fact, the idea is that
the positive drift a pushes the process away from 0 so that a recurrent process on (0, 00)
is obtained. We will see that this intuition is true for v > ¢ /2 but not for o < o2 /2.
Again, there is no explicit solution for the s.d.e. (8.13)), but existence of a strong solution
holds. The ratio of the drift and diffusion coefficient is (o — Sx)/o?x, which yields

3,(@ = const. - x—Qa/U2 6263&/02_

Hence s(o0) = oo for any 8 > 0, and s(0) = oo if and only if 2a. > o2. Therefore, the
CIR process is recurrent if and only if o > 02/2, whereas X; — 0 as t ' T almost
surely otherwise.

By applying I1t6’s formula one can now prove that X has finite moments, and compute

the expectation and variance explicitly. Indeed, taking expectation values in the s.d.e.

t t

R, = x0+/(a—ﬁRs)ds+/U\/Rs dB,,

0 0
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we obtain informally

d
%E[Rt] = a— BE[R,

and hence by variation of constants,

E[R] = z¢-e P + %(1 )

t
To make this argument rigorous requires proving that the local martingale t — [ o/Rd B
0

is indeed a martingale:
Exercise. Consider a strong solution (R;)¢>o of (813) for a > o%/2.

(1). Show by applying Itd’s formula to x — |z|? that E[|R;|P] < oo for any ¢t > 0 and
p=1L

(2). Compute the expectation of R;, e.g. by applying It&’s formula to e'x.

(3). Proceed in a similar way to compute the variance of R;. Find its asymptotic value
lim Var[R,].
t—o00

8.3 Linear SDE with additive noise

We now consider stochastic differential equations of the form
dXt = Btct dt + O¢ dBt, XQ =, (831)

where (B;) is a Brownian motion, and the coefficients are deterministic continuous
functions 3,0 : [0,00) — R. Hence the drift term ;X is linear in X, and the diffusion
coefficient does not depend on X, i.e., the noise increment o, dB; is proportional to

white noise d B, with a proportionality factor that does not depend on Xj.
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Variation of constants

An explicit strong solution of the SDE (8.3.1) can be computed by a “variation of con-
stants” Ansatz. We first note that the general solution in the deterministic case o; = 0 is

given by
t
X; = const. - exp /ﬁs ds
0

To solve the SDE in general we try the ansatz

t
X, = Cy-exp /&ds
0

with a continuous Ité process (C;) driven by the Brownian motion (B;). By the Ito

product rule,

t
dXt = ﬁtXt dt + exp /68 dS dCt
0

Hence (X;) solves (8.3.1) if and only if

t
dCt = exp _/ﬁs ds O¢ dBt,
0

i.e.,
t r

Cy = Co—l—/exp —/ﬁsds o, dB,.
0 0
We thus obtain:

Theorem 8.5. The almost surely unique strong solution of the SDE (8.3.1)with initial

value x is given by

t

t t
X/ = x-exp —/Bsds +/exp /Bsds o, dB,.
0 0 P
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Note that the theorem not only yields an explicit solution but it also shows that the
solution depends smoothly on the initial value x. The effect of the noise on the solution
is additive and given by a Wiener-Ito integral, i.e., an Itd integral with deterministic

integrand. The average value
t
E[X]] = z-exp /BS ds |, (8.3.2)
0
coincides with the solution in the absence of noise, and the mean-square deviation from

this solution due to random perturbation of the equation is

t t t

t
Var[X}] = Var /exp /Bs ds | o,dB,| = /exp 2/63 ds | o dr
0 r 0 r

by the Itd isometry.

Solutions as Gaussian processes

We now prove that the solution (X;) of a linear s.d.e. with additive noise is a Gaussian
process. We first observe that X is normally distributed for any ¢ > 0.
Lemma 8.6. For any deterministic function h € L*(0,1), the Wiener-1to integral I; =

f h, d By is normally distributed with mean 0 and variance f h? ds.

n—1

Proof. Suppose firstthat h = > ¢; - Iy, 4, is a step function withn € N, ¢y,..., ¢, €
i=0

n—1
R,and 0 <t <ty <...<t,. Thenl; = Y ¢;- (By,, — By ) is normally distributed
i=0

with mean zero and variance
t

—

n—

Var[l;] = Aty —t;) = /h? ds.

i

I
o

0

In general, there exists a sequence (h(™), ey of step functions such that A — h in
L*(0,t), and
t t

I, = / hdB = lim [ h"™ dB in L2(Q, A, P).
n—oo
0 0
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Hence [; is again normally distributed with mean zero and

t t

Var[l;] = lim Var /h(") dB| = /h2 ds.

n—00
0 0

Theorem 8.7 (Wiener-Ito integrals are Gaussian processes). Suppose that h €

t
L3 .([0,00),R). Then I, = [ hs dB; is a continuous Gaussian process with
0

tAs
ElL] =0 and Cov[l,I] = /hz ds foranyt,s > 0.

0

Proof. Let0 < t; < ... < t,. To show that (I, ..., I;, ) has a normal distribution it
suffices to prove that any linear combination of the random variables I, , ..., I; is nor-
mally distributed. This holds true since any linear combination is again an It6 integral

with deterministic integrand:

forany n € N and \{,...,\, € R. Hence ([;) is a Gaussian process with E[[;] = 0

and

COV[_[t,IS] = E[-[tls]

O
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Example (Brownian motion). If » = 1 then /, = B;. The Brownian motion (B;) is a

centered Gaussian process with Cov[By, Bs| = t A s.

More generally, by Theorem [8.7] and Theorem [8.5] any solution (X;) of a linear SDE
with additive noise and deterministic (or Gaussian) initial value is a continuous Gaussian
process. In fact by (8.3.)), the marginals of (X;) are affine functions of the correspond-
ing marginals of a Wiener-Ito6 integral:
t T
Xf:i~ SC—i—/hTO'rdBr with h, = exp —/Budu
0 0

Hence all finite dimensional marginals of (X") are normally distributed with

tAs

1
E[X]] = /H;, and Cov[X], X7] = — -/hio—z dr.
thts

0

The Ornstein-Uhlenbeck process

In 1905, Einstein introduced a model for the movement of a “big” particle in a fluid.
Suppose that V2 is the absolute velocity of the particle, V; is the mean velocity of the
fluid molecules and V; = V;® — V, is the velocity of the particle relative to the fluid.

Then the velocity approximatively can be described as a solution to an s.d.e.
dVy = =V, dt + odBs. (8.3.3)

Here (B;) is a Brownian motion in R? d = 3, and 7, o are strictly positive constants
that describe the damping by the viscosity of the fluid and the magnitude of the random
collisions. A solution to the s.d.e. (8.3.3) is called an Ornstein-Uhlenbeck process.
Although it has first been introduced as a model for the velocity of physical Brown-
ian motion, the Ornstein-Uhlenbeck process is a fundamental stochastic process that is
almost as important as Brownian motion for mathematical theory and stochastic model-
ing. In particular, it is a continuous-time analogue of an AR(1) autoregressive process.
Note that (8.3.3) is a system of d decoupled one-dimensional stochastic differential
equations th(i) = —’th(i) + adBt(i). Therefore, we will assume w.l.o.g. d = 1. By the

considerations above, the one-dimensional Ornstein-Uhlenbeck process is a continuous
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Gaussian process. The unique strong solution of the s.d.e. (8.3.3) with initial condition

x 1s given explicitly by

¢
Vi = et x+0/678 dB; | . (8.3.4)
0
In particular,
E[VY] = e ",

and
tAs

Cov[V*, VF] = e“’(HS)aQ/ez'” dr
0

s

2
= U—(e_”t_s‘ — et for any ¢, s > 0.
2y
Note that as t — 00, the effect of the initial condition decays exponentially fast with rate
~v. Similarly, the correlations between V;* and V.* decay exponentially as |t — s| — oc.

The distribution at time ¢ is
o2
Vi ~ N (e“’tx, (1 — eM)> ) (8.3.5)
27y
In particular, as ¢ — oo

"2y
One easily verifies that N (0, 02 /2) is an equilibrium for the process: If Vi ~ N(0,02/27)
and (B,) is independent of Vj then

2
Ve 2 N(OU).

t
V., = e“/tvo_,_a/e’v(st) dB,

0
t

2
~ N 0,3—6_27t+02/627(5_t) ds | = N(0,0%/27)
Y

0

for any ¢t > 0.
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Theorem 8.8. The Ornstein-Uhlenbeck process (V/*) is a time-homogeneous Markov

process w.r:t. the filtration (F'7) with stationary distribution N (0, 52 /2v) and transi-
tion probabilities
pilz,A) = Ple e+ ——I—e2Zc A|,  Z~N(0,1).
V2y

Proof. We first note that by (8.3.3)),

o
Ve o~ et ——V1—etyg forany t > 0
h e :c+m e rany ¢ >

with Z ~ N (0, 1). Hence,
Ef(VOl = (pf)(@)
for any non-negative measurable function f : R — R. We now prove a pathwise coun-

terpart to the Markov property: For t,r > 0, by (83.4)

t t+r
Ve, o= e [ p g o / € dB, | +o / e’ 4B,
0 0
L A / e’ 4B, (8.3.6)

0
where B, := By, — B, is a Brownian motion that is independent of ]—"tB’P. Hence, the
random variable o - [ €(~") dB, is also independent of 7" and, by (8.34), it has

the same distribution as the Ornstein-Uhlenbeck process with initial condition 0:

T

R
0
Therefore, by (8.3.6), the conditional distribution of V;% . given FPF coincides with the

distribution of the process with initial V;* at time 7:
BIf(VE) | FPT] = BIf(e Vi (w) + V)
= E[f(V;")] = (0, ))(Vi(w))  for P-ae w.

r

This proves that (V;*) is a Markov process with transition kernels p,.,r > 0. O
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Remark. The pathwise counterpart of the Markov property used in the proof above is

called cocycle property of the stochastic flow z — V,*.

The It6-Doeblin formula can now be used to identify the generator of the Ornstein-

Uhlenbeck process: Taking expectation values, we obtain the forward equation

t

EIF()) = F)+ [ E(ZF) V)] ds

0

for any function F' € C3(R) and ¢ > 0, where

(L)) = 50* (@) ~ 7 f (x).

For the transition function this yields

(peF) () )+ / psLF)(x for any x € R,
0

whence

i P > [ Bz - 2w

by continuity and dominated convergence. This shows that the infinitesimal generator

of the Ornstein-Uhlenbeck process is an extension of the operator (., CZ(R)).

Change of time-scale

We will now prove that Wiener-1t0 integrals can also be represented as Brownian motion
with a coordinate transformation on the time axis. Hence solutions of one-dimensional
linear SDE with additive noise are affine functions of time changed Brownian motions.
We first note that a Wiener-It6 integral [; = fo h, dB, with h € L2 (0, 00) is a contin-

uous centered Gaussian process with covariance

tAs

Cov|[l;, I] = /h2 dr = 7(t) N7(s)

0
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where
t

T(t) = /h? dr = Var[l}]

is the corresponding variance process. The variance process should be thought of as an
“internal clock” for the process (1;). Indeed, suppose & > 0 almost everywhere. Then

T is strictly increasing and continuous, and

T :[0,00) — [0,7(c0)) is a homeomorphism.
Transforming the time-coordinate by 7, we have

Cov[l 1), Ir1() = tAs for any ¢, s € [0, 7(c0)].

These are exactly the covariance of a Brownian motion. Since a continuous Gaussian

process is uniquely determined by its expectations and covariances, we can conclude:

Theorem 8.9 (Wiener-1to6 integrals as time changed Brownian motions). The pro-

cess By = L1y, 0<s < 7(00),isaBrownian motion, and

I, = By forany t > 0, P-almost surely.

Proof. Since (B;)o<s<r(x) has the same marginal distributions as the Wiener-Itd in-
tegral (I,);=o (but at different times), (B,) is again a continuous centered Gaussian

process. Moreover, Cov|[By, Bs] = tAs, so that (B) is indeed a Brownian motion. ]

Note that the argument above is different from previous considerations in the sense that
the Brownian motion (B,) is constructed from the process (I;) and not vice versa.

This means that we can not represent (I;) as a time-change of a given Brownian motion
(e.g. (B;)) but we can only show that there exists a Brownian motion (B;) such that
is a time-change of B. This way of representing stochastic processes w.r.t. Brownian
motions that are constructed from the process corresponds to the concept of weak solu-

tions of stochastic differential equations, where driving Brownian motion is not given a
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priori. We return to these ideas in Section 9, where we will also prove that continuous

local martingales can be represented as time-changed Brownian motions.

Theorem [8.9]enables us to represent solution of linear SDE with additive noise by time-
changed Brownian motions. We demonstrate this with an example: By the explicit
formula (8.3.4)) for the solution of the Ornstein-Uhlenbeck SDE, we obtain:

Corollary 8.10 (Mehler formula). A one-dimensional Ornstein-Uhlenbeck process V,*

with initial condition x can be represented as
‘/tx = eiwt(ﬂf -+ O'Bi(emt,l))
2y

with a Brownian motion (B;);so such that By = 0,

Proof. The corresponding time change for the Wiener-Itd integral is given by

t

T(t) = /exp(Zys) ds = (exp(2vt) — 1)/27.

8.4 Brownian bridge

In many circumstances one is interested in conditioning diffusion process on taking a
given value at specified times. A basic example is the Brownian bridge which is Brow-
nian motion conditioned to end at a given point z after time ¢,. We now present several
ways to describe and characterize Brownian bridges. The first is based on the Wiener-
Lévy construction and specific to Brownian motion, the second extends to Gaussian
processes, whereas the final characterization of the bridge process as the solution of a
time-homogeneous SDE can be generalized to other diffusion processes. From now on,
we consider a one-dimensional Brownian motion (B;)o<;<; with By = 0 that we would

like to condition on taking a given value y at time 1
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Wiener-Lévy construction

Recall that the Brownian motion (B;) has the Wiener-Lévy representation

Bw) = Y(w)t+ > Y 2" =1V, x(w)enp(t)  fort €[0,1] (8.4.1)
n=0 k=0
where e, ;, are the Schauder functions, and Y and Y,,, (n > 0,k = 0,1,2,...,2" —

1) are independent and standard normally distributed. The series in (8.4.1)) converges
almost surely uniformly on [0, 1], and the approximating partial sums are piecewise
linear approximations of ;. The random variables Y = B; and

oo 2"—1

Xt = Z Z Yn7ken7k(t) = Bt — tBl

n=0 k=0
are independent. This suggests that we can construct the bridge by replacing Y (w) by

the constant value y. Let
Xty = yt+Xt = Bt_'_(y_Bl) 't,

and let p,, denote the distribution of the process (X )o<i<1 on C([0, 1]). The next theo-

rem shows that X/ is indeed a Brownian motion conditioned to end at y at time 1:

Theorem 8.11. The map y — p, is a regular version of the conditional distribution of

(Bt)o<t<1 given By, i.e.,
(1). p, is a probability measure on C ([0, 1]) for any y € R,

(2). P[(Bt)o<i<1 € A| B1] = up,[A] holds P-almost surely for any given Borel
subset A C C(]0,1]).

(3). If F : C([0,1]) — R is a bounded and continuous function (w.r.t. the supremum
norm on C([0, 1])) then the map y — [ F dy,, is continuous.

The last statement says that <+ f,, is a continuous function w.r.t. the topology of weak

convergence.
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Proof. By definition, , is a probability measure for any y € R. Moreover, for any
Borel set A C C([0,1]),

P[(Bt)o<t<1 € A| Bi](w) = P[(X;+1tB)) € A| Bi](w)
= PlX,+tBi(w)) € A] = P[(X/“) e A] = pp A

for P-almost every w by independence of (Xr) and B;. Finally, if F': C'([0,1]) — Riis

continuous and bounded then

/Fd,uy = E[F((y: + Xi)o<i<1)]

is continuous in y by dominated convergence. U

Finite-dimensional distributions

We now compute the marginals of the Brownian bridge X/

Corollary 8.12. Foranyn € Nand 0 < t; < ... < t, < 1, the distribution of
(X3,

... X7) on R"™ is absolutely continuous with densi
t19 ) . y

_ Pty (07 xl)ptgftl ('rlu 552) o Pt—tp—1 (SUnfl, xn)plftn (SUm y)
P1 (07 y)

fy(z1, ..., xy) . (8.4.2)

Proof. The distribution of (B;,, ..., B, , By) is absolutely continuous with density
1 n

th1 ----- B, ,B1 (xlv cee s Ty y) =DPu (07 x0>pt2*t1 (xlv x2) C Pty —tna (xnflv xn)plftn (ZCn, y)

Since the distribution of (X}

..., X} is a regular version of the conditional distribu-

tion of (By,, ..., By,) given By, it is absolutely continuous with the conditional density
f (l‘ x |y) = thl """ Btn,B1 (5617 <oy Ty y)
Bty B n B 1y - —
t1 tn | B1 > )y n f—.-fthl ..... Bt"’Bl<x1""’xn7y)dx1"'dxn
- fy(xl, cee 7xn)-
O
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In general, any almost surely continuous process on [0, 1] with marginals given by
(8.4.2)) is called a Brownian bridge from 0 to y in time 1. A Brownian bridge from x
to y in time ¢ is defined correspondingly for any x,y € R and any ¢ > 0. In fact, this
definition of the bridge process in terms of the marginal distributions carries over from
Brownian motion to arbitrary Markov processes with strictly positive transition densi-

ties. In the case of the Brownian bridge, the marginals are again normally distributed:

Theorem 8.13 (Brownian bridge as a Gaussian process). The Brownian bridge from
0 to y in time 1 is the (in distribution unique) continuous Gaussian process (X/)cj01]

with

EX/] =ty and Cov[X/, X! = tANs—ts forany s,t € [0,1]. (8.4.3)

Proof. A continuous Gaussian process is determined uniquely in distribution by its
means and covariances. Therefore, it suffices to show that the bridge X} = B; + (y —
By )t defined above is a continuous Gaussian process such that (8.4.3]) holds. This holds
true: By (8.4.2)), the marginals are normally distributed, and by definition, ¢ — X/ is

almost surely continuous. Moreover,
EX!] = E[B]+E[y—Bi]-t = yt, and
Cov[X}/, X!] = Cov[By, Bs] —t-Cov|By, Bs] — s - Cov[By, By| + ts Var| By
= tAs—ts—st+1ts = tNs—tis.

O

Remark (Covariance as Green function, Cameron-Martin space). The covariances
of the Brownian bridge are given by
t-(1—s) fort<s,
c(t,s) = Cov[X}, X¥] =
(1—t)-s fort>s.
The function c(t, s) is the Green function of the operator d?/dt? with Dirichlet boundary

conditions on the interval [0, 1]. This is related to the fact that the distribution of the
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Brownian bridge from 0 to 0 can be viewed as a standard normal distribution on the
space of continuous paths w : [0,1] — R with w(0) = w(1) = 0 w.r.t. the Cameron-

Martin inner product
1

(9, P = /gl(s)h'(s) ds.

The second derivative d?/dt? is the linear operator associated with this quadratic from.

SDE for the Brownian bridge

Our construction of the Brownian bridge by an affine transformation of Brownian mo-

tion has two disadvantages:

e It can not be carried over to more general diffusion processes with possibly non-

linear drift and diffusion coefficients.

e The bridge X} = B; + t(y — Bj) does not depend on (B;) in an adapted way,

because the terminal value By is required to define X/ for any ¢ > 0.

We will now show how to construct a Brownian bridge from a Brownian motion in an
adapted way. The idea is to consider an SDE w.r.t. the given Brownian motion with a
drift term that forces the solution to end at a given point at time 1. The size of the drift
term will be large if the process is still far away from the given terminal point at a time
close to 1. For simplicity we consider a bridge (X;) from 0 to 0 in time 1. Brownian
bridges with other end points can be constructed similarly. Since the Brownian bridge
is a Gaussian process, we may hope that there is a linear stochastic differential equation

with additive noise that has a Brownian bridge as a solution. We therefore try the Ansatz
dXt — _BtXt dt + dBt, XO — 0 (844)

with a given continuous deterministic function 5;,0 < ¢ < 1. By variation of constants,

the solution of (8.4.4) is the Gaussian process X;,0 < ¢ < 1, given by

t t
1
X, = h—/hr dB, where h; = exp /55 ds
t
0 0
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The process (X;) is centered and has covariances

tAs

1
Cov[Xy, X4 = /hf dr.
0

hths
Therefore, (X;) is a Brownian bridge if and only if
Cov[X;, Xs] = t-(1—5) forany t < s,

i.e., if and only if

t

1
e hZdr = hy-(1—s) forany 0 < ¢ < s. (8.4.5)
t
0

The equation (8.4.5)) holds if and only if A, is a constant multiple of 1/1 — ¢, and in this
case

1
— Llogh = T~ 1 fortelo, 1),
5t d og ht 1—¢ or 6[0,]

Summarizing, we have shown:

Theorem 8.14. If (B;) is a Brownian motion then the process (X,) defined by

t
1-1
Xt = /1—dBr fOi’tG [0,1], X1 :0,
—Tr
0

is a Brownian bridge from 0 to 0 in time 1. It is the unique continuous process solving

the SDE ¥
dX; = —1_ttdt+ dB,  forte|0,1). (8.4.6)

Proof. As shown above, (X});c[0,1) is a continuous centered Gaussian process with the
covariances of the Brownian bridge. Hence its distribution on C'([0, 1)) coincides with
that of the Brownian bridge from 0 to 0. In particular, this implies Iltlfn% Xy = 0 almost
surely, so the trivial extension from [0, 1) to [0, 1] defined by X; = 0 is a Brownian
bridge. L
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If the Brownian bridge is replaced by a more general conditioned diffusion process,
the Gaussian characterization does not apply. Nevertheless, it can still be shown by
different means (the keyword is “h-transform”) that the bridge process solves an SDE
generalizing (8.4.6), cf. ?? below.

8.5 Stochastic differential equations in R"

We now explain how to generalize our considerations to systems of stochastic differen-
tial equations, or, equivalently, SDE in several dimensions. For the moment, we will not
initiate a systematic study but rather consider some examples. The setup is the follow-
ing: We are given a d-dimensional Brownian motion B; = (B}, ..., B). The compo-
nent processes Bf, 1 < k < d, are independent one-dimensional Brownian motions that
drive the stochastic dynamics. We are looking for a stochastic process X; : {2 — R”

solving an SDE of the form

d
dX, = b(t, X,)dt + Y _ow(t, X,) dByf. (8.5.1)

k=1
Here n and d may be different, and b, 04, ...,04 : R, x R" — R"™ are time-dependent

continuous vector fields on R™. In matrix notation,
dXt = b(t, Xt) dt + O'(t, Xt) dBt (852)

where o(t, x) = (01(t,z)oa(t, x) - - - 04(t, x)) is an n X d-matrix.

Existence, uniqueness and stability

Assuming Lipschitz continuity of the coefficients, existence, uniqueness and stability of
strong solutions of the SDE (8.3.2)) can be shown by similar arguments as for ordinary

differential equations.
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Theorem 8.15 (Existence, uniqueness and stability under global Lipschitz condi-
tions). Suppose that b and o satisfy a global Lipschitz condition of the following form:

For any ty € R, there exists a constant L. € R such that
|b(t, ) =b(t, )|+ ||o(t,x)—0o(t,T)|| < L-lx—z| Vte|0,t], x,z € R". (8.5.3)

Then for any initial value x € R", the SDE (8.3.2) has a unique (up to equivalence)

strong solution (Xy)icjo,00) Sutch that Xo = x P-almost surely.

Furthermore, if (X;) and (X;) are two strong solutions with arbitrary initial conditions,

then for any t € R, there exists a finite constant C(t) such that

E | sup |X, - X,|

s€[0,t]

< Ct) B |1Xo— Xof?]

The proof of Theorem [8.13]is outlined in the exercises below. In Section [12.1] we will
prove more general results that contain the assertion of the theorem as a special case. In
particular, we will see that existence up to an explosion time and uniqueness of strong

solutions still hold true if one assumes only a local Lipschitz condition.

The key step for proving stability and uniqueness is to control the deviation
g = F {sup | X — )?3\2]
s<t
between two solutions up to time ¢. Existence of strong solutions can then be shown by

a Picard-Lindelof approximation based on a corresponding norm:

Exercise (Proof of stability and uniqueness). Suppose that (X;) and (X,) are strong
solutions of (8.5.2), and let t, € R,. Apply It6’s isometry and Gronwall’s inequality to
show that if (8.3.3)) holds, then there exists a finite constant C' € R such that for any
t S tO?

t
e < (50+ / e ds), and (8.5.4)
0

C .
C e g (8.5.5)

g <
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Hence conclude that two strong solutions with the same initial value coincide almost

surely.

Exercise (Existence of strong solutions). Define approximate solutions of (8.3.2)) with

initial value # € R™ inductively by setting X! := z for all ¢, and
t t
XM= x ¢ / b(s, XI')ds + / o(s, X7') dBs.
0 0

Let A} := Elfsup,, | X" — X??]. Show that if (8.3.3) holds, then for any ¢, € R,

there exists a finite constant C'(() such that

t
AL < C’(to)/ A%ds  forany n >0 and ¢ < to, and
0

tn
AP < Ct)" ] A)  forany n € N and t < t,.

Hence conclude that the limit X, = lim,,_,,, X" exists uniformly for s € [0, o] with
probability one, and X is a strong solution of (8.3.2)) with X, = z.

Ito processes driven by several Brownian motions
Any solution to the SDE (8.3.1) is an Itd process pf type
/G ds + Z / H* aB* (8.5.6)
k=17

with continuous (EB’P) adapted stochastic processes G, H!, H?, ..., Hsd. We now

extend the stochastic calculus rules to such Itd processes that are driven by several in-

dependent Brownian motions. Let H and H be continuous (]—" ) adapted processes.

Lemma 8.16. If (m,) is a sequence of partitions of R, with mesh(m,) — 0 then for

t
any 1 < k,l < d and a € Ry, the covariation of the 116 integrals t — [ Hy dB* and
0

t
tw [ H, d B exists almost surely uniformly for t € [0, a] along a subsequence of (),
0

/HdBk,/ﬁdel /HHdB’“ 5kl/HH ds.
0 0
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The proof is an extension of the proof of Theorem [8.1(ii), where the assertion has been

derived for k = [ and H = H. The details are left as an exercise.

Similarly to the one-dimensional case, the lemma can be used to compute the covariation
of Itd integrals w.r.t. arbitrary Itd processes. If X, and Y are Itd processes as in (8.3.1)),

and K and L, are adapted and continuous then we obtain

. . t
U KdX,/ LdY] = / K,L,d[X,Y],
0 0 t 0

almost surely uniformly for ¢ € [0, u], along an appropriate subsequence of (7).

Multivariate 1to-Doeblin formula

We now assume again that (X;);>¢ is a solution of a stochastic differential equation of
the form (8.3.1). By Lemma[8.16 we can apply Itd’s formula to almost every sample
path t — X;(w):

Theorem 8.17 (It6-Doeblin). Let F € C'2(R, x R™). Then almost surely,

t
F(t,X) = FO.X0)+ [(47V.F)(s,X.) - dB,
0
t
oF
+ ¥ + ZF ) (s, X,) ds forallt >0,
0
where V. denotes the gradient in the space variable, and

n 2 n

(ZF)(t,z) = %Z ai7j(t’x)8ii
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Proof. If X is a solution to the SDE then

k,l

= Z/Ukalst[BkBl / (s, X,)
0
where o/ = 37, oiol, e,
a(s, ) = o(s,x)o(s,z)" € R,
Therefore, 1t6’s formula applied to the process (¢, X;) yields

arx) = 9L Xyt VP X) - dX 4 L Xd: OF
’ a 0x'0xI

T ——(t, X) d[ X", X7]

= (0"V.F)(t,X)-dB+ (%—t + .,SfF) (t, X) dt,
forany F € C'?(R,. x R™). O

The It6-Doeblin formula shows that for any F' € C*(R, x R"), the process

MF = F(S,Xs)—F(o,XO)—/<%—f+$F) (t, X,) dt
0

is a local martingale. If 0" V. F is bounded then M is a global martingale.

Exercise (Drift and diffusion coefficients). Show that the processes

M= X;_Xg_/bi(s,xs)ds, 1<i<n,

0

are local martingales with covariations
(MY, M), = a; (s, X,) for any s > 0, P-almost surely.

The vector field b(s, x) is called the drift vector field of the SDE, and the coefficients

a; ;(s, z) are called diffusion coefficients.

University of Bonn 2015/2016



282 CHAPTER 8. SDE: EXPLICIT COMPUTATIONS

General Ornstein-Uhlenbeck processes

XXX to be included

Example (Stochastic oscillator).

Examples

Example (Physical Brownian motion with external force).

Example (Kalman-Bucy filter).

Example (Heston model for stochastic volatility).
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Chapter 9

Change of measure

9.1 Local and global densities of probability measures

A thorough understanding of absolute continuity and relative densities of probability
measures is crucial at many places in stochastic analysis. Martingale convergence yields
an elegant approach to these issues including a proof of the Radon-Nikodym and the

Lebesgue Decomposition Theorem. We first recall the definition of absolute continuity.

Absolute Continuity

Suppose that P and () are probability measures on a measurable space (€2, .4), and F is

a sub-o-algebra of A.

Definition. (/). The measure () is called absolutely continuous w.r.t. P on the o-
algebra F if and only if Q[A] = 0 for any A € F with P[A] = 0.

(2). The measures () and P are called singular on F if and only if there exists A € F
such that P[A] = 0 and Q[A®] = 0.

283
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We use the notations () < P for absolute continuity of ) w.r.t. P, () ~ P for mutual
absolute continuity, and ()L P for singularity of () and P. The definitions above extend

to signed measures.

Example. The Dirac measure ;5 is obviously singular w.r.t. Lebesgue measure g 1
on the Borel o-algebra B((0,1]). However, 0/, is absolutely continuous w.r.t. Aq
on each of the o-algebras F,, = o(D,,) generated by the dyadic partitions D,, = {(k -
27" (E+1)27" : 0< k< 2"},and B([0,1)) = o(lUD,).

The next lemma clarifies the term “absolute continuity.”

Lemma 9.1. The probability measure () is absolutely continuous w.r.t. P on the o-

algebra F if and only if for any € > 0 there exists 6 > 0 such that for A € F,
PAl <66 = QA <e= (9.1.1)

Proof. The “if” part is obvious. If P[A] = 0 and (9.1.1)) holds for each ¢ > 0 with ¢
depending on ¢ then Q[A] < ¢ for any € > 0, and hence Q[A] = 0.

To prove the “only if” part, we suppose that there exists ¢ > 0 such that (9.1.1) does not
hold for any § > 0. Then there exists a sequence (A,,) of events in F such that

QA > € and P[A,] < 277
Hence, by the Borel-Cantelli-Lemma,

P[A,, infinitely often] = 0,

whereas
Q[A, infinitely often] = @ [ﬂ U Anl = lim Q U Anl > ¢
n—o0
n m>n m>n
Therefore () is not absolutely continuous w.r.t. P. L

Example (Absolute continuity on R). A probability measure p on a real interval is
absolutely continuous w.r.t. Lebesgue measure if and only if the distribution function
F(t) = u[(—o0, t]] satisfies:
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For any € > 0 there exists > 0 such that forany n € Nand aq,...,a,,b1,...,b, € R,
Shi—al < = Y |IF(b) - Fla)| < 4, 9.1.2)
i=1 i=1

cf. e.g. [Billingsley: Probability and Measures].

Definition (Absolutely continuous functions). A function F' : (a,b) C R — R is
called absolutely continuous iff (9.1.2) holds.

The Radon-Nikodym Theorem states that absolute continuity is equivalent to the exis-

tence of a relative density.

Theorem 9.2 (Radon-Nikodym). The probability measure () is absolutely continuous

w.r.t. P on the o-algebra F if and only if there exists a non-negative random variable
Z € LY(Q, F, P) such that

Q4] = /ZdP forany A € F. (9.1.3)
A

The relative density Z of @) w.r.t. P on F is determined by (9.1.3]) uniquely up to modi-
fication on P-measure zero sets. It is also called the Radon-Nikodym derivative or the
likelihood ratio of () w.r.t. P on F. We use the notation

7= %
P |,

and omit the F when the choice of the o-algebra is clear.

Example (Finitely generated o-algebra). Suppose that the o-algebra F is generated
by finitely many disjoint atoms By, ..., By with Q = |JB;. Then @ is absolutely

continuous w.r.t. P if and only if for any ¢,

P[B] =0 = Q[B]=0.
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In this case, the relative density is given by

:ZQ]I..

i: P[B;]>0

a7,

From local to global densities

Let (F,,) be a given filtration on (€2, A).

Definition (Local absolutely continuity). The measure () is called locally absolutely
continuous w.r.t. P and the filtration (F,,) if and only if () is absolutely continuous w.r.t.

P on the o-algebra F,, for each n.

Example (Dyadic partitions). Any probability measure on the unit interval [0, 1] is
locally absolutely continuous w.r.t. Lebesgue measure on the filtration F,, = o(D,,)
generated by the dyadic partitions of the unit interval. The Radon-Nikodym derivative
on F, is the dyadic difference quotient defined by
Al gy _ M= 1) 2 k2] P27 - F((k—1) 2
dA| £ AM((k—=1)-2 k- 27)] 2-n

) 9.1.4)

forx € ((k—1)27" k27™].

o0

Example (Product measures). If ) = ® v and P = ) u are infinite products of
=1
probability measures v and u, and v is absolutely continuous w.r.t. © with density p,

then () is locally absolutely continuous w.r.t. P on the filtration
.Fn = O'(Xl,...,Xn)

generated by the coordinate maps X;(w) = w;. The local relative density is

= H o(X;)

7,

However, if v # p, then () is not absolutely continuous w.r.t. P on Fo, = o (X1, X5, ...),

since by the LLN, n=! >~ I4(X;) converges Q almost surely to v[A] and P-almost
i=1

surely to u[A].
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Now suppose that () is locally absolutely continuous w.r.t. P on a filtration (F,,) with

relative densities 10
Zy = —
dP

Fn
The L! martingale convergence theorem can be applied to study the existence of a global

density on the o-algebra
Feo = ol JFn).

Let Z, := limsup Z,.

Theorem 9.3 (Convergence of local densities, Lebesgue decomposition).

(1). The sequence (Z,) of successive relative densities is an (JF,)-martingale w.r.t. P.
In particular, (Z,) converges P-almost surely to Z.., and Z, is integrable w.r:t.
P.

(2). The following statements are equivalent:

(a) (Z,) is uniformly integrable w.r.t. P.
(b) @ is absolutely continuous w.r.t. P on F..

(c) QIA] = [ Z dP for any P on F.
A
(3). In general, the decomposition Q) = Q, + Qs holds with

Q.[4] = /ZOO dP, Qs[4] = Q[AN{Z, = oo}]. (9.1.5)

A

Q. and Q) are positive measure with (), < P and Q) ,LP.

The decomposition () = (), + ()5 into an absolutely continuous and a singular part is

called the Lebesgue decomposition of the measure () w.r.t. P on the o-algebra F.
Proof. (1). Forn > 0, the density Z,, is in £!(2, F,,, P), and

EplZy,; Al = QA] = Ep[Zysr; A]  forany A€ F,.
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Hence Z,, = Ep[Z,.1 | Ful,i.e., (Z,) is a martingale w.r.t. P. Since Z,, > 0, the

martingale converges P-almost surely, and the limit is integrable.
(2). (a) = (c): If (Z,,) is uniformly integrable w.r.t. P, then
Zn, = Ep|Zy | Fy P-almost surely for any n,
by the L' convergence theorem. Hence for A € F,,,
QA] = Ep[Z,; Al = Ep[Z; Al

This shows that Q[A] = Ep[Z, ; A] holds for any A € |J F,,, and thus for any
Ae Fo=0lUFn).
(c) = (b) is evident.
(b) = (a): If Q < P on F, then Z, converges also ()-almost surely to a finite
limit Z,. Hence for ng € Nand ¢ > 1,

sup Ep[|Z,]; |Zn| > ] = sup Ep[Z,; Z, > ] = supQ[Z, > (]

< maxQ@|[Z, > c| + sup Q[Z, > (]

n<no n>no
< HL&XQ[Z,@ >4+ Q[Zs > c— 1]+ sup Q| Z, — Zso| > 1]
n<ng

n>ng

Given € > 0, the last summand is smaller than /3 for n, sufficiently large, and
the other two summands on the right hand side are smaller than /3 if ¢ is chosen

sufficiently large depending on ng. Hence (Z,,) is uniformly integrable w.r.t. P.

(3). In general, Q,[A] = FEp|Z ; A] is a positive measure on F, with Q, < @,
since forn > 0 and A € F,,

Qa[A] = Ep[h]?’llank7 A] S hmlnpr[Zk, A] = ECP[Zn7 A] = Q[A]
—00

k—o00

by Fatou’s Lemma and the martingale property. It remains to show that
Qu[4] = QAN {Zy < 0}] forany A € F. (9.1.6)

If (9.1.6) holds, then Q = Q, + Q. with Q) defined by (9.1.3)). In particular, Q)
is then singular w.r.t. P, since P[Z,, = oo| = 0 and Q;[Z., = oo] = 0, whereas
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(@, 1s absolutely continuous w.r.t. P by definition.
Since @, < @, it suffices to verify (Q.1.6) for A = ). Then

(Q_Qa)[Am{ZOO <OO}] = (Q_Qa)[ZOO < OO] = 07

and therefore
QAN{Z, < 0} = QuAN{Z < 0}] = Qu[A]

forany A € Fi.
To prove (9.1.6) for A = () we observe that for ¢ € (0, c0),

< limsup Q[Z, < c] = limsup Ep|Z,, ; Z, < (]

n—oo n—oo

Q llim sup Z, < ¢

n—oo

< FEp {limsupZn-I{Zn@} < EplZy] = Qa[9)]

n—oo

by Fatou’s Lemma. As ¢ — oo, we obtain
Q75 < 0] < Qul] = Qu[Zs < 0] < Q[Zs < ]

and hence (9.1.6) with A = Q. This completes the proof
U

As a first consequence of Theorem we prove the Radon-Nikodym Theorem on a
separable o-algebra A. Let P and () be probability measures on ({2, .4) with Q < P.

Proof of the Radon-Nikodym Theorem for separable o-algebras. We fix a filtration
(F,) consisting of finitely generated o-algebras F,, C A with A = o(|JF,). Since
() is absolutely continuous w.r.t. P, the local densities Z,, = d()/dP|z, on the finitely

generated o-algebras F,, exist, cf. the example above. Hence by Theorem[9.3]

Q4] = /ZoO ar forany A € A.
A

O

The approach above can be generalized to probability measures that are not absolutely

continuous:
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Exercise (Lebesgue decomposition, Lebesgue densities). Let P and () be arbitrary
(not necessarily absolutely continuous) probability measures on (2, .4). A Lebesgue
density of () w.r.t. P is a random variable Z : Q) — [0, co] such that ) = @, + @, with

QulA] = /de, QJA] = QIAN{Z = )]  forany A € A
A
The goal of the exercise is to prove that a Lebesgue density exists if the o-algebra A is

separable.

(1). Show that if Z is a Lebesgue density of () w.r.t. P then 1/Z is a Lebesgue density
of P w.rt. Q. Here 1 /00 := 0 and 1/0 := 0.

From now on suppose that the o-algebra is separable with A = o (| F,,) where (F,,) is

a filtration consisting of o-algebras generated by finitely many atoms.
(1). Write down Lebesgue densities Z,, of () w.r.t. P on each F,,. Show that
QZ, =occand Z,,,; < ] = 0 for any n,

and conclude that (Z,,) is a non-negative supermartingale under P, and (1/7,,) is

a non-negative supermartingale under Q).

(2). Prove that the limit Z,, = lim Z,, exists both P-almost surely and (-almost
surely, and P[Z., < oo] = 1 and Q[Z,, > 0] = 1.

(3). Conclude that 7, is a Lebesgue density of P w.r.t. @ on A, and 1/Z is a
Lebesgue density of @) w.r.t. P on A.

Derivatives of monotone functions

Suppose that F' : [0,1] — R is a monotone and right-continuous function. After an
appropriate linear transformation we may assume that ' is non decreasing with F'(0) =
0 and F'(1) = 1. Let u denote the probability measure with distribution function F.
By the example above, the Radon-Nikodym derivative of p w.r.t. Lebesgue measure on
the o-algebra F,, = o(D,,) generated by the n-th dyadic partition of the unit interval
is given by the dyadic difference quotients (9.1.4) of . By Theorem we obtain a

version of Lebesgue’s Theorem on derivatives of monotone functions:
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Corollary 9.4 (Lebesgue’s Theorem). Suppose that F' : [0,1] — R is monotone (and

right continuous). Then the dyadic derivative

dp
F'(t) = lim —
W) = lim o

()

Fn

exists for almost every t and F' is an integrable function on (0, 1). Furthermore, if F is
absolutely continuous then
F(s) = /F'(t) dt forall s € [0,1]. (9.1.7)
0

Remark. Right continuity is only a normalization and can be dropped from the assump-
tions. Moreover, the assertion extends to function of finite variation since these can be
represented as the difference of two monotone functions, cf. ?? below. Similarly, (9.1.7)
also holds for absolutely continuous functions that are not monotone. See e.g. [Elstrodt:

MaB- und Integrationstheorie] for details.

Absolute continuity of infinite product measures

Suppose that {2 = X S;, and

i=1
Q = éui and P = éui
i=1 i=1

are products of probability measures v; and y; defined on measurable spaces (.5;, S;).
We assume that v; and p; are mutually absolutely continuous for every ¢+ € N. Denot-
ing by Xj : © — S the evaluation of the k-th coordinate, the product measures are
mutually absolutely continuous on each of the o-algebras
Fn:O'(Xl,...,Xn), HEN,
with relative densities
dq dP

dP Fn " dQ Fn /
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where
Zy, = | | —V(XZ) € (0,00) P-almost surely.

i=1 dt;

In particular, (Z,,) is a martingale under P, and (1/7,) is a martingale under (). Let
Foo = (X1, X, .. .) denote the product o-algebra.

Theorem 9.5 (Kakutani’s dichotomy). The infinite product measures () and P are
either singular or mutually absolutely continuous with relative density Z... More pre-

cisely, the following statements are equivalent:
(1). Q < PonF.

(2). Q~ Pon F.

oo dVi
(3). Q/—d . > 0.
zl;[1f dju; ,u

4. 3 dylvim) < oo

=1

Here the squared Hellinger distance d%(v;, j1;) of mutually absolutely continuous prob-

ability measures v and . is defined by
2 2
1 dv 1 dp
2 = = V[ — —1 - = \/— —1
At 2/( dp )d,u 2/( dv )du
dv [du
/ \/ dp " / v

Remark. (1). If mutual absolutely continuity holds then the relative densities on F,

are
d dP
£ = nh_)ngo Z, P-almost surely, and @ = nh_}ngo 7 (2-almost surely.

(2). If v and p are absolutely continuous w.r.t. a measure dx then

dyvn) = 5 [ (VI@ = Va@) de = 1= [ V@) do
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Proof. (1) <= (3): Fori € NletY; = %

independent under both P and ) with Ep[Y;] = 1, and

(X;). Then the random variables Y; are

Z, =Y, -Yy--Y,.

By Theorem[0.3] the measure () is absolutely continuous w.r.t. P if and only if the mar-
tingale (Z,,) is uniformly integrable. To obtain a sharp criterion for uniform integrability
we switch from L' to L?, and consider the non-negative martingale

VN VY VY, . . dvi
M= 5"""5 " W“h@‘EP[\/?Z]‘/\/duid“l

under the probability measure P. Note that forn € N,

EM)] = [[EM/B; =1 / (H@-) .

i=1

If (3) holds then (M,,) is bounded in L?(2, A, P). Therefore, by Doob’s L? inequality,
the supremum of M,, is in £L2(2, A, P), i.e.,

El[sup|Z,|] = E[sup M?] < oo.
Thus (Z,,) is uniformly integrable and Q < P on F.

Conversely, if (3) does not hold then
Ly = MJQV . H B — 0 P-almost surely,
i=1

since M,, converges to a finite limit by the martingale convergence theorem. Therefore,
the absolute continuous part (), vanishes by Theorem (3), i.e., Q is singular w.r.t.
P.

(3) <= (4): Forreals §; € (0, 1), the condition [] 5; > Oisequivalentto > (1—/3;) <
i=1 i=1
oo. For f3; as above, we have

dl/i
1-8 = 1_/“d,ui dp; = d%{(yinui)'

(2) = (1) is obvious.
(4) = (2): Condition (4) is symmetric in v; and ;. Hence, if (4) holds then both ) < P
and P < Q). O
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Example (Gaussian products). Let P = @ N(0,1) and Q = & N(a;, 1) where
i=1 i=1

(a;)ien is a sequence of reals. The relative density of the normal distributions v; :=

N(a;, 1) and p:= N(0,1) is

dVZ‘
@(1‘) =

d

dv, 1 f 1

dy = — | ex ——xZ—aix+a22)d:E:ex —a?/8).
[ = o= [ e (5 :/2) (= /5)

Therefore, by condition (3) in Theorem

exp(—(z — a;)?)/2

exp(—72/2) = exp(a;x — a?/2),

Q<P < QrP «— Za§<oo.
i=1
Hence mutual absolute continuity holds for the infinite products if and only if the se-

quence (a;) is contained in ¢2, and otherwise ) and P are singular.

Remark (Relative entropy). (1). In the singular case, the exponential rate of degen-

eration of the relative densities on the o-algebras F,, is related to the relative

dVZ' dl/i dyl-
Hvi | i) = / i lOgd—;p dp; = /IOgd—;p dv;.

For example in the i.i.d. case p; = p and v; = v, we have

1 1 ~, d
gloan = E;log d—:(XZ) — H(v|p) Q-a.s., and

entropies

1 1
——loan = —1og Z7' — H(u|v) P-as.
as n — oo by the Law of Large Numbers.
In general, log Z,, Z H (v;|p1;) is a martingale w.r.t. (), and log Z,, +Z H(v;| 1)

is a martingale w. rt P

(2). The relative entropy is related to the squared Hellinger distance by the inequality

SH | p) > di(v] ),

which follows from the elementary inequality

1
§logafl = —logvx > 1—+x for x > 0.
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9.2 Translations of Wiener measure

We now return to stochastic processes in continuous time. We endow the continuous
path space C([0, 00), R?) with the o-algebra generated by the evolution maps X, (w) =
w(t), and with the filtration

FX = o(X,|s€[0,t]), t>0.
Note that F;X consists of all sets of type
{we C([0,00),RY) : wlpgel'} withD € B(C([0,t],RY)).
In many situations one is interested in the distribution on path space of a process

B = B, + h(t)

B; + h(t)

~+

By

obtained by translating a Brownian motion (B;) by a deterministic function & : [0, c0) —
R?. In particular, it is important to know if the distribution of (B") has a density w.r.t.
the Wiener measure on the o-algebras F;X, and how to compute the densities if they
exist.

Example. (1). Suppose we would like to evaluate the probability that sup |Bs —
s€[0,t]

g(s)| < eforagivent > 0 and a given function g € C(]0, 00), R¢) asymptotically
as € \( 0. One approach is to study the distribution of the translated process
B; — ¢g(t) near 0.
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(2). Similarly, computing the passage probability P[B, > a+bs for some s € [0, ¢]]
to a line s — a + bs for a one-dimensional Brownian motion is equivalent to

computing the passage probability to the point a for the translated process B, — bt.
(3). A solution to a stochastic differential equation
dY; = dB, +b(t,Y;)dt

is a translation of the Brownian motion B; — By by the stochastic process H; =
t

Yo + [ b(s,Y;) ds. Again, in the simplest case (when b(¢, y) only depends on ),
0

H, is a deterministic function.

The Cameron-Martin Theorem

Let (B;) denote a continuous Brownian motion with By = 0, and let h € C([0, 00), R?).
The distribution
pn = Po(B+h)™?

of the translated process B!" = B, + h(t) is the image of Wiener measure /i under the

translation map
m, © C([0,00),RY) — C([0,00),RY), 7,(z) = =+ h.

Recall that Wiener measure is a Gaussian measure on the infinite dimensional space

C([0, 00), R%). The next exercise discusses translations of Gaussian measures in R":

Exercise (Translations of normal distributions). Let C' € R™*" be a symmetric non-
negative definite matrix, and let 1 € R™. the image of the normal distribution N (0, C)

under the translation map = — z + h on R” is the normal distribution N (h, C).

(1). Show that if C' is non-degenerate then N (h, C') ~ N (0, C') with relative density

AN (h, C)

W(SE’) = e(h’m)ié(h’h) for x € Rn7 (921)

where (g, h) = (g,C~1, h) for g, h € R™.
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(2). Prove that in general, N (h, C') is absolutely continuous w.r.t. N(0, C') if and only

if h is orthogonal to the kernel of C' w.r.t. the Euclidean inner product.

On C([0,00), R%), we can usually not expect the existence of a global density of the
translated measures i, w.r.t. j19. The Cameron-Martin Theorem states that for ¢ > 0, a
relative density on ;¥ exists if and only if 4 is contained in the corresponding Cameron-

Martin space:

Theorem 9.6 (Cameron, Martin). For h € C([0,00),R%) and t € R, the translated
measure i, = j1o 7, " is absolutely continuous w.r.t. Wiener measure iy on F;* if and
only if h is an absolutely continuous function on [0, t] with h(0) = 0 and fo B/ (s)2ds <

o0. In this case, the relative density is given by

t t
= exp </ R (s) dX, —%/ |h’(s)|2ds). 9.2.2)
0 0

where fg B (s) dX is the Ité integral w.r.t. the canonical Brownian motion (X, ).

diin
dMO FX

Before giving a rigorous proof let us explain heuristically why the result should be true.
Clearly, absolute continuity does not hold if 4(0) # 0, since then the translated paths do
not start at 0. Now suppose 1(0) = 0, and fix t € (0, 00). Absolute continuity on F;*
means that the distribution yf of (B")y<.<; on C([0,],R?) is absolutely continuous
w.r.t. Wiener measure /. on this space. The measure 1, however, is a kind of infinite

dimensional standard normal distribution w.r.t. the inner product

(z,9)n = / 2(s) -o/(s) ds

on functions z,y : [0,¢] — R vanishing at 0, and the translated measure ! is a Gaus-
sian measure with mean h and the same covariances.

Choosing an orthonormal basis (e;);eny W.I.t. the H-inner product (e.g. Schauder func-

tions), we can identify £ and p}, with the product measures ® N(0,1) and @ N(a;, 1)
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respectively where a; = (h,e;)y is the i-th coefficient of h in the basis expansion.

Therefore, ! should be absolutely continuous w.r.t. p, if and only if

oo

_ 2

= E oy < 00,
i=1

i.e., if and only if / is absolutely continuous with i’ € £2(0, t).

Moreover, in analogy to the finite-dimensional case (9.2.1)), we would expect informally

a relative density of the form

dlu‘h( ) — e(h,x)Hfé(h,h)H = exp (/ h/< ) dS—_/ |h/ |2 dS) 2
dp

Since yif-almost every path z € C([0,00),R?) is not absolutely continuous, this ex-
pression does not make sense. Nevertheless, using finite dimensional approximations,
we can derive the rigorous expression (9.2.2)) for the relative density where the integral

fot R x' ds is replaced by the almost surely well-defined stochastic integral fot h dx -

Proof of Theorem We assume ¢ = 1. The proof for other values of ¢ is similar.

Moreover, as explained above, it is enough to consider the case h(0) = 0.

(1). Local densities: We first compute the relative densities when the paths are only

evaluated at dyadic time points. Fix n € N, let¢; =¢- 27", and let

0T = Xy, — Ty

7

141

denote the i-th dyadic increment. Then the increments §; B" (i = 0,1,...,2"—1)
of the translated Brownian motion are independent random variables with distri-
butions

§;B" = 6;B+8;h ~ N(6;h, (6t)-1;), 6t=2""

Consequently, the marginal distribution of (B!, B!

hoy e .
v, B, ..., B, ) is a normal distri-

bution with density w.r.t. Lebesgue measure proportional to

2n—1
|5ZZL‘ - 5ih|2 n
exp <—ZT , T = (T4, Ty, -, Tppn) € R

Stochastic Analysis Andreas Eberle




9.2. TRANSLATIONS OF WIENER MEASURE 299

2).

Since the normalization constant does not depend on h, the joint distribution

of (B!, B}',...,Bl',) is absolutely continuous w.r.t. that of (By,, By, ..., B,.)
with relative density
5;h 1 |6h)°
— -0 — = t]. 2.
exp( TR 22 5 5) (9.2.3)

Consequently, u; is always absolutely continuous w.r.t. 1o on each of the o-
algebras
fn:O'(XZ'.Q—nIi:O,l,...,Qn—l), TLGN,

with relative densities

2" —1

2n—1
dih 1
Zn:exp< Z_de__
2 > 2

oih
ot

2
5t> . (9.2.4)

Limit of local densities: Suppose that h is absolutely continuous with

1
/ IR (t)]* dt < oo.
0

We now identify the limit of the relative densities Z,, as n — o0.
First, we note that

2n—1

D

o;h
ot

2 1
it — / \R'(t)|? dt as n — 00.
0

In fact, the sum on the right hand side coincides with the squared L? norm

/

2

dt

dhdt] i,

of the dyadic derivative

dh
dt

o;h
50 I((i—1)2-7 5.2-n]

|
N
:
0

o(Dn) i=0
on the o-algebra generated by the intervals ((i — 1) - 27", i - 27™"]. If h is abso-

— W (t) in L*(0, 1) by the L?
a(Dn)

dh
lutely continuous with i/ € L?(0,1) then p

martingale convergence theorem.
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3).

Furthermore, by It6’s isometry,

21y 1
é 20, X — / h'(s)dX, in L?(po) as n — oo. (9.2.5)
=0 0

Indeed, the sum on the right-hand side is the It6 integral of the step function

dh

7 w.r.t. X, and as remarked above, these step functions converge to h’ in
o(Dn)

L?(0,1). Along a subsequence, the convergence in (9.2.5) holds jio-almost surely,

and hence by (9.2.4),

1

1
1
lim Z, = exp /h'(s) dX, — §/|h'(s)|2 ds fo-a.S. (9.2.6)
n—oo
0 0

Absolute continuity on FX: We still assume i/ € L*(0,1). Note that F{X =
o(|J F.). Hence for proving that y, is absolutely continuous w.r.t. 1o on F;X with
density given by (9.2.6), it suffices to show that lim sup Z,, < oo jj,-almost surely
(i.e., the singular part in the Lebesgue decomposition of p, w.r.t. po vanishes).

Since p, = po o Th_l, the process

W, = X, — h(t) is a Brownian motion w.r.t. i,
and by (9.2.3) and (9.2.4),
on_1 on_1 9
o;h 1 o;h
Z, = LW+ = | ot .
eXp(ﬁg 5t +2; 5t )

Note that the minus sign in front of the second sum has turned into a plus by the
translation! Arguing similarly as above, we see that along a subsequence, (Z,,)

converges [i,-almost surely to a finite limit:

1

1

1

lim Z, = exp /h’(s) dWS+§/|h’(s)|2 ds p-a.s.
0 0

Hence p;, < o with density lim Z,,.
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(4). Singularity on F;X: Conversely, let us suppose now that & is not absolutely con-

tinuous or /' is not in L?(0, 1). Then

n_ 1
on_q 5l 2 dh2
Z ot = — dt — o as n — oo.
: o;t dt | p
=0 0 0( )
Since
9n—1 on_1 2\ /2
h h
- 0y - ot
1=0 L2 (o) =0

we can conclude by that
limZ, = 0 [o-almost surely,

i.e., uy, 1s singular w.r.t. pg.

In Section [11.5] we will give an alternative proof of the Cameron-Martin Theorem.

Passage times for Brownian motion with constant drift

We now consider a one-dimensional Brownian motion with constant drift (3, i.e., a pro-

CESS

Y;:Bt+6ta tZOa

where B, is a Brownian motion starting at 0 and S € R. We will apply the Cameron-

Martin Theorem to compute the distributions of the first passage times
TY = min{t >0 : Y; = a}, a> 0.

Note that T is also the first passage time to the line t + a — [t for the Brownian

motion (B;).
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Theorem 9.7. For a > 0 and 3 € R, the restriction of the distribution of T to (0, 0)

is absolutely continuous with density

a (a — Bt)?
fap(t) = o= exp (_T) )

In particular,

P[TY < o0] = /faﬁ(s) ds.
0

Proof. Let h(t) = [Jt. By the Cameron-Martin Theorem, the distribution 1, of (Y;) is

absolutely continuous w.r.t. Wiener measure on F;* with density
Zy = exp(B- X, — %/2).

Therefore, denoting by 7, = inf{t > 0 : X; = a} the passage time of the canonical

process, we obtain

PITY <t] = m[T,<t] = EulZ; T, <t
1
= Euo [ZTa ) Ta S t] = Euo [eXp(ﬁa - 562Ta) ) Ta S t]

= /Ot exp(Ba — 5°5/2) fr,(s) ds

by the optional sampling theorem. The claim follows by inserting the explicit expression
for fr, derived in Corollary O

9.3 Girsanov transform

We will now extend the results in the previous section [9.2] considerably. To this end, we

will consider locally absolutely continuous changes of measure with local densities of

type
t 1 t
Z, = exp (/ G, dX, — —/ \GS|2d5),
0 2 Jo
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where (G;) is an adapted process. Recall that the densities in the Cameron-Martin-
Theorem took this form with the deterministic function Gy = h/(s). We start with a
general discussion about changing measure on filtered probability spaces that will be

useful in other contexts as well.

Change of measure on filtered probability spaces

Let (F;) be a filtration on a measurable space (€2, .4), and fix ¢y € (0, 00). We consider
two probability measures P and ) on (£2,.4) that are mutually absolutely continuous

on the o-algebra F;, with relative density

dP
Ly = a0 . > 0 (Q-almost surely.
Then P and () are also mutually absolutely continuous on each of the o-algebras F;,

t < tg, with Q- and P-almost surely strictly positive relative densities

@ 1

dP
Zt = @ £ = EQ [Zto ‘Ft] and

dPlx —  Z
The process (Z;):<y, is a martingale w.r.t. (), and, correspondingly, (1/7;);<, is a mar-
tingale w.r.t. P. From now on, we always choose a right continuous version of these

martingales.

Lemma 9.8. 1) Forany 0 < s <t < iy, and for any F;-measurable random vari-
able X : Q — [0, o0],

EQIXZ\|F|  Eq|XZ|F|]

Ep[X|F] = EolZJF] Z.

P-a.s. and QQ-a.s. (9.3.1)

2) Suppose that (M;)i<:, is an (F;) adapted right continuous stochastic process.
Then

(i) M is a martingale w.rt. P < M - Z is a martingale w.r.t. (),

(it) M is alocal martingale w.r.t. P < M - Z is a local martingale w.r.t. Q).
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Proof. 1) The right hand side of (9.3.1)) is F,-measurable. Moreover, for any A € F,,
Ep[EQIXZi|Fi|/Zs s A] = EqQlEQ[XZ|F; A

= EQ[XZt; A] = EQ[X; A]

2) (i) is a direct consequence of 1). Moreover, by symmetry, it is enough to prove
the implication "<" in (ii). Hence suppose that M - Z is a local )-martingale with

localizing sequence (7},). We show that M7 is a P-martingale, i.e.,
Ep[Minr, ; Al = Ep[Mgar, ; A] forany A € F, 0<s <t <t. (9.3.2)
To verify (9.3.2)), we first note that
Ep[Minr, ; AN{T, <s}| = Ep[Msr, ; AN{T, < s} (9.3.3)

sincet AT, =T, = s AT, on {T,, < s}. Moreover, one verifies from the definition of
the o-algebra F;,r, that for any A € F;, the event AN {T,, > s} is contained in Fy1,,

and hence in F;,7, . Therefore,
Ep[Minr, ; AN{T, > s} = Eg[Minr, Zint, ; AN{T, > s}] 9.34)
= EQ[MS/\Tn Zs/\Tn ; AN {Tn > S}H = EP[MS/\Tn ; AN {Tn > 8}]
by the martingale property for (M Z)*", the optional sampling theorem, and the fact

that P < @ on F;,r, with relative density Z;a7,. (9.3.2) follows from (9.3.3) and
©.3.9. O

Girsanov’s Theorem

We now return to our original problem of identifying the change of measure induced
by a random translation of the paths of a Brownian motion. Suppose that (X;) is a
Brownian motion in R? with X, = 0 w.r.t. the probability measure ) and the filtration
(F), and fix tg € [0, 00). Let

t
Lt - / Gs'dXs, tZO,
0
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with G € £2,, (R, R?). Then [L], = [; |G,|? ds, and hence

a,loc
t 1 t
Z, = exp(/ GS-dXS——/ |G8|2d5) (9.3.5)
0 2 0

is the exponential of L. In particular, since L is a local martingale w.r.t. (), Z is a non-
negative local martingale, and hence a supermartingale w.r.t. (). It is a ()-martingale for
t < toif and only if Eg[Z;] = 1:

Exercise (Martingale property for exponentials). Let (Z;)cj04,) on (£2,.4,Q) be a

non-negative local martingale satisfying Z, = 1.
a) Show that Z is a supermartingale.
b) Prove that Z is a martingale if and only if Eg[Z;] = 1.

In order to use Z;, for changing the underlying probability measure on F;, we have to
assume the martingale property:

Assumption. (Z;):<;, is a martingale w.r.t. ().

Theorem below implies that the assumption is satisfied if

t
E {exp (%/ |Gs|2ds)} < 00.
0

If the assumption holds then we can consider a probability measure P on A with

dP
— = Z -a.s. 9.3.6
dQ j—-to to Q a.s ( )
Note that P and () are mutually absolutely continuous on F; for any ¢ < ¢, with
dP dQ 1
- - 7 d = - —
a0 |7, e Upls 7

both P- and ()-almost surely. We are now ready to prove one of the most important

results of stochastic analysis:
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Theorem 9.9 (Maruyama 1954, Girsanov 1960). Suppose that X is a d-dimensional
Brownian motion w.r.t. Q and (Z;) i<y, is defined by (9.3.3) with G € L%, (R, R%). If

a,loc

EolZ:,] = 1 then the process
t
Bt o= Xt - / GS dS, t S tO)
0

is a Brownian motion w.r.t. any probability measure P on A satisfying (9.3.6)).

Proof. By the extension of Lévy’s characterization of Brownian motion to the multi-
dimensional case, it suffices to show that (B;)i<y, is an R%-valued P-martingale with
[BY, B], = 6;;t P-almost surely for any i, € {1,...,d}, cf. Theorem below.
Furthermore, by Lemma 0.8 and since P and () are mutually absolutely continuous
on F;,, this holds true provided (B;Z;);<¢, is an R? valued local martingale under Q,
and [B', B’| = §;;t Q-almost surely. The identity for the covariations holds since (B;)
differs from the ()-Brownian motion (X}) only by a continuous finite variation process.

To show that B - Z is a local ()-martingale, we apply 1t6’s formula: For 1 <1 < d,
d(B'Z) = B'dZ+ZdB' +d[B" 7] 9.3.7)
= BZG-dX +7ZdX'—ZGdt+ ZG' dt,
where we have used that
dB',7Z] = ZG-dB',X| = ZG'dt  Q-almost surely.

The right-hand side of (9.3.7) is a stochastic integral w.r.t. the (-Brownian motion X,

and hence a local ()-martingale. L

The theorem shows that if X is a Brownian motion w.r.t. ), and Z defined by (9.3.3) is
a (Q-martingale, then X satisfies

dXt - Gt dt + dBt

with a P-Brownian motion B. This can be used to construct weak solutions of stochastic

differential equations by changing the underlying probability measure, see Section [I[1.3]
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below. For instance, if we choose G; = b(X;) then the ()-Brownian motion (X;) is a
solution to the SDE
dXt == b(Xt) dt + dBt,

where B is a Brownian motion under the modified probability measure P.

Furthermore, Girsanov’s Theorem generalizes the Cameron-Martin Theorem to non-

deterministic adapted translations
t
Xt(CU) — Xt(CU) —Ht(u)), Ht = / GS dS,
0

of a Brownian motion X.

Remark (Assumptions in Girsanov’s Theorem).

1) Absolute continuity and adaptedness of the “translation process” H; = f(f G, ds are
essential for the assertion of Theorem 9,9

2) The assumption Eg[Z;)] = 1 ensuring that (Z;):<¢, is a ()-martingale is not always
satisfied — a sufficient condition is given in Theorem[0.10 below. If (Z;) is not a martin-
gale w.r.t. () it can still be used to define a positive measure P, with density Z; w.r.t. ()
on each o-algebra F;. However, in this case, P;[€)] < 1. The sub-probability measures

P; correspond to a transformed process with finite life-time.

Novikov’s condition

To verify the assumption in Girsanov’s theorem, we now derive a sufficient condition

for ensuring that the exponential
Z, = exp (L —1/2[L])

of a continuous local (F;) martingale (L) is a martingale. Recall that 7 is always a

non-negative local martingale, and hence a supermartingale w.r.t. (F).

Theorem 9.10 (Novikov 1971). Let to € R.. If Elexp ([L]s,/2)] < 0o then (Zy)i<4, is

an (F;) martingale.
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We only prove the theorem under the slightly more restrictive condition
E [exp(p[L];/2)] < oo for some p > 1. (9.3.8)

This simplifies the proof considerably, and the condition is sufficient for many applica-

tions. For a proof in the general case and under even weaker assumptions see e.g. [37].

Proof. Let (T,,)nen be a localizing sequence for the martingale Z. Then (Ziar,, )i>0 IS a
martingale for any n. To carry over the martingale property to the process (Z;):c(o.4,], it
is enough to show that the random variables Z;»1,, n € N, are uniformly integrable for

each fixed t < t,. However, for ¢ > 0 and p, ¢ € (1,00) withp~! + ¢~! = 1, we have

E[Zt/\Tn ; Zt/\Tn > C]

-1
= Elexp (L, — g[L]t/\Tn) exp (pT[L]an) s Zint, > ¢ (9.3.9)
< E[ p_2 1/p p—1 ) 1/q
= €Xp (th/\Tn - 5 [L]t/\Tn)] . E[GXp (q- 5 [L]t/\Tn) i Zint, = c}
< Elexp (2IL)) 5 Zing, =

2

for any n € N. Here we have used Holder’s inequality and the fact that exp (th/\Tn —

2

E-[L]iat, ) is an exponential supermartingale. If exp (5[L];) is integrable then the right

hand side of (9.3.9) converges to 0 uniformly in n as ¢ — oo, because

PlZr, >0 < ¢ 'ElZi,] < ' — 0

uniformly in n as ¢ — oo. Hence {Z;nr, : n € N} is indeed uniformly integrable, and

thus (Z¢):c(0,4] is @ martingale. O

Example (Bounded drifts). If L, = fot Gy - dX, with a Brownian motion (X;) and
an adapted process (G;) that is uniformly bounded on [0, ] for any finite ¢ then the
quadratic variation [L], = [ |G| ds is also bounded for finite ¢. Hence exp(L — 1[L])
is an (F;) martingale for ¢ € [0, c0).

Example (Option pricing in continuous time II: Risk-neutral measure). XXX to be

included
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9.4 1to’s Representation Theorem and Option Pricing

We now prove two basic representation theorems for functionals and martingales that
are adapted w.r.t. the filtration generated by a Brownian motion. Besides their intrin-
sic interest, such representation theorems are relevant e.g. for the theory of financial
markets, and for stochastic filtering. Throughout this section, (B;) denotes a Brownian

motion starting at 0 on a probability space (€2, .4, P), and
Fi = o(B,:s€e(0,t])", t>0,

is the completed filtration generated by (B, ). It is crucial that the filtration does not con-
tain additional information. By the factorization lemma, this implies that F; measurable
random variables F' : 2 — R are almost surely functions of the Brownian path (Bj)s<;.

Indeed, we will show that such functions can be represented as stochastic integrals.

Representation theorems for functions and martingales

The first version of Itd’s Representation Theorem states that random variables that are

measurable w.r.t. the o-algebra F; = ]-"13 " can be represented as stochastic integrals:

Theorem 9.11 (Itd). For any function F' € L*(Q, Fy, P) there exists a unique process
G € L2(0,1) such that

1
F = E[F]+ / G - dB; P-almost surely. (9.4.1)
0

An immediate consequence of Theorem is a corresponding representation for mar-

tingales w.r.t. the Brownian filtration 7, = ftB’P:
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Corollary 9.12 (Ité6 representation for martingales). For any right-continuous L>-
bounded (F;) martingale (M;).c(01) there exists a unique process G € L2(0,1) such
that .

M, = M, —i—/o G- dB; forany t € 10,1], P-a.s.

The corollary is of fundamental importance in financial mathematics where it is related
to completeness of financial markets. It also proves the remarkable fact that every
martingale w.r.t. the Brownian filtration has a continuous modification! Of course,

this result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorem and then we prove the

theorem:

Proof of Corollary@I2 If (M;)icpo,1) is an L? bounded (F;) martingale then M; €
Lz(Q, .Fl, P), and

M, = E[M|F] a.s. forany t € [0,1].
Hence, by Theorem there exists a unique process G € L2(0, 1) such that
1 1
M1 = E[Ml] +/ GdB = M0+/ GdB a.s.,
0 0
and thus
t
M, = E[M|F = M +/ G-dB a.s. forany ¢ € [0, 1].
0

Since both sides in the last equation are almost surely right continuous, the identity

actually holds simultaneously for all ¢ € [0, 1] with probability 1. O

Proof of Theorem Uniqueness. Suppose that (9.4.1) holds for two processes G, G €

L%(0,1). Then
1 1
/G-dB - /G~dB,
0 0
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and hence, by It0’s isometry,
G — G| = || /- -aB] - 0
16~ Gllzzceon JG-cyaz),

Hence G, (w) = G,(w) for almost every (¢, w).

Existence. We prove the existence of a representation as in (9.4.1)) in several steps —
starting with “simple” functions F'.
1. Suppose that F' = exp(ip - (B; — B,)) forsome p € RYand 0 < s <t < 1. By Itd’s

formula,
, 1, . 1 5 ! , 1 5.
exp(ip- Bi+5lpl’t) = explip- Bo+5lp[*s)+ | exp (ip- B, + 5lpl’r)ip-dB,.

Rearranging terms, we obtain an Itd representation for /' with a bounded adapted inte-

grand G.

2. Now suppose that F' = [] F}, where F}, = exp (ipk (B, — Btk—l)) for some n € N,
k=1
Prs.-,pn € R4, and 0 < ty < t; < --- < t, < 1. Denoting by G}, the bounded

adapted process in the It representation for £}, we have
tet1
F = T] (E[Fk] +/ Gk . dB).
k=1 th

We show that the right hand side can be written as the sum of [[,_, E[F}] and a stochas-
tic integral w.r.t. B. For this purpose, it suffices to verify that the product of two stochas-
tic integrals X; = fot G-dBandY; = f(f H - d B with bounded adapted processes G and
H is the stochastic integral of a process in L?(0,1) provided fol Gy - Hy dt = 0. This

holds true, since by the product rule,

1 1 1
le - / Xth . dBt + / }/;Gt ‘ dBt —|— / Gt : Ht dt,
0 0 0

and X H 4 Y G is square-integrable by It0’s isometry.

3. Clearly, an It6 representation also holds for any linear combination of functions as in
Step 2.

4. To prove an Itd representation for arbitrary functions in £2(2, Fy, P), we first note
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that the linear combinations of the functions in Step 2 form a dense subspace of the
Hilbert space L*(€2, i, P). Indeed, if ¢ is an element in L?(, F;, P) that is orthogonal

to this subspace then

Blo [ explipe- (B, = By_))| = 0
k=1
foranyn € N, py,...,p, € Riand 0 <ty <t; <---<t, <1 By Fourier inversion,
this implies
E[¢|U(Btk_8tk71:1§k§n>] =

o

a.s.

foranyn € Nand 0 < ¢y < --- < ¢, < 1, and hence ¢ = 0 a.s. by the Martingale
Convergence Theorem.

Now fix an arbitrary function F' € L*(Q2, F1, P). Then by Step 3, there exists a sequence
(F,) of functions in L*(£2, F1, P) converging to F in L? that have a representation of

the form ,
F,— E[F)] = /(w%ﬂ3 (9.4.2)
0

with processes G(™ € L2(0,1). Asn — oo,
F,— E[F)] — F—E[F] in L¥P)

Hence, by and 1t0’s isometry, (G™) is a Cauchy sequence in L*(P ® A(g1)).

Denoting by G the limit process, we obtain the representation
1
F-EF] - / G-dB
0
by taking the L? limit on both sides of ([9.4.2). O

Application to option pricing

XXX to be included

Application to stochastic filtering

XXX to be included
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Chapter 10

Lévy processes and Poisson point

Processes

A widely used class of possible discontinuous driving processes in stochastic differen-
tial equations are Lévy processes. They include Brownian motion, Poisson and com-
pound Poisson processes as special cases. In this chapter, we outline basics from the
theory of Lévy processes, focusing on prototypical examples of Lévy processes and
their construction. For more details we refer to the monographs of Applebaum [5] and
Bertoin [8]].

Apart from simple transformations of Brownian motion, Lévy processes do not have
continuous paths. Instead, we will assume that the paths are cadlag (continue a droite,
limites a gauche), i.c., right continuous with left limits. This can always be assured
by choosing an appropriate modification. We now summarize a few notations and facts
about cadlag functions that are frequently used below. If x : I — R is a cadlag function

defined on a real interval 7, and s is a point in I except the left boundary point, then we

denote by
T = limx,_,
el0
the left limit of x at s, and by
Ar, = ZT4— T
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the size of the jump at s. Note that the function s — x,_ is left continuous with right
limits. Moreover, x is continuous if and only if Az, = 0 for all s. Let D(I) denote the

linear space of all cadlag functions z : [ — R.

Exercise (Cadlag functions). Prove the following statements:

1) If I is a compact interval, then for any function = € D(I), the set
{sel:|Azs| > ¢}

is finite for any £ > 0. Conclude that any function = € D([0,c0)) has at most
countably many jumps.
2) A cadlag function defined on a compact interval is bounded.

3) A uniform limit of a sequence of cadlag functions is again cadlag .

10.1 Lévy processes

Lévy processes are R?-valued stochastic processes with stationary and independent in-

crements. More generally, let (F;);>o be a filtration on a probability space (£2, A, P).

Definition. An (F;) Lévy process is an (F;) adapted cadlag stochastic process
X; : Q — RY such that w.rit. P,

(a) Xsit — X is independent of F for any s, t > 0, and

(b) Xsit — Xs ~ Xi—Xp forany s, t > 0.

Any Lévy process (X;) is also a Lévy process w.r.t. the filtration (F;*) generated by the
process. Often continuity in probability is assumed instead of cadlag sample paths. It

can then be proven that a cadlag modification exists, cf. [36, Ch.I Thm.30].

Remark (Lévy processes in discrete time are Random Walks). A discrete-time
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process (X, )n—01,2,.. With stationary and independent increments is a Random Walk:

Xn = Xo+ >0, m; with i.i.d. increments 7; = X; — X1

Remark (Lévy processes and infinite divisibility). The increments X,,, — X, of a
Lévy process are infinitely divisible random variables, i.e., for any n € N there ex-
ist i.i.d. random variables Y7, ..., Y, such that X, ; — X, has the same distribution as
i Y;. Indeed, we can simply choose Y; = X i1/n — Xoyi¢—1)/n- The Lévy-Khinchin
gimula gives a characterization of all distributions of infinitely divisible random vari-
ables, cf.e.g. [S]. The simplest examples of infinitely divisible distributions are normal

and Poisson distributions.

Characteristic exponents

We now restrict ourselves w.l.o.g. to Lévy processes with Xy = 0. The distribution of
the sample paths is then uniquely determined by the distributions of the increments X; —
Xo = X, fort > 0. Moreover, by stationarity and independence of the increments we
obtain the following representation for the characteristic functions ¢;(p) = Elexp(ip -
Xy)l:

Theorem 10.1 (Characteristic exponent). If (X;);> is a Lévy process with Xq = 0
then there exists a continuous function 1 : RY — C with 1(0) = 0 such that

Ele?X] = e "®  foranyt>0andp € R (10.1.1)
Moreover, if (X;) has finite first or second moments, then ) is C1, C? respectively, and
0?1

E[X) = aVy0) Cov[XF, Xl] = t @pk@pl(o) (10.1.2)

forany k,l=1,... dandt > 0.
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Proof. Stationarity and independence of the increments implies the identity

Prrs(p) = Elexp(ip - Xoys)] = Elexp(ip - X,)] - Elexp(ip - (Xips — Xs))]
= ¢:(p) - ds(p) (10.1.3)

for any p € R? and s,t > 0. For a given p € R, right continuity of the paths and

dominated convergence imply that ¢ — ¢,(p) is right-continuous. Since

(btfe(p) = E[exp(ip : (Xt - XE))]7

the function ¢ — ¢;(p) is also left continuous, and hence continuous. By (10.1.3) and
since ¢o(p) = 1, we can now conclude that for each p € R?, there exists 1(p) € C
such that (I0.1.1)) holds. Arguing by contradiction we then see that ¢)(0) = 0 and ® is
continuous, since otherwise ¢; would not be continuous for all ¢.

Moreover, if X; is (square) integrable then ¢, is C! (resp. C?), and hence ) is also C*
(resp. C?). The formulae in (I0.1.2)) for the first and second moment now follow by
computing the derivatives w.r.t. p at p = 0 in (IQ.11)). O

The function v is called the characteristic exponent of the Lévy process.

Basic examples

We now consider first examples of continuous and discontinuous Lévy processes.

Example (Brownian motion and Gaussian Lévy processes). A d-dimensional Brow-

nian motion (B;) is by definition a continuous Lévy process with
By — B ~ N(0, (t — s)14) forany 0 < s < t.

Moreover, X; = oB; + bt is a Lévy process with normally distributed marginals for
any 0 € R%? and b € R? Note that these Lévy processes are precisely the driving
processes in SDE considered so far. The characteristic exponent of a Gaussian Lévy

process is given by

1
§p-ap—ib~p with @ = oo?.

1 .
v(p) = §|0'Tp\2—lb~p
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First examples of discontinuous Lévy processes are Poisson and, more generally, com-

pound Poisson processes.

Example (Poisson processes). The most elementary example of a pure jump Lévy
process in continuous time is the Poisson process. It takes values in {0, 1,2,...} and
jumps up one unit each time after an exponentially distributed waiting time. Explicitly,

a Poisson process (/N;):>o with intensity A > 0 is given by
N, = > Iis,en = #{neN: S5, <t} (10.1.4)
n=1

where S,, = T1 + Ty + - - - + T,, with independent random variables T; ~ Exp()). The

increments /V; — N of a Poisson process over disjoint time intervals are independent and
Poisson distributed with parameter \(¢ — s), cf. [13, Satz 10.12]. Note that by (10.1.4),

the sample paths ¢t — N;(w) are cadlag. In general, any Lévy process with
X;—X; ~  Poisson (A(t — s)) forany 0 < s <t

is called a Poisson process with intensity A, and can be represented as above. The

characteristic exponent of a Poisson process with intensity A is

vip) = Al-e?).

The paths of a Poisson process are increasing and hence of finite variation. The com-

pensated Poisson process
M, = N —E[N|] = N, —M
is an (F7) martingale, yielding the semimartingale decomposition
N, = M +X

with the continuous finite variation part Af. On the other hand, there is the alternative
trivial semimartingale decomposition Ny = 0 4 /V; with vanishing martingale part. This
demonstrates that without an additional regularity condition, the semimartingale decom-
position of discontinuous processes is not unique. A compensated Poisson process is a

Lévy process which has both a continuous and a pure jump part.
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Exercise (Martingales of Poisson processes). Prove that the compensated Poisson pro-
cess M; = N; — Mt and the process M? — \t are (F}) martingales.

Any linear combination of independent Lévy processes is again a Lévy process:

Example (Superpositions of Lévy processes). If (X;) and (X/) are independent Lévy
processes with values in R? and R? then o X; + 8X/ is a Lévy process with values in
R™ for any constant matrices o € R"*% and 3 € R The characteristic exponent of

the superposition is

Yaxipx' () = x(a’p)+ ¢y (87p).

For example, linear combinations of independent Brownian motions and Poisson pro-

cesses are again Lévy processes.

Compound Poisson processes

Next we consider general Lévy processes with paths that are constant apart from a finite
number of jumps in finite time. We will see that such processes can be represented
as compound Poisson processes. A compound Poisson process is a continuous time
Random Walk defined by

with a Poisson process (/V;) of intensity A > 0 and with independent identically dis-
tributed random variables n; : Q — R? (j € N) that are independent of the Poisson
process as well. The process (X;) is again a pure jump process with jump times that do

not accumulate. It has jumps of size y with intensity

v(dy) = Am(dy),
where 7 denotes the joint distribution of the random variables 7);.

Lemma 10.2. A compound Poisson process is a Lévy process with characteristic expo-

nent

U(p) = / (1—e™¥) v(dy). (10.1.5)
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Proof. Let0) =1ty <t <---<t,. Then the increments

N,

Xy =Xy, = Y. m ., k=12...n, (10.1.6)

J=Ni,_,+1

are conditionally independent given the o-algebra generated by the Poisson process

(N;)¢>o. Therefore, for py,...,p, € RY,

=

Elexp (i Y pr- (X, = Xy ,) | (N)] =
k=1

E[exp(ipk ’ (th - th—l) | (Nt)]

T
I

d(pr) NN

I
=

T
I

where ¢ denotes the characteristic function of the jump sizes ;. By taking the expecta-
tion on both sides, we see that the increments in (I0.1.6)) are independent and stationary,

since the same holds for the Poisson process (1V;). Moreover, by a similar computation,
Elexp(ip - X,)] = E[Elexp(ip - X;) | (N)]] = Elo(p)™"]

Cene (A _
— oM Z T p(p)k = MEP)-D)
k=0

for any p € R?, which proves (I0.1.3). O

The paths of a compound Poisson process are of finite variation and cadlag. One can
show that every pure jump Lévy process with finitely many jumps in finite time is a
compound Poisson process , cf. Theorem [10.13 below.

Exercise (Martingales of compound Poisson processes). Show that the following pro-

cesses are martingales:
(@ M; =X, —0bt whereb= [yuv(dy) providedn € L,
(b) |[My)*> —at  wherea = [|y|* v(dy) providedn, € L2

We have shown that a compound Poisson process with jump intensity measure v(dy) is

a Lévy process with characteristic exponent

Yy (p) = / (1—e?Y)u(dy) , peR” (10.1.7)
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Since the distribution of a Lévy process on the space D([0, c0), R?) of cadlag paths is

uniquely determined by its characteristic exponent, we can prove conversely:

Lemma 10.3. Suppose that v is a finite positive measure on B(R® \ {0} ) with total
mass A = v(R?\ {0}), and (X;) is a Lévy process with Xy = 0 and characteristic
exponent 1, defined on a complete probability space (), A, P). Then there exists a
sequence (1;)jen of i.i.d. random variables with distribution \™'v and an independent

Poisson Process (N;) with intensity X on (), A, P) such that almost surely,

Ny
Xoo= > . (10.1.8)
j=1

Proof. Let (7;) be an arbitrary sequence of i.i.d.random variables with distribution
A~'y, and let (N,) be an independent Poisson process of intensity v(R% \ {0}), all
defined on a probability space ((~2, JZ(, 15) Then the compound Poisson process 5(: =
Z?El 7; is also a Lévy process with )f(vo = 0 and characteristic exponent 1),,. Therefore,
the finite dimensional marginals of (X};) and (X;), and hence the distributions of (.X;)
and (X,) on D([0, 00), R%) coincide. In particular, almost every path ¢ — X, (w) has
only finitely many jumps in a finite time interval, and is constant inbetween. Now set

So = 0 and let
Sj = inf{s > Sj—l : AXS 7& 0} fOI'j eN

denote the successive jump-times of (X;). Then (S;) is a sequence of non-negative
random variables on (€2, A, P) that is almost surely finite and strictly increasing with

lim S; = oo. Defining 7); := AXg; if S; < oo, n; = 0 otherwise, and
Ny = |{s€(0,t] : AX,#0}| = [{jeN:S; <t}

as the successive jump sizes and the number of jumps up to time ¢, we conclude that
almost surely, (/V;) is finite, and the representation (I0.1.8) holds. Moreover, for any
j € Nandt > 0, n; and N, are measurable functions of the process (X;):>o. Hence the
joint distribution of all these random variables coincides with the joint distribution of the
random variables 7; (j € N) and N, (t > 0), which are the corresponding measurable

functions of the process (X;). We can therefore conclude that (nj)jen is a sequence
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of i.i.d.random variables with distributions A™'v and (1V;) is an independent Poisson

process with intensity . U

The lemma motivates the following formal definition of a compound Poisson process:

Definition. Let v be a finite positive measure on R?, and let v, : R? — C be the

function defined by (L0.1.7).

1) The unique probability measure m, on B(RY) with characteristic function

/ ePVm(dy) = exp(=4u(p)) VpeR?
is called the compound Poisson distribution with intensity measure v.

2) A Lévy process (X;) on R? with X, — X, ~ m,, for any s,t > 0 is called a

compound Poisson process with jump intensity measure (Lévy measure) v.

The compound Poisson distribution 7, is the distribution of ZJK:l n; where K is a Pois-
son random variable with parameter A = v(R?) and (n;) is a sequence of i.i.d. random
variables with distribution A\~!'v. By conditioning on the value of K , we obtain the

explicit series representation
oo
)\k
o - *k
Ty = E e HV s
k=0

where v** denotes the k-fold convolution of v.

Examples with infinite jump intensity

The Lévy processes considered so far have only a finite number of jumps in a finite time
interval. However, by considering limits of Lévy processes with finite jump intensity,
one also obtains Lévy processes that have infinitely many jumps in a finite time interval.

We first consider two important classes of examples of such processes:
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Example (Inverse Gaussian subordinators). Let (B;);>o be a one-dimensional Brow-

nian motion with By = 0 w.r.t. a right continuous filtration (F;), and let
T, = inf{t>0: B =s}

denote the first passage time to a level s € R. Then (7})s>¢ is an increasing stochastic
process that is adapted w.r.t. the filtration (F7, )s>0. For any w, s — Ti(w) is the gener-
alized left-continuous inverse of the Brownian path ¢t — B, (w). Moreover, by the strong

Markov property, the process
B® = Bp.-Bn ,t>0,
is a Brownian motion independent of Fr, for any s > 0, and
Toruw = T,+TY  fors,u>0, (10.1.9)

where T.*) = inf {t >0 : Et(s) = u} is the first passage time to u for the process B®.

B, B

s+u 4 M o

By (10.1.9), the increment T, — Ty is independent of F7., and, by the reflection prin-
ciple,

2

u u
Ts+u - Ts ~ Tu ~ \/—Q_ﬂ- [[_3/2 exp <—£) 1(0700) (l’) dx.

Hence (75) is an increasing process with stationary and independent increments. The

process (7%) is left-continuous, but it is not difficult to verify that

T,y = lig]lTst8 = inf{tZO : Elfs) >u}

Stochastic Analysis Andreas Eberle



10.1. LEVY PROCESSES 323

is a cadlag modification, and hence a Lévy process. (7. ) is called “The Lévy sub-
ordinator”, where “subordinator” stands for an increasing Lévy process. We will see
below that subordinators are used for random time transformations (‘“‘subordination’) of
other Lévy processes.

More generally, if X; = oB; + bt is a Gaussian Lévy process with coefficients o > 0,

b € R, then the right inverse

T* = inf{t>0: X;,=s} , s>0,

S

is called an Inverse Gaussian subordinator.

Exercise (Sample paths of Inverse Gaussian processes). Prove that the process (7s)s>0
is increasing and purely discontinuous, i.e., with probability one, (7%) is not continuous

on any non-empty open interval (a,b) C [0, 00).

Example (Stable processes). Stable processes are Lévy processes that appear as scaling
limits of Random Walks. Suppose that S, = Z?Zl n; is a Random Walk in R? with i.i.d.
increments 7;. If the random variables 7); are square-integrable with mean zero then
Donsker’s invariance principle (the “functional central limit theorem”) states that the
diffusively rescaled process (k~'/2S|))¢>0 converges in distribution to (0 B;)¢>o where
(By) is a Brownian motion in R¢ and ¢ is a non-negative definite symmetric d X d matrix.
However, the functional central limit theorem does not apply if the increments 7); are not
square integrable (“heavy tails”). In this case, one considers limits of rescaled Random
Walks of the form X" = k~=1/*S |4y where a € (0,2] is a fixed constant. It is not
difficult to verify that if (Xt(k)) converges in distribution to a limit process (X;) then

(X}) is a Lévy process that is invariant under the rescaling, i.e.,

EVex, ~ X, for any k € (0,00) and ¢ > 0. (10.1.10)

Definition. Ler o € (0,2]. A Lévy process (X;) satisfying (I0.1.10) is called (strictly)

o-stable.
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The reason for the restriction to o € (0, 2] is that for & > 2, an a-stable process does
not exist. This will become clear by the proof of Theorem [10.4] below. There is a
broader class of Lévy processes that is called «-stable in the literature, cf. e.g. [28]].
Throughout these notes, by an «-stable process we always mean a strictly a-stable

process as defined above.

For b € R, the deterministic process X; = bt is a 1-stable Lévy process. Moreover,
a Lévy process X in R! is 2-stable if and only if X, = o B, for a Brownian motion
(B;) and a constant o € [0, 00). Characteristic exponents can be applied to classify all

a-stable processes:

Theorem 10.4 (Characterization of stable processes). For o € (0,2] and a Lévy

process (X;) in R with X, = 0 the following statements are equivalent:
(i) (Xy) is strictly a-stable.
(ii) (cp) = c*Y(p) forany c > 0and p € R.

(iii) There exists constants o > (0 and 1 € R such that

Y(p) = o%p|*(1+iusgn(p)).

Proof. (i) < (ii). The process (X;) is strictly a-stable if and only if X .o; ~ cX; for
any c,t > 0, i.e., if and only if

e~ tWlep) E[eith} — E[eichat} ()

forany c¢,t > O and p € R.

(71) < (di7). Clearly, Condition (i7) holds if and only if there exist complex numbers

24 and z_ such that

2 lple forp >0,
bp) =
z_|p|* forp <O0.
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Moreover, since ¢;(p) = exp(—ti(p)) is a characteristic function of a probability
measure for any ¢ > 0, the characteristic exponent v satisfies ¢)(—p) = (p) and
R(¢(p)) > 0. Therefore, z_ =7z, and R(zy) > 0. O

Example (Symmetric o-stable processes). A Lévy process in R? with characteristic

exponent
) = opl

for some o > 0 and a € (0, 2] is called a symmetric a-stable process. We will see be-

low that a symmetric a-stable process is a Markov process with generator —o®(—A)*/2,

In particular, Brownian motion is a symmetric 2-stable process.

10.2 Martingales and Markov property

For Lévy processes, one can identify similar fundamental martingales as for Brownian

motion. Furthermore, every Lévy process is a strong Markov process.

Martingales of Lévy processes

The notion of a martingale immediately extends to complex or vector valued processes

by a componentwise interpretation. As a consequence of Theorem [L0.1] we obtain:

Corollary 10.5. If (X}) is a Lévy process with Xy = 0 and characteristic exponent 1),

then the following processes are martingales:
(i) exp(ip- X; + t(p))  foranyp € R,
(ii) My = X; — bt withb=1iV(0), provided X; € L'Vt > 0.

(iii) M MF — a/*t  with a’* = %(0) (j,k = 1,...,d), provided X, € L?
Vt>0.
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Proof. We only prove (ii) and (iii) for d = 1 and leave the remaining assertions as an

exercise to the reader. If d = 1 and (X}) is integrable then for 0 < s < ¢,
E[Xt - Xs | ‘Fs] = E[Xt - Xs] = Z(t - 5)1/’,(0)

by independence and stationarity of the increments and by (I0.1.2). Hence M; = X; —

ity’(0) is a martingale. Furthermore,
M} — M? = (M + M) (M — M) = 2M (M, — M) + (M, — M,)*.
If (X;) is square integrable then the same holds for (}/;), and we obtain
E[M{ = M} | F] = E[(M, — M,)* | Fi] = Var[M, — M, | F,]
= Var[X; — X, | Fs] = Var[X; — X,| = Var[X;_,] = (t — s)¥"(0)
Hence M? — t1"(0) is a martingale. O

Note that Corollary (1) shows that an integrable Lévy process is a semimartingale
with martingale part M, and continuous finite variation part bt. The identity (10.1.1)
can be used to classify all Lévy processes, c.f. e.g. [S]. In particular, we will prove
below that by Corollary any continuous Lévy process with X, = 0 is of the type
X; = oB; + bt with a d-dimensional Brownian motion (B;) and constants ¢ € R4*4
and b € R%,

Lévy processes as Markov processes

The independence and stationarity of the increments of a Lévy process immediately

implies the Markov property:

Theorem 10.6 (Markov property). A Lévy process (X, P) is a time-homogeneous

Markov process with translation invariant transition functions
pi(2,B) = w(B—1) = pla+mz,a+B) VacR% (10.2.1)

where j1; = P o (X; — Xo) 7L
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Proof. Forany s,t > 0 and B € B(R?),

P[Xop € B FJ(w) = PIXs + (Xops — Xo) € B| Fi](w)
:P[ s+t T X € B - X( )]
= P[X; — X € B — X,(w)]
= (B = Xy(w)).

O

Remark (Feller property). The transition semigroup of a Lévy process has the Feller
property, i.e., if f : R — R is a continuous function vanishing at infinity then the

same holds for p, f for any ¢ > 0. Indeed,

(0ef) (@) = / £z + ) uldy)

is continuous by dominated convergence, and, similarly, (p;f)(z) — 0 as |z| — oo.

Exercise (Strong Markov property for Lévy processes). Let (X;) be an (F;) Lévy
process, and let 7" be a finite stopping time. Show that Y; = X, — X is a process

that is independent of F, and X and Y have the same law.

Hint: Consider the sequence of stopping times defined by 7,, = (k+1)27" if
k27" < T < (k+1)27". Notice that 7, | T as n — oo. In a first step show
that forany m € Nand ¢, < t, < ... < t,,, any bounded continuous function f on
R™, and any A € Fr we have

E [f(XTn+t1 — Xty oo Xyt — XTn)[A] =LK [f(tha cee 7Xtm)] P[A]-

Exercise (A characterization of Poisson processes). Let (X;);>o be a Lévy process
with Xy = 0 a.s. Suppose that the paths of X are piecewise constant, increasing, all
jumps of X are of size 1, and X is not identically 0. Prove that X is a Poisson process.
Hint: Apply the Strong Markov property to the jump times (7}),_; 5 of X to
conclude that the random variables U; := T, — T;_; are i.i.d. (with 7 := 0). Then,
it remains to show that U, is an exponential random variable with some parameter
A > 0.
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The marginals of a Lévy process ((X;);>0, P) are completely determined by the char-
acteristic exponent 7). In particular, one can obtain the transition semigroup and its in-
finitesimal generator from v by Fourier inversion. Let S(R?) denote the Schwartz space
consisting of all functions f € C°°(R?) such that |20 f(x) goes to 0 as |x| — oo for
any k € N and derivatives of f of arbitary order v € Z<. Recall that the Fourier

transform maps S(IR?) one-to-one onto S(IRY).

Corollary 10.7 (Transition semigroup and generator of a Lévy process).

(1). Forany f € S(R?) andt > 0,
pif = (e_twf)v

where f(p) = (2m) =2 [ P f(z)de and g(x) = (2m)" [ Pg(p) dp
denote the Fourier transform and the inverse Fourier transform of funcnons

f,g € LY(RY).

(2). The Schwartz space S(R?) is contained in the domain of the generator L of the
Feller semigroup induced by (p;);>o on the Banach space C(R?) of continuous
Sfunctions vanishing at infinity, and the generator is the pseudo-differential opera-
tor given by

Lf = (—vf). (10.2.2)

Proof. (1), Since (pof)(x) = ELf(X, + )]
i)~ @ [
(27‘(‘)_% E{/ e P f( Xy +x)da

— B[]
=YW f(p)

for any p € RY. The claim follows by the Fourier inversion theorem, noting that
’e_w} < 1.

we conclude by Fubini that

&.
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(2). For f € S(R%), fis in S(R?) as well. The Lévy-Khinchin formula that we will
state below gives an explicit representation of all possible Lévy exponents which
shows in particular that ¢)(p) is growing at most polynomially as |p| — oco. Since

e Wi~ f .
N Bl

e W —1
: vf —

t

+¢j-|fu and

t s
—te 1 1 1
%_Fw:_;/w(esw_l) d8:¥//w2€rwdrds7
0 O

we obtain

— L ppfl <t ¥ |f] € LYRY),

and, therefore,

(pef)(x) = (=)

p — (=0 f)(@)
= ot [orr (e 0Fw) - J0) + o) a0

as ¢t | 0 uniformly in 2. This shows f € Dom(L) and Lf = (=1 f).
U

By the theory of Markov processes, the corollary shows in particular that a Lévy process
(X;, P) solves the martingale problem for the operator (L, S(R%)) defined by (I4.1.10).

Examples. 1) For a Gaussian Lévy processes as considered above, 1(p) = 1p-ap—ib-p

where a := oo”. Hence the generator is given by
Lf = ~(0f) = 3V (V) ~b- V], for [ € S(E").
2) For a Poisson process (N,), ¥(p) = A(1 — €?) implies
(L)) = A(fl@+1) - f(z)).
3) For the compensated Poisson process M; = N, — M,
(L)) = A(fla+1) = f(z) - f(x)).
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4) For a symmetric a-stable process with characteristic exponent ¢ (p) = o - |p|® for

some o > 0 and « € (0, 2], the generator is a fractional power of the Laplacian:

Lf = —(0f) = =0 (=A)** f.

We remark that for a > 2, the operator L does not satisfy the positive maximum prin-
ciple. Therefore, in this case L does not generate a transition semigroup of a Markov

process.

10.3 Poisson random measures and Poisson point pro-

cesses

A compensated Poisson process has only finitely many jumps in a finite time interval.
General Lévy jump processes may have a countably infinite number of (small) jumps in
finite time. In the next section, we will construct such processes from their jumps. As
a preparation we will now study Poisson random measures and Poisson point processes
that encode the jumps of Lévy processes. The jump part of a Lévy process can be
recovered from these counting measure valued processes by integration, i.e., summation
of the jump sizes. We start with the observation that the jump times of a Poisson process

form a Poisson random measure on R, .

The jump times of a Poisson process

For a different point of view on Poisson processes let
ME(S) = {Z dy, @ (y;) finite or countable sequence in S }

denote the set of all counting measures on a set S. A Poisson process (/NV;);>o can be
viewed as the distribution function of a random counting measure, i.e., of a random
variable N : Q — M ([0, 00)).
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Definition. Let v be a o-finite measure on a measurable space (S, S). A collection of
random variables N(B), B € S, on a probability space (2, A, P) is called a Poisson

random measure (or spatial Poisson process) of intensity v if and only if
(i) B +— N(B)(w) is a counting measure for any w € ,

(ii) if By, ..., B, € S are disjoint then the random variables N (B, ), ..., N(B,,) are

independent,

(iii) N(B) is Poisson distributed with parameter v(B) for any B € S withv(B) < oc.

A Poisson random measure N with finite intensity v can be constructed as the empirical
measure of a Poisson distributed number of independent samples from the normalized

measure v/v(S):.

K
N = Z dx, with X; ~v/v(s)iid, K ~ Poisson(v(S)) independent.
j=1
If the intensity measure v does not have atoms then almost surely, N ({z}) € {0, 1} for
anyx € S,and N = )

random measure is often called a Poisson point process, but we will use this terminology

veA 0, for a random subset A of S. For this reason, a Poisson

differently below.

A real-valued process (V;):>o is a Poisson process of intensity A > 0 if and only if
t — Ny(w) is the distribution function of a Poisson random measure N (dt)(w) on
B([0, 00)) with intensity measure v(dt) = Adt. The Poisson random measure N (dt)
can be interpreted as the derivative of the Poisson process:
N(dt)y= > d,(dt).
st ANs#0
In a stochastic differential equation of type dY; = o(Y;_)dN;, N(dt) is the driving

Poisson noise.

The following assertion about Poisson processes is intuitively clear from the interpre-

tation of a Poisson process as the distribution function of a Poisson random measure.
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Compound Poisson processes enable us to give a simple proof of the second part of the

theorem:

Theorem 10.8 (Superpositions and subdivisions of Poisson processes). Let K be a

countable set.

1) Suppose that (Nt(k))tzo, k € K, are independent Poisson processes with intensi-
ties \,.. Then
Nt = Z Nt(k) ) t Z 07

keK

is a Poisson process with intensity A\ = > | A\, provided A < oc.

2) Conversely, if (N;)i>o is a Poisson process with intensity A > 0, and (C,)nen is
a sequence of i.i.d. random variables C,, : ) — K that is also independent of

(Ny), then the processes

are independent Poisson processes of intensities qy\, where g, = P[C = k.

The subdivision in the second assertion can be thought of as colouring the points in
the support of the corresponding Poisson random measure N (dt) independently with

random colours C}, and decomposing the measure into parts N *)(dt) of equal colour.

Proof. The first part is rather straightforward, and left as an exercise. For the second
part, we may assume w.l.o.g. that K is finite. Then the process N, : Q — RX defined
by

Nt

— k .

N, = (Nt( )>k€K = Zﬁj with  7; = ([{k}<CJ>)keK
j=1

is a compound Poisson process on R¥, and hence a Lévy process. Moreover, by the

proof of Lemmal[I0.2] the characteristic function of N, for ¢ > 0 is given by

E [eXp (ip : Nt):| =exp (M(g(p) — 1)), peRE,
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where

¢(p) = Elexp(ip -m)] = E

= Z%eip’“-

keK

exp <z Z pkl{k}(01)>

keK

Noting that ) ¢, = 1, we obtain

Elexp(ip- N,)] = [T exp(Mtqr(e?* — 1)) forany p € R and t > 0.
keK

The assertion follows, because the right hand side is the characteristic function of a Lévy
process in RX whose components are independent Poisson processes with intensities

The jumps of a Lévy process

We now turn to general Lévy processes. Note first that a Lévy process (X;) has only
countably many jumps, because the paths are cadlag. The jumps can be encoded in the

counting measure-valued stochastic process N; : Q — M (R?\ {0}),

Ni(dy) = ) dax.(dy), >0,

s<t
AX#0

or, equivalently, in the random counting measure N : Q@ — M (Ry x (R?\ {0}))
defined by

N(dtdy) = Z d(s.ax,)(dt dy).

s<t
AX#0
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S o

1

+—o

—o
AX,
1 . °
° ® 3
°
i Y [}

The process (N;):>o is increasing and adds a Dirac mass at y each time the Lévy pro-
cess has a jump of size y. Since (X;) is a Lévy process, (/V;) also has stationary and

independent increments:
Nyit(B) — N(B) ~ Ny(B)  foranys,t>0 and B € B(R?\ {0}).

Hence for any set B with N;(B) < oo a.s. for all ¢, the integer valued stochastic process
(N(B))s>0 is a Lévy process with jumps of size +1. By an exercise in Section[T0.1 we
can conclude that (/V;(B)) is a Poisson process. In particular, ¢ — E[N;(B)] is a linear

function.
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Definition. The jump intensity measure of a Lévy process (X,) is the o-finite measure
v on the Borel g-algebra B(R? \ {0}) determined by

E[N,(B)] = t-v(B) Vt>0, Bec B[R {0}). (10.3.1)

It is elementary to verify that for any Lévy process, there is a unique measure v satisfy-
ing (I0.3.1). Moreover, since the paths of a Lévy process are cadlag, the measures N,
and v are finite on {y € R?: |y| > ¢} for any ¢ > 0.

Example (Jump intensity of stable processes). The jump intensity measure of strictly
a-stable processes in R! can be easily found by an informal argument. Suppose we
rescale in space and time by y — cy and t — ¢“¢. If the jump intensity is v(dy) =
f(y) dy, then after rescaling we would expect the jump intensity ¢* f(cy)c dy. If scale
invariance holds then both measures should agree, i.e., f(y) o |y|~'~* both for y > 0
and for y < 0 respectively. Therefore, the jump intensity measure of a strictly a-stable

process on R' should be given by

v(dy) = (ciliooo) () + L)) |y~ dy (10.3.2)

with constants ¢, c_ € [0, 00).

If (X;) is a pure jump process with finite jump intensity measure (i.e., finitely many
jumps in a finite time interval) then it can be recovered from (/N;) by adding up the
jump sizes:

Xi—Xo = Y AX, = /yNt(dy).

In the next section, we are conversely going to construct more general Lévy jump pro-
cesses from the measure-valued processes encoding the jumps. As a first step, we are
going to define formally the counting-measure valued processes that we are interested

in.

University of Bonn 2015/2016



336 CHAPTER 10. LEVY PROCESSES AND POISSON POINT PROCESSES

Poisson point processes

Let (S, S, v) be a o-finite measure space.

Definition. A collection Ny(B), t > 0, B € S, of random variables on a probability
space (2, A, P) is called a Poisson point process of intensity v if and only if

(i) B — Ny(B)(w) is a counting measure on S for anyt > 0 and w € €,

(ii) if By,...,B, € S are disjoint then (N¢(B))>0, - - ., (N:(By))t>0 are indepen-

dent stochastic processes and

(iii) (N¢(B))>0 is a Poisson process of intensity v(B) for any B € S with v(B) < oo.

A Poisson point process adds random points with intensity v(dt) dy in each time instant
dt. Tt is the distribution function of a Poisson random measure N (dt dy) on RT x S

with intensity measure dt v(dy), i.e.

N(B) = N((0,t] x B) foranyt > 0and B € S.

The distribution of a Poisson point process is uniquely determined by its intensity mea-

sure: If (V;) and (ZAV;) are Poisson point processes with intensity v then

(Ni(B1), ..., Nue(Ba))izo  ~  (Nu(B), .., (N(Bn))ezo
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for any finite collection of disjoint sets By,..., B, € &, and, hence, for any finite

collection of measurable arbitrary sets By, ..., B, € S.

Applying a measurable map to the points of a Poisson point process yields a new Poisson

point process:

Exercise (Mapping theorem). Let (S, S) and (7,7) be measurable spaces and let
f S — T be a measurable function. Prove that if (V) is a Poisson point process with
intensity measure v then the image measures N, o f~!, ¢t > 0, form a Poisson point

process on T with intensity measure v o f~L.

An advantage of Poisson point processes over Lévy processes is that the passage from
finite to infinite intensity (of points or jumps respectively) is not a problem on the level

of Poisson point processes because the resulting sums trivially exist by positivity:

Theorem 10.9 (Construction of Poisson point processes).

1) Suppose that v is a finite measure with total mass \ = v(S). Then

is a Poisson point process of intensity v provided the random variables 1); are
independent with distribution \"'v, and (K}) is an independent Poisson process

of intensity \.

2) If (Nt(k)), k € N, are independent Poisson point processes on (S, S) with intensity

measures vy, then
(o.0]

Wt = Z Nt(k)

k=1

is a Poisson point process with intensity measure v = vy

The statements of the theorem are consequences of the subdivision and superposition

properties of Poisson processes. The proof is left as an exercise.
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Conversely, one can show that any Poisson point process with finite intensity measure v
can be almost surely represented as in the first part of Theorem[10.9] where K; = N,(.5).
The proof uses uniqueness in law of the Poisson point process, and is similar to the proof
of Lemma(10.3l

Construction of compound Poisson processes from PPP

We are going to construct Lévy jump processes from Poisson point processes. Suppose
first that (/V;) is a Poisson point process on R? \ {0} with finite intensity measure v.

Then the support of /V, is almost surely finite for any ¢ > 0. Therefore, we can define

Xt = Ntd — Nt )
L v N >y Vi)

y€Esupp(Nt)

Theorem 10.10. If v(R?\ {0}) < oo then (X;);>0 is a compound Poisson process with
jump intensity v. More generally, for any Poisson point process with finite intensity
measure v on a measurable space (S, S) and for any measurable function f : S — R",

n € N, the process
N = [swNa) . ezo

is a compound Poisson process with intensity measure v o f 1.

Proof. By Theorem and by the uniqueness in law of a Poisson point process with
given intensity measure, we can represent (/N;) almost surely as N, = Zﬁl oy, with
i.i.d.random variables 7); ~ v/v(S) and an independent Poisson process (K) of inten-
sity (.5). Thus,

Kt

N(f) = /f(y)Nt(dy) = Zf(nj) almost surely.

j=1

Since the random variables f(7;), j € N, are i.i.d. and independent of (/;) with distri-

bution vo f~1, (N;(f)) is a compound Poisson process with this intensity measure. [
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As a direct consequence of the theorem and the properties of compound Poisson pro-

cesses derived above, we obtain:

Corollary 10.11 (Martingales of Poisson point processes). Suppose that (N;) is a
Poisson point process with finite intensity measure v. Then the following processes are
martingales w.r.t. the filtration F}¥ = o(Ny(B) |0 < s<t, B€S):

(i) Ni(f) = No(f) =t [ fdv  forany f € L}(v),
(ii) Nt(f g)—t[ fgdv forany f,g € L2(v),

(iii) exp (ipNy(f) +t [(1 —€e™®') dv)  for any measurable f : S — R and p € R.

Proof. If fisin LP(v) for p = 1, 2 respectively, then

[ el ve i) = [ 1P vidy) < o,
/:cyof /fdy and /:cyyo(fg)—l(dxdy):/fgdu

Therefore (i) and (ii) (and similarly also (iii)) follow from the corresponding statements

for compound Poisson processes. U

With a different proof and an additional integrability assumption, the assertion of Corol-

lary [[0.11] extends to o-finite intensity measures:

Exercise (Expectation values and martingales for Poisson point processes with in-
finite intensity). Let (/V;) be a Poisson point process with o-finite intensity v.

a) By considering first elementary functions, prove that for ¢ > 0, the identity

E { / f(y)Nt(dy)] — ¢ [ rtan)

holds for any measurable function f : S — [0, oo]. Conclude that for f € £'(v),
the integral N;(f) = [ f(y)N:(dy) exists almost surely and defines a random
variable in L'(2, A, P).
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b) Proceeding similarly as in a), prove the identities

E[N,(f)] = t/fdu forany f € L'(v),
Cov[Ni(f), Ni(g)] = t/fg dv forany f, g € £'(v) N L*(v),
Elexp(ipNi(f))] = exp(t/(eipf —1)dv) forany f € L'(v).

¢) Show that the processes considered in Corollary [I0.11] are again martingales pro-
vided f € LY(v), f,g € LY(v) N L?(v) respectively.

If (N;) is a Poisson point process with intensity measure v then the signed measure

valued stochastic process
N(dy) = N/(dy)—tv(dy) , t>0,

is called a compensated Poisson point process . Note that by Corollary [[0.11l and the

exercise,

N(f) = / F(y)Nildy)

is a martingale for any f € £!(v), i.e., (N,) is a measure-valued martingale.

10.4 Stochastic integrals w.r.t. Poisson point processes

Let (S, S,v) be a o-finite measure space, and let (F;) be a filtration on a probability
space (€2, A, P). Our main interest is the case S = R?. Suppose that (N;(dy))s>o is an
(F:) Poisson point process on (S5, S) with intensity measure v. As usual, we denote by
N, = N,—tv the compensated Poisson point process, and by N (d¢ dy) and N (dt dy) the
corresponding uncompensated and compensated Poisson random measure on R, x S.
Recall that for A, B € S with v/(A) < oo and v(B) < oo, the processes Ny(A), Ny(B),
and N,(A)N,(B) — tv(AN B) are martingales. Our goal is to define stochastic integrals

of type
(GuN), = / Ga(y) N(ds dy), (10.4.1)
(0,t] xS
(GN), = / G,(y) N(ds dy) (10.4.2)
(0,t] xS
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respectively for predictable processes (w, s, y) — Gs(y)(w) defined on 2 x R, x S. In
particular, choosing G4(y)(w) = y, we will obtain Lévy processes with possibly infinite
jump intensity from Poisson point processes. If the measure v is finite and has no atoms,

the process G,V is defined in an elementary way as

(GoN); = > Gy

(s,y)€supp(N), s<t

Definition. The predictable o-algebra on ) x R, x S is the o-algebra P generated
by all sets of the form A x (s,t] x Bwith(0 < s <t, A € F,;and B € S. A stochastic
process defined on Q) x R, x S is called (F;) predictable iff it is measurable w.r.t. P.

It is not difficult to verify that any adapted left-continuous process is predictable:

Exercise. Prove that P is the o-algebra generated by all processes (w, t,y) — G¢(y)(w)
such that G is F; x S measurable for any ¢ > 0 and ¢ — G,(y)(w) is left-continuous
forany y € S and w € €.

Example. If (V;) is an (F;) Poisson process then the left limit process G;(y) = N;_ is
predictable, since it is left-continuous. However, G(y) = N, is not predictable. This
is intuitively convincing since the jumps of a Poisson process can not be “predicted in
advance”. A rigorous proof of the non-predictability, however, is surprisingly difficult
and seems to require some background from the general theory of stochastic processes,
cf. e.g. [7].

Elementary integrands

We denote by £ the vector space consisting of all elementary predictable processes GG

of the form

—_

n—

Gi(y)(w) Z Zip(w Tt ti01] (1) Ip,(v) (10.4.3)

k=1

I
=)

7
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withm,n € N,0 <ty <ty <--- <ty Bi,..., B, € Sdisjoint with v(By,) < oo, and
Z; 1+ £ — R bounded and F;,-measurable. For G’ € £, the stochastic integral G,V is

a well-defined Lebesgue integral given by
(GuN)y = > Zik (Nipini(Bi) = Nuna(By)) (10.4.4)
Notice that the summands vanish for ¢; > t and that G, N is an (F;) adapted process

with cadlag paths.

Stochastic integrals w.r.t. Poisson point processes have properties reminiscent of those

known from It0 integrals based on Brownian motion:

Lemma 10.12 (Elementary properties of stochastic integrals w.r.t. PPP). Let G € £.
Then the following assertions hold:

1) Foranyt > 0,

BlG)] - 5| /MXSGS@) dsvldy)].

2) The process G N defined by

(G, = /M Guly) N(ds dy) - / Gu(y) ds v(dy)

(0,¢] xS

is a square integrable (F;) martingale with (G.N)O =0.
3) Foranyt > 0, G N satisfies the It isometry

B[G.9] - 5| /(Oyt]xscxy)?dsu(dy)} |

4) The process (GoN)? — f(o x5 G.(y)*ds v(dy) is an (F;) martingale.

Proof. 1) Since the processes (N;(By,)) are Poisson processes with intensities v/(By,),

we obtain by conditioning on J;:

E[(G.N),] = Z E [Zi,k (Nti+1At(Bk) - Nti(Bk?))]
= F [/(o,t]xs Gs(y)dsv(dy)| .
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2) The process G.N is bounded and hence square integrable. Moreover, it is a martin-

gale, since by 1), forany 0 < s < tand A € F,,

E[(GuN) — (GuN)w A] = E /M Suar(yﬂ(s,ﬂmN(drdw}

— E / T4 Gr(y) Lisq(r) drl/(dy)}
(0,t] xS

— B / G, (y) dry(dy)—/ G (y) drv(dy); A}
(0,¢]xS (0,s]x8

= E /MXS Gs(y)ds V(dy)} :

3) We have (GoN): = 32, Ziw AiN(By), where
A;N(Bi) = Nini(Br) = Ny By)

are increments of independent compensated Poisson point processes. Noticing that the

summands vanish if ¢; > ¢, we obtain

E [(G.N)?] = Z E [Zi7ij7lAiN(Bk)AjN(Bl):|

-2y Yk [ZMZMAJV(B;C) E[A;N(B) |ftj]}

k1 oi<j

+ Z Z E [Zi,kZz‘,z E[AiN(Bk)AiN(BZ)U:“]}

kl 1

- ;;E[Zik&t] v(By) = E U(

0,t]x.S

G(y)?ds V(dy)} )

Here we have used that the coefficients Z; ;, are F;, measurable, and the increments
A,JV(B;C) are independent of F;, with covariance E[AiN(Bk)AiN(BZ)] = S (Br)Ajt.

4) now follows similarly as 2), and is left as an exercise to the reader. U
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Lebesgue integrals

If the integrand G;(y) is non-negative, then the integrals (I0.4.1)) and (10.4.2) are well-
defined Lebesgue integrals for every w. By Lemma[10.12] and monotone convergence,
the identity

E[(G.N)] = E { /( s G,(y) ds y(dy)} (10.4.5)

holds for any predictable G > 0.

Now let u € (0,00], and suppose that G : 2 x (0,u) x S — R is predictable and
integrable w.r.t. the product measure P ® A ,) ® v. Then by (10.4.5)),

B {/QLU]XS'C;S(y)'”“(ds‘iy)] 5 {/Clu]xs'(;S(y)'dSZ’(dy)] < oo

Hence the processes G N and G, N are almost surely finite on [0, u], and, correspond-
ingly GoN = GF N — G, N is almost surely well-defined as a Lebesgue integral, and it
satisfies the identity (I0.4.3).

Theorem 10.13. Suppose that G € L* (P®\o,u)®V) is predictable. Then the following

assertions hold:
1) G.N is an (FF') adapted stochastic process satisfying (10.4.3).
2) The compensated process G.N isan (FF) martingale.

3) The sample paths t — (G.N); are cadlag with almost surely finite variation

WWGMS/’|@@wm@»

(0,t] xS

Proof. 1) extends by a monotone class argument from elementary predictable GG to gen-

eral non-negative predictable (G, and hence also to integrable predictable G.

2) can be verified similarly as in the proof of Lemma[10.12]
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3) We may assume w.l.o.g. G > 0, otherwise we consider G N and G, N separately.

Then, by the Monotone Convergence Theorem,
(GoN)ise — (GuN), = / Gu(y) N(dsdy) — 0,  and
(t,t+e]xS

(GeN); — (GeN)j—e — " SGs(y) N(ds dy)

as ¢ | 0. This shows that the paths are cadlag. Moreover, for any partition 7 of [0, u],

SNEN = @NL = [ Gl Ny

rem remw

< / |Gs(y)| N(ds dy) < oo a.s.
(0,u] xS

O

Remark (Watanabe characterization). It can be shown that a counting measure val-
ued process (NNV;) is an (F;) Poisson point process if and only if (10.4.5]) holds for any

non-negative predictable process G.

Ito integrals w.r.t. compensated Poisson point processes

Suppose that (w, s,y) — G;(y)(w) is a predictable process in L*(P ® A\(.) ® v) for
some u € (0, 00]. If G is not integrable w.r.t. the product measure, then the integral G, N
does not exist in general. Nevertheless, under the square integrability assumption, the
integral G.N w.r.t. the compensated Poisson point process exists as a square integrable
martingale. Note that square integrability does not imply integrability if the intensity

measure v is not finite.

To define the stochastic integral G.N for square integrable integrands GG we use the Itd

isometry. Let
Mi([0,u]) = {M e M*([0,u]) | t — M(w) cadlag for any w € Q}

denote the space of all square-integrable cadlag martingales w.r.t. the completed filtra-

tion (F/). Recall that the L? maximal inequality

9 \?2
E[ sup \Mtﬂ < (—2 — 1) E[|M,|?]
te[0,u]
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holds for any right-continuous martingale in M?([0, u]). Since a uniform limit of cadlag
functions is again cadlag, this implies that the space M3([0, u]) of equivalence classes
of indistinguishable martingales in M?3([0, u]) is a closed subspace of the Hilbert space
M?(]0, u]) w.r.t. the norm

IMIazouy = BIMJTY.
Lemma[I[0.12] 3), shows that for elementary predictable processes G,

|GeNla2oy = Gllr2porg.om)- (10.4.6)

On the other hand, it can be shown that any predictable process G € L*(P ® A\(g,u) ® 1)
is a limit w.r.t. the L*(P®\(g,,) ®v) norm of a sequence (G*)) consisting of elementary
predictable processes. Hence isometric extension of the linear map G' +— G.N can be
used to define G.N € M2(0, u) for any predictable G € L*(P & A9y ® v) in such a
way that

G(k,)ﬁ — G.Kf in M? whenever G*) — G in L2

Theorem 10.14 (It6 isometry and stochastic integrals w.r.t. compensated PPP).
Suppose that u € (0,00|. Then there is a unique linear isometry G G.N from
LA % (0,u) x S, P, P& A®@v) to M2([0, u]) such that G.N is given by (I0.4.4) for
any elementary predictable process G of the form (10.4.3)).

Proof. As pointed out above, by (10.4.6), the stochastic integral extends isometrically
to the closure £ of the subspace of elementary predictable processes in the Hilbert space
L2922 x (0,u) x S,P, P ® A ® v). It only remains to show that any square integrable
predictable process G is contained in E,ie., Gisan L? limit of elementary predictable
processes. This holds by dominated convergence for bounded left-continuous processes,
and by a monotone class argument or a direct approximation for general bounded pre-
dictable processes, and hence also for predictable processes in L2. The details are left
to the reader. U
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The definition of stochastic integrals w.r.t. compensated Poisson point processes can be
extended to locally square integrable predictable processes GG by localization — we refer

to [5]] for details.

Example (Deterministic integrands). If H,(y)(w) = h(y) for some function h €
£2(S, S, v) then

(HN), = / Wy) Nidy) = Nh),

ie,HNisa Lévy martingale with jump intensity measure v o h™~*.

10.5 Lévy processes with infinite jump intensity

In this section, we are going to construct general Lévy processes from Poisson point
processes and Brownian motion. Afterwards, we will consider several important classes

of Lévy jump processes with infinite jump intensity.

Construction from Poisson point processes

Let v(dy) be a positive measure on R? \ {0} such that [(1 A |y|?) v(dy) < oo, i.e.,

v(lyl >e) < oo foranye >0, and (10.5.1)
/ ly?v(dy) < oo. (10.5.2)
ly|<1

Note that the condition (I0.5.1)) is necessary for the existence of a Lévy process with
jump intensity v. Indeed, if (10.3.1) would be violated for some ¢ > 0 then a corre-
sponding Lévy process should have infinitely many jumps of size greater than ¢ in finite
time. This contradicts the cadlag property of the paths. The square integrability condi-
tion (10.3.2) controls the intensity of small jumps. It is crucial for the construction of
a Lévy process with jump intensity v given below, and actually it turns out to be also

necessary for the existence of a corresponding Lévy process.

In order to construct the Lévy process, let N;(dy), t > 0, be a Poisson point process

with intensity measure v defined on a probability space (€2, .4, P), and let Nt(dy) =
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Ni(dy) — tv(dy) denote the compensated process. For a measure p and a measurable
set A, we denote by
WAB) = u(BNA)

the part of the measure on the set A, i.e., u”(dy) = I4(y)u(dy). The following decom-

position property is immediate from the definition of a Poisson point process:

Remark (Decomposition of Poisson point processes). If A, B € B(R?\ {0}) are

disjoint sets then (N/);> and (N7);>¢ are independent Poisson point processes with

intensity measures v, v'? respectively.

If AN B.(y) = () for some € > 0 then the measure v* has finite total mass v*(RY) =
v(A) by (10.5.1). Therefore,

X{ = /AyNt(dy) = /ny‘(dy)

is a compound Poisson process with intensity measure v, and characteristic exponent
Uxalp) = /A(l — exp(ip - y)) v(dy).

On the other hand, if [, |y|*v(dy) < oo then
M = /Ayﬁt(dy) = /yﬁf‘(dy)

is a square integrable martingale. If both conditions are satisfied simultaneously then

M} = XlgA—t/Ayl/(dy).

In particular, in this case M4 is a Lévy process with characteristic exponent

Yua(p) = /A(l—exp(ip-y)ﬁp-y) v(dy).

By (I0.5.1) and (I0.3.2), we are able to construct a Lévy process with jump intensity

measure v that is given by

4@=/ywm+/yMW» (105.3)
y|>r

ly|<r
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for any r € (0, 00). Indeed, let
X] = / y Ni(dy) = / Y Iy >y N(dsdy), and (10.5.4)
ly|>r (0,t]xR9

MS" = / y N, (dy). (10.5.5)
e<ly|<r

for e, € [0,00) with ¢ < r. As a consequence of the Itd isometry for Poisson point

processes, we obtain:

Theorem 10.15 (Existence of Lévy processes with infinite jump intensity). Ler v be
a positive measure on R? \ {0} satisfying [(1 A |y|?) v(dy) < oo.

1) For any v > 0, (X}) is a compound Poisson process with intensity measure
V' (dy) = Lgyp>ry v(dy).

2) The process (Mt0 ") is a Lévy martingale with characteristic exponent
Ur(p) = / (1—ePY+ip-y)v(dy) VpeRe (10.5.6)
ly|<r
Moreover, for any u € (0, c0),

E {sup \Mf”’—Mf”F] —~ 0 aselO. (10.5.7)

0<t<u

3) The Lévy processes (M") and (X7) are independent, and X7 = XTI + M is

a Lévy process with characteristic exponent

Ue(p) = /(1—ei”'y+ip-yl{y|gr}) v(dy) VYpeRL  (10.5.8)

Proof. 1) is a consequence of Theorem [10.10l

2) By (I0.5.2)), the stochastic integral (M;"") is a square integrable martingale on [0, u]
for any u € (0, c0). Moreover, by the Itd isometry,

I3 = M oy = 1By = [ [ WP Tsca vid) it = 0

University of Bonn 2015/2016



350 CHAPTER 10. LEVY PROCESSES AND POISSON POINT PROCESSES

as ¢ | 0. By Theorem[10.10, (M;™") is a compensated compound Poisson process with

intensity I{..|y<r} ¥(dy) and characteristic exponent
Vo) = [ (i) vy
e<|y|<r

As e | 0, 1. ,.(p) converges to ¢, (p) since 1 — e +ip - y = O(|y|?). Hence the limit
martingale ]\@0 T = lim Mtl/ ™" also has independent and stationary increments, and

n—o0
characteristic function

Elexp(ip- M{")] = lim Elexp(ip- M,"™")] = exp(—t¢,(p)).

n—oo

3) Since I{yj<,;y Ni(dy) and Iy~ Ni(dy) are independent Poisson point processes,
the Lévy processes (M>") and (X7) are also independent. Hence X7 = M>" + X7 is a

Lévy process with characteristic exponent

50 () = n(p) + / (1— €P) u(dy).

ly|>r

O

Remark. All the partially compensated processes ()?[ ), r € (0,00), are Lévy pro-
cesses with jump intensity v. Actually, these processes differ only by a finite drift term,

since forany 0 < ¢ < r,
X: = X!+t where b :/ y v(dy).
e<|y|<r
A totally uncompensated Lévy process
Xy = lim y Ni(dy)

does exist only under additional assumptions on the jump intensity measure:

Corollary 10.16 (Existence of uncompensated Lévy jump processes). Suppose that
J(@ A Jyl) v(dy) < oo, or that v is symmetric (i.e., v(B) = v(—B) for any B €
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B(R*\ {0})) and [(1 A |y|*) v(dy) < co. Then there exists a Lévy process (X;) with

characteristic exponent

Y(p) = lim (1—e?Y) v(dy) VpeR (10.5.9)
S0 Jly|>e
such that
E { sup | Xy — Xf|2} — 0 as €1 0. (10.5.10)
0<t<u

Proof. For 0 < € < r, we have

X; =X, + My + t/ y v(dy).

e<ly|<r

As e | 0, M*" converges to M%" in M?([0,u]) for any finite u. Moreover, under the
assumption imposed on v, the integral on the right hand side converges to bt where

b = lim y v(dy).
0 Jeclyl<r

Therefore, (X{) converges to a process (X;) in the sense of (I0.3.10) as € | 0. The

limit process is again a Lévy process, and, by dominated convergence, the characteristic
exponent is given by (10.5.9). O

Remark (Lévy processes with finite variation paths). If [(1 A |y|) v(dy) < oo then
the process X; = [y N,(dy) is defined as a Lebesgue integral. As remarked above, in

that case the paths of (X;) are almost surely of finite variation:

vV(x) < / ly| Ne(dy) < oo as.

The Lévy-Ito decomposition

We have constructed Lévy processes corresponding to a given jump intensity measure
v under adequate integrability conditions as limits of compound Poisson processes or
partially compensated compound Poisson processes, respectively. Remarkably, it turns

out that by taking linear combinations of these Lévy jump processes and Gaussian Lévy
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processes, we obtain all Lévy processes. This is the content of the Lévy-1t6 decompo-
sition theorem that we will now state before considering in more detail some important

classes of Lévy processes.

Already the classical Lévy-Khinchin formula for infinity divisible random variables (see
Corollary[I0.18/below) shows that any Lévy process on R can be characterized by three
quantities: a non-negative definite symmetric matrix a € R%9, a vector b € R?, and a

o-finite measure v on B(R? \ {0}) such that

/(1A\y\2)y(dy) < . (10.5.11)

Note that (10.5.11)) holds if and only if v is finite on complements of balls around 0, and
y|I© vidy) < oo. e Leévy-Itd0 decomposition gives an explicit representation o
i<t 2v(d The Lévy-Itod d position gi plicit rep ion of

a Lévy process with characteristics (a, b, v/).

Let o € R witha = 007, let (B;) be a d-dimensional Brownian motion, and let (V;)
be an independent Poisson point process with intensity measure v. We define a Lévy

process (X;) by setting

Xt:O'Bt+bt+/

ly|>1

yN(y) + [y (Nldy) -~ o). 10512

ly|<1

The first two summands are the diffusion part and the drift of a Gaussian Lévy process,
the third summand is a pure jump process with jumps of size greater than 1, and the last
summand represents small jumps compensated by drift. As a sum of independent Lévy

processes, the process (X;) is a Lévy process with characteristic exponent

vp) = Qp-ap—zb-p+/ (1—ePY 4ip-y Iy<ny) v(dy). (10.5.13)
R4\ {0}

We have thus proved the first part of the following theorem:

Theorem 10.17 (Lévy-It6 decomposition).
1) The expression ([0.3.12) defines a Lévy process with characteristic exponent 1.
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2) Conversely, any Lévy process (X;) can be decomposed as in (10.3.12) with the

Poisson point process

N, = ) AX, |, t>0, (10.5.14)

s<t
AX#0

an independent Brownian motion (B;), a matrix o € R*>4, a vector b € R%, and

a o-finite measure v on R%\ {0} satisfying (I0.5.11).

We will not prove the second part of the theorem here. The principal way to proceed
is to define (NV;) via (10.5.11)), and to consider the difference of (X;) and the integrals
w.r.t. (V;) on the right hand side of (I0.5.12). One can show that the difference is a con-
tinuous Lévy process which can then be identified as a Gaussian Lévy process by the
Lévy characterization, cf. Section[[L.Ilbelow. Carrying out the details of this argument,

however, is still a lot of work. A detailed proof is given in [3].

As a byproduct of the Lévy-1t6 decomposition, one recovers the classical Lévy-Khinchin
formula for the characteristic functions of infinitely divisible random variables, which

can also be derived directly by an analytic argument.

Corollary 10.18 (Lévy-Khinchin formula). For a function 1) : R? — C the following

statements are all equivalent:
(i) 1 is the characteristic exponent of a Lévy process.
(ii) exp(—1)) is the characteristic function of an infinitely divisible random variable.

(iii) 1 satisfies (I0.5.13) with a non-negative definite symmetric matrix a € R¥9, q
vector b € R? and a measure v on B(R?\ {0}) such that [ (1A |y|?) v(dy) < <.

Proof. (iii)=-(i) holds by the first part of Theorem [10.17
(i)=-(ii): If (X;) is a Lévy process with characteristic exponent ¢) then X; — Xj is an
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infinitely divisible random variable with characteristic function exp(—1).

(i1)=>(ii1) is the content of the classical Lévy-Khinchin theorem, see e.g. [17]. ]

We are now going to consider several important subclasses of Lévy processes. The class

of Gaussian Lévy processes of type
Xt = O'Bt + bt

with o € R4, b € R?, and a d-dimensional Brownian motion (B;) has already been
introduced before. The Lévy-Itd decomposition states in particular that these are the

only Lévy processes with continuous paths!

Subordinators

A subordinator is by definition a non-decreasing real-valued Lévy process. The name
comes from the fact that subordinators are used to change the time-parametrization of a
Lévy process, cf. below. Of course, the deterministic processes X; = bt with b > 0 are
subordinators. Furthermore, any compound Poisson process with non-negative jumps
is a subordinator. To obtain more interesting examples, we assume that v is a positive

measure on (0, co) with

/(0 )(1/\y)y(dy) < 0oo0.

Then a Poisson point process (/N;) with intensity measure v satisfies almost surely
supp(Ny)  C  [0,00) for any ¢ > 0.

Hence the integrals
Xt = /y Nt(dy) s t Z 0,

define a non-negative Lévy process with X, = 0. By stationarity, all increments of (X)
are almost surely non-negative, i.e., (X;) is increasing. In particular, the sample paths

are (almost surely) of finite variation.
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Example (Gamma process). The Gamma distributions form a convolution semigroup

of probability measures on (0, ), i.e.,
Cr,\)«[(s,A) = T(r+s,\) forany r, s, A > 0.

Therefore, for any a, A > 0 there exists an increasing Lévy process (I';);>o with incre-

ment distributions
Lyps =Ty~ T(at, \) for any s,t > 0.

Computation of the Laplace transform yields

u

Elexp(—ul})] = (1 + X>_at = exp (—t /000(1 — e W)y te™ W dy) (10.5.15)

for every u > 0, cf.e.g. [28, Lemma 1.7]. Since I'; > 0, both sides in (10.5.13) have a
unique analytic extension to {u € C : R(u) > 0}. Therefore, we can replace u by —ip

in (I0.5.15) to conclude that the characteristic exponent of (I';) is

Y(p) = /000(1 — e™Y) v(dy), where v(dy) = ay e dy.

Hence the Gamma process is a non-decreasing pure jump process with jump intensity

measure v.

Example (Inverse Gaussian processes). An explicit computation of the characteristic
function shows that the Lévy subordinator (75) is a pure jump Lévy process with Lévy

measure
v(dy) = (27r)’1/2 y’?’/2 I0,00)(y) de.

More generally, if X; = 0B, + bt is a Gaussian Lévy process with coefficients o > 0,

b € R, then the right inverse

T* = inf{t>0: X;,=s} , s>0,

S

is a Lévy jump process with jump intensity

v(dy) = (27?)*1/2y*3/2exp(—bzy/Q)[(O,oo)(y) dy.
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Remark (Finite variation Lévy jump processes on R').

Suppose that (1V;) is a Poisson point process on R \ {0} with jump intensity measure v
satisfying [(1 A |y|) v(dy) < oo. Then the decomposition N; = N N2 ngo
the independent restrictions of (N;) to R, R_ respectively induces a corresponding

decomposition
Xo= X7+ X sz/y N dy) Xt\:/y N0 (dy),

of the associated Lévy jump process X; = [y N;(dy) into a subordinator th and a
decreasing Lévy process Xt\. In particular, we see once more that (X;) has almost

surely paths of finite variation.

An important property of subordinators is that they can be used for random time trans-

formations of Lévy processes:

Exercise (Time change by subordinators). Suppose that (X;) is a Lévy process with

Laplace exponent nx : R, — R, i.e.,
Elexp(—aX;)] = exp(—tnx(«a)) forany a > 0.

Prove that if (7}) is an independent subordinator with Laplace exponent 77 then the
time-changed process
X, = X, ., s>0,

is again a Lévy process with Laplace exponent
np) = nrnx(p)
The characteristic exponent can be obtained from this identity by analytic continuation.

Example (Subordinated Lévy processes). Let (5B;) be a Brownian motion.
1) If (NV;) is an independent Poisson process with parameter A > 0 then (By,) is a

compensated Poisson process with Lévy measure

v(dy) = A2m) Vexp(—y?/2) dy.
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2) If (I';) is an independent Gamma process then for o, b € R the process
Xt = O'Bl‘t + th

is called a Variance Gamma process. It is a Lévy process with characteristic
exponent ¢(p) = [(1 — ) v(dy), where

v(dy) = cly| T (e o0 (y) + eI 0)(y)) dy

with constants ¢, \, x > 0. In particular, a Variance Gamma process satisfies
Xy = Fgl) — FEQ) with two independent Gamma processes. Thus the increments of
(X:) have exponential tails. Variance Gamma processes have been introduced and
applied to option pricing by Madan and Seneta [31]] as an alternative to Brownian
motion taking into account longer tails and allowing for a wider modeling of
skewness and kurtosis.

3) Normal Inverse Gaussian (NIG) processes are time changes of Brownian mo-
tions with drift by inverse Gaussian subordinators [6]]. Their increments over unit
time intervals have a normal inverse Gaussian distribution, which has slower de-
caying tails than a normal distribution. NIG processes are applied in statistical

modelling in finance and turbulence.

Stable processes

We have noted in (I10.3.2) that the jump intensity measure of a strictly a-stable process
in R! is given by

dy) = (crlios)(y) + e Lson)(y)) [yl dy (10.5.16)
with constants ¢, ,c_ € [0, 00). Note that for any o € (0, 2), the measure v is finite on
R\ (—1,1), and f[—Ll} ly|*v(dy) < oo.
We will prove now that if « € (0,1) U (1,2) then for each choice of the constants ¢,
and c_, there is a strictly a-stable process with Lévy measure (10.3.16). For o = 1 this

is only true if ¢, = c_, whereas a non-symmetric 1-stable process is given by X; = bt

with b € R\ {0}. To define the corresponding «-stable processes, let

X, = / y Ni(dy)
R\[—¢,¢]
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where (/N;) is a Poisson point process with intensity measure v. Setting ||X||, =
E[sup,, | X;|*]"/?, an application of Theorem [[0.13] yields:

Corollary 10.19 (Construction of a-stable processes). Let v be the probability mea-
sure on R\ {0} defined by (10.5.16) with c,,c_ € [0, c0).

1) If c. = c_ then there exists a symmetric a-stable process X with characteristic
exponent (p) = v |p|*, v = [(1—cosy) v(dy) € R, suchthat || X" - X]||, —
0 for any u € (0, 00).

2) If a € (0,1) then [(1 A |y])v(dy) < oo, and Xy = [y Ny(dy) is an a-stable
*z=[(1-¢e¥)v(dy) €C.

process with characteristic exponent 1) (p) = z |p

3) For o = 1 and b € R, the deterministic process X, = bt is a-stable with charac-

teristic exponent \)(p) = —ibp.

4) Finally, if o € (1,2) then [(Jy| A |y|?) v(dy) < oo, and the compensated process
Xi= [y Nt(dy) is an a-stable martingale with characteristic exponent 1)(p) =
Z-lpl* Z= [(1 — €% +dy) v(dy).

Proof. By Theorem [10.15]1t is sufficient to prove convergence of the characteristic ex-

ponents

bp) = / (1= ™) u(dy) = |p° / (1- %) v(da),
R\[—¢,¢] R\[—ep,ep]

be(p) = / (1—€™ +ipy) v(dy) = |p|* / (1 — € +iz) v(da)
R\[—&,¢] R\[—&p,ep]

to ¥ (p), ¥ (p) respectively as € | 0. This is easily verified in cases 1), 2) and 4) by
noting that 1 — e + 1 — e @ = 2(1 — cosx) = O(z?), 1 — e = O(|z]), and
1— e +iz = O(|z]*). O

Notice that although the characteristic exponents in the non-symmetric cases 2), 3) and

4) above take a similar form (but with different constants), the processes are actually
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very different. In particular, for o > 1, a strictly a-stable process is always a limit of

compensated compound Poisson processes and hence a martingale!

Example (a-stable subordinators vs. a-stable martingales). For ¢c. = 0 and o €
(0,1), the «-stable process with jump intensity v is increasing, i.e., it is an a-stable
subordinator. For c. = 0 and o € (1,2) this is not the case since the jumps are
“compensated by an infinite drift”. The graphics below show simulations of samples
from a-stable processes for c. = 0 and o = 3/2, a = 1/2 respectively. For a € (0, 2),
a symmetric a-stable process has the same law as (v/2Br,) where (B;) is a Brownian

motion and (75) is an independent «/2-stable subordinator.

500 1000 1500 2000 3000

—-100 -

—200 - \

5x 108 i

4% 100
3x10° -
2X106} ‘____f‘-_—-
E -

6 |
IX10°) g

500 1000 1500 2000 2500 3000

University of Bonn 2015/2016



Chapter 11
Transformations of SDE

Let U C R" be an open set. We consider a stochastic differential equation of the form

with a d-dimensional Brownian motion (B;) and measurable coefficients b : [0, 00) X
U — R"and o : [0,00) x U — R™9, In applications one is often not interested in
the random variables X; : 2 — R themselves but only in their joint distribution. In
that case, it is usually irrelevant w.r.t. which Brownian motion (B;) the SDE (I1.0.1)
is satisfied. Therefore, we can “solve” the SDE in a very different way: Instead of
constructing the solution from a given Brownian motion, we first construct a stochastic
process (X;, P) by different types of transformations or approximations, and then we
verify that the process satisfies (ILL.0.1]) w.r.t. some Brownian motion (B;) that is usually
defined through (I11.0.1).

Definition (Weak and strong solutions). A (weak) solution of the stochastic differen-
tial equation ([1.01) is given by

(i) a “setup” consisting of a probability space (2, A, P), a filtration (F;);>0 on
(2, A) and an R%-valued (F;) Brownian motion (By)¢> on (2, A, P),
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(ii) a continuous (JF;) adapted stochastic process (X,);<s where S is an (F;) stopping
time such that b(-, X) € L', ([0,5),R"), o(-, X) € £L*,; ([0,5),R™*%), and

a,loc a,loc

t t
X = X +/ b(s, Xs) ds +/ o(s, Xs) dB; foranyt < S a.s.
0 0

It is called a strong solution w.r.t. the given setup if and only if (X,) is adapted w.r.t. the

filtration (0' (.FtB’P, XO) ) - generated by the Brownian motion and the initial condition.

Here EZJOC([O, S),R™) consists of all R” valued processes (w,t) — H;(w) defined for
t < S(w) such that there exists an increasing sequence of (F;) stopping times 7,, 1 S
and (F,) adapted processes (H\");0 in £L(P & A(0,00)) With Hy = H™ forany t < T,
and n € N. Note that the concept of a weak solution of an SDE is not related to the

analytic concept of a weak solution of a PDE !

Remark. A solution (X});>¢ is a strong solution up to S = oo w.r.t. a given setup if
and only if there exists a measurable map F' : Ry xR"x C'(R;,R?) — R", (¢, 7, y) —
Fi(xo,y), such that the process ([}):>o is adapted w.r.t. the filtration B(R") @ B;, B; =
oly—y(s):0<s<t),and

X, = F(Xo,B) forany t>0

holds almost surely. Hence strong solutions are (almost surely) functions of the given

Brownian motion and the initial value!

There are SDE that have weak but no strong solutions. An example is given in Section
The definition of weak and strong solutions can be generalized to other types of

SDE including in particular functional equations of the form
dXt = bt(X) dt+0t(X) dBt

where (b;) and (o) are (B;) adapted stochastic processes defined on C'(R ., R™), as well
as SDE driven by Poisson point processes, cf. Chapter[13]
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Different types of transformations of a stochastic process (X;, P) are useful for con-

structing weak solutions. These include:

e Random time changes: (X;);>o — (X7, )a>0 Where (T},),>0 is an increasing stochas-

tic process on R, such that 7, is a stopping time for any a > 0.

e Transformations of the paths in space: These include for example coordinate
changes (X;) — (¢(X;)), random translations (X;) — (X;+ H;) where (H,) is another
adapted process, and, more generally, a transformation that maps (X;) to the strong so-
lution (Y;) of an SDE driven by (X;).

e Change of measure: Here the random variables X; are kept fixed but the underlying
probability measure P is replaced by a new measure P such that both measures are mu-
tually absolutely continuous on each of the o-algebras F;, t € R, (but usually not on
Foo)-

In Sections [11.2] [11.3|and [11.4] we study these transformations as well as relations be-
tween them. For identifying the transformed processes, the Lévy characterizations in
Section[IT.Il play a crucial rdle. Section contains an application to large deviations
on Wiener space, and, more generally, random perturbations of dynamical systems.
Section focusses on Stratonovich differential equations. As the Stratonovich inte-
gral satisfies the usual chain rule, these are adequate for studying stochastic processes
on Riemannian manifolds. Stratonovich calculus also leads to a tranformation of an
SDE in terms of the flow of a corresponding ODE that is useful for example in the
one-dimensional case. The concluding Section[12.4] considers numerical approximation

schemes for solutions of stochastic differential equations.

11.1 Lévy characterizations and martingale problems

Let (€2, A, P, (F;)) be a given filtered probability space. We first note that Lévy pro-

cesses can be characterized by their exponential martingales:
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Lemma 11.1. Let ¢ : RY — C be a given function. An (F,;) adapted cadlag process
X; : Q — R is an (F;) Lévy process with characteristic exponent ) if and only if the

complex-valued processes
Z0 = exp(ip- Xy +tp(p) , t>0,
are (F;) martingales, or; equivalently, local (F,) martingales for any p € R%

Proof. By Corollary [10.5] the processes Z? are martingales if X is a Lévy process with
characteristic exponent 1. Conversely, suppose that Z? is a local martingale for any
p € R?. Then, since these processes are uniformly bounded on finite time intervals,

they are martingales. Hence for 0 < s < tand p € R,

Elexp (ip- (X, — X)) |F] = exp(—(t—s)(p)),

which implies that X; — X is independent of F; with characteristic function equal to
exp(—(t — s)). O

Exercise (Characterization of Poisson point processes). Let (S, S, ) be a o-finite
measure space. Suppose that (N;);>o on (£2, A, P) is an (F;) adapted process taking
values in the space M (S) consisting of all counting measures on S. Prove that the
following statements are equivalent:

(i) ({V;) is a Poisson point processes with intensity measure v.

(ii) For any function f € £(S,S,v), the real valued process

NAf) = / f) N, (dy), >0,

is a compound Poisson process with jump intensity measure o f~1.

(iii) For any function f € £(S,S, ), the complex valued process

MD = epiN(f) (), £>0, w(f) = /(1—eif)dy,

is a local (F;) martingale.
Show that the statements are also equivalent if only elementary functions f € L'(S, S, v)

are considered.
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Lévy’s characterization of Brownian motion

By Lemma an R-valued process (X;) is a Brownian motion if and only if the
processes exp (z’p - Xy + tp|?/ 2) are local martingales for all p € R¢. This can be
applied to prove the remarkable fact that any continuous R? valued martingale with the

right covariations is a Brownian motion:

Theorem 11.2 (Lévy’s characterization for multidimensional Brownian motion).

Suppose that M*, . .., M® are continuous local (F;) martingales with
[Mk,Ml]t = Oyt P-a.s. forany t > 0.
Then M = (MY, ..., M%) is a d-dimensional Brownian motion.

The following proof is due to Kunita and Watanabe (1967):

Proof. Fix p € R% and let ®; := exp(ip - M;). By Itd’s formula,
d
, 1
do, = ip®-dM; - > @ prpr d[M*, M,
k=1
: 1 5
= p (I)t . th — 5(1)15 ‘p| dt.

Since the first term on the right hand side is a local martingale increment, the product

rule shows that the process ®; - exp(|p|? t/2) is a local martingale. Hence by Lemma
1.1l M is a Brownian motion. O

Lévy’s characterization of Brownian motion has a lot of remarkable direct consequences.

Example (Random orthogonal transformations). Suppose that X; : 0 — R" is a
solution of an SDE

dX, = O0;dBy, Xo = xp, (11.1.1)
w.r.t. a d-dimensional Brownian motion (B;), a product-measurable adapted process
(t,w) +— O(w) taking values in R"*4, and an initial vale zy € R"™. We verify that X is

an n-dimensional Brownian motion provided

Oiw) Oy(w)" = 1, forany t > 0, almost surely. (11.1.2)
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Indeed, by (11.1.1)) and (11.1.2)), the components

d_ rt
X, = xg+Z/0 o* dBt
k=1

are continuous local martingales with covariations
XX = > / O* O d[B*, B! = / Y orokdt = gt
k,l k

Applications include infinitesimal random rotations (n = d) and random orthogonal

projections (n < d). The next example is a special application.

Example (Bessel process). We derive an SDE for the radial component R; = |B;| of
Brownian motion in R¢. The function r(z) = |z| is smooth on R? \ {0} with Vr(x) =
e.(z), and Ar(x) = (d — 1) - |z|~' where e.(z) = x/|x|. Applying Itd’s formula to
functions r, € C®(R%), e > 0, with 7.(x) = r(x) for |z| > ¢ yields

d—
dRy = e.(By)-dB; + dt forany t < Ty

t

where T is the first hitting time of 0 for (B;). By the last example, the process
t
W, = / e (B,)-dB,,  t>0,
0

is a one-dimensional Brownian motion defined for all times (the value of e, at 0 being
irrelevant for the stochastic integral). Hence (B;) is a weak solution of the SDE

d—1

dR, = dW,
t t + R,

dt (11.1.3)

up to the first hitting time of 0. The equation (IL.1.3) makes sense for any particular
d € R and is called the Bessel equation. Much more on Bessel processes can be found
in Revuz and Yor [37/]] and other works by M. Yor.

Exercise (Exit times and ruin probabilities for Bessel and compound Poisson pro-
cesses). a) Let (X;) be a solution of the Bessel equation
d—1

dx, = —
K 2X,

dt + dBt, XO = 2o,

where (B}):> is a standard Brownian motion and d is a real constant.

University of Bonn 2015/2016



366 CHAPTER 11. TRANSFORMATIONS OF SDE

i) Find a non-constant function u : R — R such that u(X;) is a local martingale up

to the first hitting time of 0.
ii) Compute the ruin probabilities P[T, < T;] for a,b € R, with zq € [a,b] .
iii) Proceeding similarly, determine the mean exit time F[T'], where T = min{T,, T} }.

b) Now let (X;);>o be a compound Poisson process with X, = 0 and jump intensity

measure v = N(m, 1), m > 0.
i) Determine A € R such that exp(AX}) is a local martingale up to 7.

ii) Prove that for a < 0,

P[T, < o] = lim P[T, < T, < exp(ma/2).

b—oo

Why is it not as easy as above to compute the ruin probability P[T,, < T}] exactly ?

The next application of Lévy’s characterization of Brownian motion shows that there

are SDE that have weak but no strong solutions.

Example (Tanaka’s example. Weak vs. strong solutions). Consider the one dimen-
sional SDE

dX, = sgn(X,) dB, (11.1.4)
+1 for z >0,

where (B;) is a Brownian motion and sgn(z) := . Note the unusual
-1 for <0

convention sgn(0) = 1 that is used below. We prove the following statements:

1) X is a weak solution of (ILL4) on (92, A, P, (F;)) if and only if X is an (F3)
Brownian motion. In particular, a weak solution exists and its law is uniquely

determined by the law of the initial value X|.

2) If X is a weak solution w.r.t. a setup (2, A, P, (F;), (B:)) then for any ¢t > 0,

B, — By is measurable w.r.t. the o-algebra F,* ¥ = o(| X : s < ).

3) There is no strong solution to (11.1.4) with initial condition X, = 0.
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4) Pathwise uniqueness does not hold: If X is a solution to (11.1.4) with Xq = 0

then — X solves the same equation with the same Brownian motion.

The proof of 1) is again a consequence of the first example above: If X is a weak
solution then X is a Brownian motion by Lévy’s characterization. Conversely, if X is

an (F;) Brownian motion then the process

t
B, = /sgn(Xs)dXs
0

is a Brownian motion as well, and

t t
/ sen(X,) dB, = / sen(X,)?dX, = X, — Xo,
0 0

i.e., X is a weak solution to (IT.1.4).

For proving 2) , we approximate r(x) = |z| by symmetric and concave functions r. €
C*(R) satisfying r.(x) = |z| for |x| > e. Then the associative law, the Itd isometry,

and Itd’s formula imply

t t
B, — By = / sgn(X,) dX, = lig)l r!(X,) dX
0 1 Jo
= lim (r.(Xy) — ro(Xo) — —/ r!(X,) ds)
el0 2 0

, [
= i (X0 = (1Xo) = 5 [ 201X ds)
el0 2 0
with almost sure convergence along a subsequence ¢, | 0.

Finally by 2), if X would be a strong solution w.r.t. a Brownian motion B then X,
would also be measurable w.r.t. the o-algebra generated by F; and .7-"t‘X|’P. This leads
to a contradiction as one can verify that the event { X; > 0} is not measurable w.r.t. this

o-algebra for a Brownian motion (X;).

Martingale problem for It6 diffusions

Next we consider a solution of a stochastic differential equation

dXt = b(t, Xt) dt + O'(t, Xt) ch XO = Ty, (1115)
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defined on a filtered probability space (€2, A, P, (F;)). We assume that (B;) is an (F;)
Brownian motion taking values in R, b, oy, ...,04 : RY x R® — R" are measurable
and locally bounded (i.e., bounded on [0,¢] x K for any ¢ > 0 and any compact set
K C RY) time-dependent vector fields, and o(t, ) = (o1 (t,z) - - - 04(t, 7)) is the n x
d matrix with column vectors o;(t,x). A solution of is a continuous (F})

semimartingale (X;) satisfying
t d t
X, = x0+/ b(s,Xs)derZ/ak(s,Xs)dBf Vt>0 as. (11.1.6)
0 0

If X is a solution then

X7, X7, Z[/crkstBk/crlstBlL

kZ/ ot ol)(s, X) d[B* /Oa

where a =", oiol,ie.,
a(s,r) = o(s,x)o(s, )T € R™™.

Therefore, 1t6’s formula applied to the process (¢, X;) yields

dF(t,X) = %F(t X)dt + Vo F(t,X) - dX + = ; angﬂ (t, X) d[ X", X]
= (TV,F)(t,X)-dB+ (%—Z; + LF)(t,X) dt,
for any F' € C*(Ry x R™), where
d d
(LF)(t,z) = %mzlaf )88228];, (t, ) + ;bi(t,x)%(t,x).

We have thus derived the It6-Doeblin formula

F(t,X,) — F(0,Xy) = /t(UTVF)(s,XS) - dB, +/ (%—F + LF)(s, X,) ds

: : (11.1.7)

The formula provides a semimartingale decomposition for F'(¢, X;). It establishes a
connection between the stochastic differential equation (IL.1.3) and partial differential

equations involving the operator L.
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Example (Exit distributions and boundary value problems). Suppose that ' €
C?(R, x R™) is a classical solution of the p.d.e.

OF

E(t’x)Jr(['F)(t’x) = —g(t,x) Vt>0,zeU

on an open subset U C R" with boundary values
F(t,x) = ot x) Vt>0,x e dU.
Then by (IL.17), the process
t
M, = F(t,X;) +/ g(s, Xs) ds
0

is a local martingale. If F and g are bounded on [0, t] x U, then the process M7 stopped
at the first exit time 7" = inf {¢ > 0 : X, ¢ U} is a martingale. Hence, if 7" is almost

surely finite then

Elo(T, Xr)] + E[/OTg(s, X) ds] = F(0,z).

This can be used, for example, to compute exit distributions (for g = 0) and mean exit

times (for ¢ = 0, g = 1) analytically or numerically.

Similarly as in the example, the Feynman-Kac-formula and other connections between
Brownian motion and the Laplace operator carry over to It diffusions and their gen-
erator L in a straightforward way. Of course, the resulting partial differential equation
usually can not be solved analytically, but there is a wide range of well-established
numerical methods for linear PDE available for explicit computations of expectation

values.

Exercise (Feynman-Kac formula for Ité diffusions). Fix ¢ € (0,00), and suppose
that o : R” — Rand V : [0,¢] x R" — [0, c0) are continuous functions. Show that if
u € C%((0,t] x R") N C([0,] x R™) is a bounded solution of the heat equation

%(s,x) = (Lu)(s,x) = V(s,z)u(s,x) for s € (0,t], = € R",

u(0,2) = (),
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then u has the stochastic representation

u(t,z) = E, lcp(Xt) exp (- /0 t V(t— s, X,) ds)}

Hint: Consider the time reversal U(s,x) = u(t — s,x) of uw on [0,t]. Show first that
M, := exp(—A,)u(r, X,) is a local martingale if A, := [ V(s, X,) ds.

Often, the solution of an SDE is only defined up to some explosion time  where it
diverges or exits a given domain. By localization, we can apply the results above in this

case as well. Indeed, suppose that U C R" is an open set, and let
U, = {xe€U: |z|]<kand dist(z,U°) > 1/k}, keN.

Then U = |J Uy. Let T}, denote the first exit time of (X;) from Uj. A solution (X;) of
the SDE (ILI.3) up to the explosion time { = sup 7} is a process (X¢):e(o,c)ufo} such
that for every k£ € N, T}, < ¢ almost surely on {¢ € (0, 00)}, and the stopped process
X7 is a semimartingale satisfying (IT.1.6) for t < Tj,. By applying It&’s formula to the

stopped processes, we obtain:

Theorem 11.3 (Martingale problem for It6 diffusions). If X; : 0 — U is a solution
of (ILLL3) up to the explosion time ¢, then for any F € C*(R, x U) and zy € U, the

process

' (OF
M, = F(tX —/ 4 LF)(s,X,)ds, t<C,
: (6.X0) = | (G +£F)(.%) ¢

is a local martingale up to the explosion time (, and the stopped processes M+, k € N,

are localizing martingales.

Proof. We can choose functions F, € CZ([0,a]xU), k € N, a > 0, such that F},(¢,x) =
F(t,x) fort € [0,a] and = in a neighbourhood of Uj. Then for t < a,

b OF,
M* = My, = F(t,Xorn)— / (a—tk + ['Fk> (s, Xoa,) ds.
0
By , the right hand side is a bounded martingale. 0

Stochastic Analysis Andreas Eberle



11.1. LEVY CHARACTERIZATIONS AND MARTINGALE PROBLEMS 371

Lévy characterization of weak solutions

Lévy’s characterization of Brownian motion can be extended to solutions of stochastic

differential equations of type

driven by a d-dimensional Brownian motion (B;). As a consequence, one can show
that a process is a weak solution of (L. LS8) if and only if it solves the corresponding
martingale problem. As above, we assume that the coefficients b : R, x R? — R% and

o : R, x RY — R%9 are measurable and locally bounded, and we set

2

1< 9 0
L = 522 axzaxfrzb ta)o (11.1.9)

where a(t, z) = o(t,x)o(t, z)T.

Theorem 11.4 (Weak solutions and the martingale problem). If the matrix o(t, )
is invertible for any t and x, and (t,x) — o(t,z)~" is a locally bounded function on

R, x RY then the following statements are equivalent:
(i) (X:) is a weak solution of (LL_L8) on the setup (52, A, P, (F;), (By)).

(ii) The processes Mj := X} — X§ — [ bi(s, X,) ds, 1 < i < d, are continuous local

(FF) martingales with covariations

t
[M¢, M), = /aij(s,Xs) ds  P-as. forany t>0.  (11.1.10)
0

(iii) The processes th = f(Xy) — f(Xo) — fot(ﬁf)(s,XS) ds, f € C*(RY), are

continuous local (F}") martingales.

(iv) The processes th = f(t, Xy) — (0, Xo) — fo ( + Lf)(s, Xs) ds,

f € C*(Ry. x RY), are continuous local (F}') martingales.
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Proof. (i)=(iv) is a consequence of the Itd-Doeblin formula, cf. Theorem [L1.3above.
(iv)=-(ii1) trivially holds.
(iii)=-(ii) follows by choosing for f polynomials of degree > 2. Indeed, for f(z) = 27,

we obtain £f = b’, hence
t
M = Xg—Xf—/bi(s,Xs)ds S (11.1.11)
0

is a local martingale by (iii). Moreover, if f(z) = x'2/ then Lf = a¥ + z'0/ + 27V by

the symmetry of a, and hence

t
XiX7— XX = th+/ (0% (s, Xo)+ X2V (5, X))+ X7 b(s, X,)) ds. (11.1.12)
0

On the other hand, by the product rule and (IL.LI1),
XX - XXl = /t X' dXi+ /t X7 dX!+[X', X7), (11.1.13)
0 0
= N, + /t (X1 (s, Xs) + X] b'(s, X,)) ds + [ X', X7,
0
with a continuous local martingale N. Comparing (IL.I.12)) and (IL.I.13) we obtain
MM, = [XLXT), = /t a” (s, X,) ds
0

since a continuous local martingale of finite variation is constant.

(i1))=-(1) 1is a consequence of Lévy’s characterization of Brownian motion: If (ii) holds
then
dXt - th -+ b(t, Xt) dt - O'(t, Xt) dBt -+ b(t, Xt) dt

where M, = (M}, ..., M{) and B, := [} o(s, X)~" dM, are continuous local martin-
gales with values in R? because o' is locally bounded. To identify B as a Brownian

motion it suffices to note that

t
[B*, B, = / > (ot ") (s, Xo) d[M', M7
0 %7
t
= / (cr_la(cr_l)T)kl (s,Xs)ds = Ot
0
forany k,l = 1,...,d by (LILI0). O
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Remark (Degenerate case). If o(¢,x) is degenerate then a corresponding assertion
still holds. However, in this case the Brownian motion (B;) only exists on an extension
of the probability space (€2, .4, P, (F;)). The reason is that in the degenerate case, the
Brownian motion can not be recovered directly from the solution (X;) as in the proof

above, see [138] for details.

The martingale problem formulation of weak solutions is powerful in many respects:
It is stable under weak convergence and therefore well suited for approximation argu-
ments, it carries over to more general state spaces (including for example Riemannian
manifolds, Banach spaces, spaces of measures), and, of course, it provides a direct link
to the theory of Markov processes. Do not miss to have a look at the classics by Stroock
and Varadhan [40]] and by Ethier and Kurtz [16]] for much more on the martingale prob-

lem and its applications to Markov processes.

11.2 Random time change

Random time change is already central to the work of Doeblin from 1940 that has been
discovered only recently [3]. Independently, Dambis and Dubins-Schwarz have devel-
oped a theory of random time changes for semimartingales in the 1960s [25], [37]. In
this section we study random time changes with a focus on applications to SDE, in par-

ticular, but not exclusively, in dimension one.

Throughout this section we fix a right-continuous filtration (F;) such that 7, = F©
for any ¢ > 0. Right-continuity is required to ensure that the time transformation is

given by (F;) stopping times.

Continuous local martingales as time-changed Brownian motions

Let (M;);>0 be a continuous local (F;) martingale w.r.t. the underlying probability mea-
sure P such that My = 0. Our aim is to show that M, can be represented as By, with

a one-dimensional Brownian motion (B, ). For this purpose, we consider the random
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time substitution a — T, where T,, = inf {u : [M], > a}is the first passage time to the

level u. Note that a — T, is the right inverse of the quadratic variation ¢ — [M],, i.e.,
Mlr, = a on {1, < oo}, and,

T, = inf{u:[M],>[M)} = sup{u:[M], = M|}

by continuity of [M]. If [M] is strictly increasing then 7' = [M]~!. By right-continuity
of (%), T, is an (F;) stopping time for any a > 0.

Theorem 11.5 (Dambis, Dubins-Schwarz). If M is a continuous local (F;) martingale
with [M] s = oo almost surely then the time-changed process B, := My, a > 0, is an

(Fr,) Brownian motion, and

M; = B, foranyt >0, almost surely. (11.2.1)

The proof is again based on Lévy’s characterization.

Proof. 1) We first note that By, = M; almost surely. Indeed, by definition, By, =
MT[

[t, Tiar,). This holds true since the quadratic variation [M/] is constant on this

a,- 1t remains to verify that M is almost surely constant on the interval

interval, cf. the exercise below.

2) Next, we verify that B, = My, is almost surely continuous. Right-continuity

holds since M and T" are both right-continuous. To prove left-continuity note that

fora > 0,
lim My, . = Mg, for any a > 0
el0
by continuity of M. It remains to show My, = My, almost surely. This again

holds true by the exercise below, because 7, and 7, are stopping times, and

M. = lmMn. = lm@-9) = o = (M

by continuity of [M].
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3) We now show that (B, ) is a square-integrable (Fr, ) martingale. Since the random
variables T, are (F;) stopping times, (B,) is (Fr,) adapted. Moreover, for any a,

the stopped process M ® = M.z, is a continuous local martingale with
E[[M"™]s] = FE[Ml] = a < ox.
Hence M™* is in M?2 ([0, 00]), and
EB) = E[M;] = E[(MX)? =a forany a>0.
This shows that (B, ) is square-integrable, and, moreover,
E[B,|Fr] = E[Mr|Fr] = M, = B, forany 0 <r <a

by the Optional Sampling Theorem applied to M Te.

Finally, we note that [B], = (B), = a almost surely. Indeed, by the Optional Sampling
Theorem applied to the martingale (M7=)? — [M7=], we have

B|B; = B|\Fr,| = E[M;, —Mg|Fr]
=  E[M]g, — Mg, |Fr,] = a—r for 0<r<a.

Hence B? — a is a martingale, and thus by continuity, [B], = (B), = a almost surely.

We have shown that (B, ) is a continuous square-integrable (Fr, ) martingale with

[B], = a almost surely. Hence B is a Brownian motion by Lévy’s characterization. []

Remark. The assumption [M]., = co in Theorem ensures 1, < oo almost surely.
If the assumption is violated then M can still be represented in the form (IL.2.1)) with a
Brownian motion B. However, in this case, B is only defined on an extended probability

space and can not be obtained as a time-change of M for all times, cf. e.g. [37]].

Exercise. Let M be a continuous local (F;) martingale, and let S and T be (F;) stop-
ping times such that S < T Prove that if [M]s = [M]r < oo almost surely, then M
is almost surely constant on the stochastic interval [S, T']. Use this fact to complete the

missing step in the proof above.

We now consider several applications of Theorem [[1.5] Let (});>o be a Brownian

motion with values in R? w.r.t. the underlying probability measure P.
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Time-change representations of stochastic integrals

By Theorem[11.5and the remark below the theorem, stochastic integrals w.r.t. Brownian
motions are time-changed Brownian motions. For any integrand G € Efbvloc(RJr, RY),

there exists a one-dimensional Brownian motion B, possibly defined on an enlarged

probability space, such that almost surely,
t
/ Gs-dW, = Bfé\GsP " forany ¢t > 0.
0

Example (Gaussian martingales). If G is a deterministic function then the stochastic
integral is a Gaussian process that is obtained from the Brownian motion B by a deter-

ministic time substitution. This case has already been studied in Section 8.3 in [14]].

Doeblin [3] has developed a stochastic calculus based on time substitutions instead of

It integrals. For example, an SDE in R! of type

t t
X, — X, = / o(s, Xs) dWs + / b(s, Xs) ds
0 0

can be rephrased in the form

t
Xt — XO = Bf(;t o(s,XS)Q ds + / b(S,XS) dS
0
with a Brownian motion B. The one-dimensional It6-Doeblin formula then takes the
form
t af
f(t, Xt) - f(O, XO) = Bf(;f 0(5,X5)2 f'(5,Xs)? ds + g + £f (S, XS) ds
0

with Lf = 1 o2f" + b

Time substitution in stochastic differential equations

To see how time substitution can be used to construct weak solutions, we consider at
first an SDE of type
ay, = oY) dB; (11.2.2)
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in R! where o : R — (0, 00) is a strictly positive continuous function. If Y is a weak
solution then by Theorem and the remark below,

t
Y, = X,  with At:[Y]tz/o—(der (11.2.3)
0

and a Brownian motion X . Note that A depends on Y, so at first glace (I1.2.3)) seems
not to be useful for solving the SDE (11.2.2). However, the inverse time substitution
T = A~! satisfies

T, — = _— g

and hence

Therefore, we can construct a weak solution Y of (IL.2.2)) from a given Brownian mo-
tion X by first computing 7', then the inverse function A = 7!, and finally setting
Y = X o A. More generally, the following result holds:

Theorem 11.6. Suppose that (X,) on (2, A, P, (F;)) is a weak solution of an SDE of
the form
dX, = o(X,)dB,+b(X,)da (11.2.4)

with locally bounded measurable coefficients b : R — R? and o : R? — R such
that o(x) is invertible for almost all z, and o~ is again locally bounded. Let o : R? —

(0, 00) be a measurable function such that almost surely,
T, = /a o(Xy)du < o0 Va € (0,00), and T, =o0. (11.2.5)
0
Then the time-changed process defined by
Y, = Xy, A = T

)

is a weak solution of the SDE

dy, = (%) (Yt)dBtJr(g) (Y;) dt. (11.2.6)
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We only give a sketch of the proof of the theorem:

Proof of LL.6l (Sketch). The process X is a solution of the martingale problem for the
operator £ = 1 3" a;;() 81(?—;:cj +b(x) -V where a = 007, i.e.,

MY = F(X) - F(X) - /Oa(ﬁf)(Xu)du

is a local (F,) martingale for any f € C?. Therefore, the time-changed process
Ay
M = P )~ [ Epe) du
0

= V)~ f(Ye) — / (CF)(V,) AL dr

is a local (Fy4,) martingale. Noting that

v 1 B 1 B 1
" T'(A,) 0(X4,) o(Y,)’

we see that w.r.t. the filtration (Fj,,), the process Y is a solution of the martingale

problem for the operator

~ 1 a; b
L = - = N4 2.
0 ZZJ: 0 8xl(‘3xﬂ v
Since ¢ = % %, this implies that Y is a weak solution of (11.2.6). O

In particular, the theorem shows that if X is a Brownian motion and condition (I1.2.3))
holds then the time-changed process Y solves the SDE dY = o(Y)~/2 dB.

Example (Non-uniqueness of weak solutions). Consider the one-dimensional SDE
ay, = |Y|*dB;, Yo =0, (11.2.7)

with a one-dimensional Brownian motion (B;) and « > 0. If @« < 1/2 and z is a
Brownian motion with X, = 0 then the time-change T, = [ 0(X.,) du with o(z) =

|z| 72 satisfies

r) = B /Oagm)du} - /O“E[|Xu|—2ﬂdu
= E[|X1|2a]~/0au°‘du < o0
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for any a € (0,00). Hence holds, and therefore the process V; = Xg4,, A =
T—1, is a non-trivial weak solution of (IT.2.7). On the other hand, Y; = 0 is also a weak
solution. Hence for v < 1/2, uniqueness in distribution of weak solutions fails. For
a > 1/2, the theorem is not applicable since Assumption (IL2.5)) is violated. One can

prove that in this case indeed, the trivial solution Y; = 0 is the unique weak solution.

Exercise (Brownian motion on the unit sphere). Let Y; = B;/|B;| where (B;);>¢ is a

Brownian motion in R", n > 2. Prove that the time-changed process
t

Zo=Yr, T=A" with 4, :/ B, 2ds,
0

is a diffusion taking values in the unit sphere S"~! = {z € R™ : |z| = 1} with generator

1 82f n—1 .
i i ] z

One-dimensional SDE

By combining scale and time transformations, one can carry out a rather complete study

of weak solutions for non-degenerate SDE of the form
dXt = O'(Xt) dBt -+ b(Xt) dt, XO = Ty, (1128)

on a real interval («, 5). We assume that the initial value X is contained in («, 3), and
b, o : (o, ) — R are continuous functions such that o(x) > 0 for any = € (a, 3). We
first simplify (IL.2.8)) by a coordinate transformation Y; = s(.X;) where

s (a,B) — (8(04)75(5))

is C? and satisfies s'(z) > 0 for all x. The scale function

s(z) = /zexp(—/y iigg dx) dy

) o

has these properties and satisfies 1 025" + bs' = 0. Hence by the Itd-Doeblin formula,

the transformed process Y; = s(Xt) is a local martingale satisfying

dY, = (0)(X,)dB,
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1.e., Y is a solution of the equation
ay, = ooY})dB;, Yo = s(wo), (11.2.9)

where 7 := (0s') o s71. The SDE (I1.2.9) is the original SDE in “natural scale”. It can
be solved explicitly by a time change. By combining scale transformations and time

change one obtains:

Theorem 11.7. The following statements are equivalent:

(i) The process (X;)i<c on the setup (0, A, P,(F;),(By)) is a weak solution of
(I1.2.8) defined up to a stopping time (.

(ii) The process Y; = s(X;), t < (, on the same setup is a weak solution of ([1.2.9)
up to .

(iii) The process (Y:)s<¢ has a representation of the form Y, = éAt, where ét is a

one-dimensional Brownian motion satisfying By = s(x¢) and A = T~ with

T, - /Org(ézL) du,  oly) = 1/5@)*

Carrying out the details of the proof is left as an exercise. The measure m(dy) :=
o(y) dy is called the “speed measure” of the process Y although Y is moving faster
if m is small. The generator of Y can be written in the form £ = %ﬁd%, and the
generator of X is obtained from £ by coordinate transformation. For a much more
detailed discussion of one dimensional diffusions we refer to Section V.7 in [38]]. Here
we only note that [[1.7 immediately implies existence and uniqueness of a maximal

weak solution of :

Corollary 11.8. Under the regularity and non-degeneracy conditions on o and b im-

posed above there exists a weak solution X of ([1.2.8) defined up to the first exit time

¢ = inf{t >0: 1ingt € {a,b}}
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from the interval (o, ). Moreover, the distribution of any two weak solutions (X;)<¢
and (X;),z on |, C([0, w), R) coincide.

u>0

Remark. We have already seen above that uniqueness may fail if o is degenerate.
For example, the solution of the equationdY; = |Y;|* dB;, Yy = 0, is not unique in
distribution for o € (0, 1/2).

Example (Bessel SDE). Suppose that (R;); is a maximal weak solution of the Bessel

equation
d—1

2R,
on the interval (o, ) = (0, 00) with initial condition Ry = ry € (0,00) and the pa-

dR, = dW,+ dt, W ~BM(RY),

rameter d € R. The ODE Ls = 15" + ©1¢' = 0 for the scale function has a strictly

increasing solution
1
S(T) _ 2—d
logr for d =2

r2=4 for d # 2,

(More generally, cs + d is a strictly increasing solution for any ¢ > 0 and d € R).

Note that s is one-to-one from the interval (0, co) onto

(0, 00) for d < 2,
(5(0),5(c0)) = (—00,00) for d =2,
(—00,0) for d > 2.

By applying the scale transformation, we see that

P <TH] — P cpim) _ 00 =s)
for any a < ry < b, where T denoted the first passage time to ¢ for the process X. As

a consequence,

1 for d <2,
PlimintRi=0] = P () U {mf<7f}] =

a€(0,r0) bE(rp,00)

0 for d> 2,

University of Bonn 2015/2016



382 CHAPTER 11. TRANSFORMATIONS OF SDE

1 for d > 2,
P[limsupRt:oo} = P[ ﬂ U {TbR<Tf}] =

t1¢ b€(ro,00) a€(0,ro)

0 for d< 2.

Note that d = 2 is the critical dimension in both cases. Rewriting the SDE in natural

scale yields
ds(R) = 0o(s(R)dW  with a(y) = §(s7'(y)).

In the critical case d = 2, s(r) = logr, 5(y) = ¥, and hence o(y) = 7(y) > = €*.

Thus the speed measure is m(dy) = €% dy, and log R; = §T_1(t), ie.,
R, = exp (éT—l(t)) with T, = / exp (2§u) du
0

and a one-dimensional Brownian motion B.

11.3 Change of measure

In Section and we study connections between two different ways of

transforming a stochastic process (Y, P):

1) Random transformations of the paths: For instance, mapping a Brownian mo-

tion (Y;) to the solution (X}) of s stochastic differential equation of type
dX, = b(t,X,)dt+dY, (11.3.1)

corresponds to a random translation of the paths of (Y;):

Xi(w) = Yyw)+ Hy(w) where H; = /Otb(XS)ds.

2) Change of measure: Replace the underlying probability measure P by a modi-
fied probability measure () such that P and () are mutually absolutely continuous

on F; for any ¢ € [0, 00).
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In this section we focus mainly on random transformations of Brownian motions and the
corresponding changes of measure. To understand which kind of results we can expect

in this case, we first look briefly at a simplified situation:
Example (Translated Gaussian random variables in R%). We consider the equation
X = bX)+Y, Y ~ N(0,1;) wrt. P, (11.3.2)

for random variables X,Y : Q — R? where b : R? — R? is a “predictable” map
in the sense that the i-th component b°(x) depends only on the first « — 1 components
X% ..., X" 1 of X. The predictability ensures in particular that the transformation
defined by (IL3.2) is invertible, with X! = Y1 4+ b1, X? = V2 + 1?(X1), X3 =
Y34 03X, X2), .. X =Y 4 br(X, L X,

A random variable (X, P) is a “weak” solution of the equation (I1.3.2)) if and only
if Y := X — b(X) is standard normally distributed w.r.t. P, i.e., if and only if the

distribution P o X ! is absolutely continuous with density

P P d(z — b(x))
fR@) = Fo—b@) [det 222

= e
x-0\T)— X 2
_ @ P@E2 gl ()

where ¢?(z) denotes the standard normal density in R%. Therefore we can conclude:

(X, P) is a weak solution of (11.3.2) if and only if X ~ N(0, I;) w.r.t. the unique
probability measure Q on R satisfying P < () with
dP
o - o (X - b(X) = [b(X)[?/2). (11.3.3)
In particular, we see that the law z° of a weak solution of is uniquely deter-

mined, and .’ satisfies

= PoX ! <« QoX' = N0OI;) = i
with relative density
du® 2
d_zo(x) — rb@)—lb@)?/2
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The example can be extended to Gaussian measures on Hilbert spaces and to more
general transformations, leading to Ramer’s generalization of the Cameron-Martin The-
orem [1/]. Here, we study the more concrete situation where Y and X are replaced by a
Brownian motion and a solution of the SDE (I1.3.1]) respectively. We start by recalling
Girsanov’s Theorem [9.9]

Change of measure for Brownian motion

Let (F;) be a filtration on a measurable space (£2,.4), and fix ¢y, € (0, 00). We consider

two probability measures P and ) on (£2, .A) that are mutually absolutely continuous
on the o-algebra F;, with relative density

dP

Zy, = —=

to dQ

Then P and () are also mutually absolutely continuous on each of the o-algebras F;,

0 (2-almost surely.

Fto

t < ty, with Q- and P-almost surely strictly positive relative densities

Q 1

dP
dQ

The process (Z; )<, is a martingale w.r.t. (), and, correspondingly, (1/Z;);<¢, is a mar-

Zt -

_— EqQ|Zy,| F] and Pl = 7

tingale w.r.t. P. From now on, we always choose a cadlag version of these martingales.

If the probability measures P and () are mutually absolutely continuous on the o-algebra

Fi, then the ()-martingale Z; = % of relative densities is actually an exponential
Fi
martingale. Indeed, to obtain a corresponding representation let
t
1
Lt = / 7 dZS
0 Ls—

denote the stochastic ''logarithm' of Z. Here we are using stochastic calculus for
cadlag semimartingales, cf. Chapter [14] below. This can be avoided if one assumes that
(2-almost surely, ¢t — Z; is continuous, i.e., Z; = Z; for t > 0. In any case, the
process (L)<t is a well-defined local martingale w.r.t. () since Q-a.s., (Z;) is cadlag

and strictly positive. Moreover, by the associative law,

dZt - th st7 ZO — 1,
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so Z; is the stochastic exponential of the local ()-martingale (L,):
Zt - 5tL
In particular, if (Z;) is continuous then

Z, = ellm2,

Suppose that (X;) is a Brownian motion in R? with X, = 0 w.r.t. the probability mea-
sure () and the filtration (F;), and fix ¢y € [0, c0). Let

t
Lt - / Gs‘dXS, tZO,
0

with G € L2 (R, R?). Notice that if (F;) is the filtration generated by the Brownian
motion X then by Itd’s Representation Theorem every local martingale L with
Lo = 0 can be represented in this form. Hence in this case, we are considering the

most general mutually absolutely continuous measure transformation. Since [L]; =
t
fo |G| ds,

t 1 t
Z, = exp(/ GS-dXS——/ |G |2 ds) (11.3.4)
0 2 Jo
is the exponential of the local ()-martingale L. Recall from Section [9.3|that (Z;);<, is

a martingale under () if and only if Ey[Z;,] = 1. By Novikov’s criterion, a sufficient

condition for the global martingale property of (Z;);<i, is

plow (5 [ 16.785)] = Elew (22 < o=

cf. Theorem Assuming the global martingale property, there exists a probability

measure P on A satisfying
dP
dQ

Girsanov’s Theorem states that in this case,

Ly, Q-a.s. (11.3.5)

Fto

t
Bt = Xt - / GS dS, t S tO)
0

is a Brownian motion w.r.t. any such probability measure P.
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Applications to SDE

The Girsanov transformation can be used to construct weak solutions of stochastic dif-

ferential equations. For example, consider an SDE
dX, = b(t,X,)dt+dB, Xo = o, B ~ BM(RY), (11.3.6)

where b : R, x R? — R? is continuous, and o € R? is a fixed initial value. If the
drift coefficient is not growing too strongly as |x| — oo, then we can construct a weak
solution of (ITL.3.6) from Brownian motion by a change of measure. To this end let
(X, Q) be an (F;) Brownian motion with X, = o (Q-almost surely, and suppose that the

following assumption is satisfied:

Assumption (A). The process

t 1 t
Zy = exp (/ b(s, Xs) - dXs — 5/ b(s, X,)|? ds) , t>0,
0 0

is a martingale w.r.t. ().

By Novikov’s criterion, the assumption is always satisfied if b is bounded. More gener-
ally, it can be shown that (A) holds if b(x) is growing at most linearly in z. If (A) holds
then Eg [Z;] = 1 for any ¢ > 0, and, by Kolmogorov’s extension theorem, there exists a

probability measure P on (€2, .A) such that

dP

— = 7 2-almost surely for any ¢ > 0.
dQ 7,

By Girsanov’s Theorem, the process
t
Bt = Xt — / b(S,X3> dS, t Z O,
0

is a Brownian motion w.r.t. P, i.e. (X, P) is a weak solution of the SDE (I1.3.6).

More generally, instead of starting from a Brownian motion, we may start from a solu-
tion (X, @) of an SDE of the form
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where W is an R%-valued Brownian motion w.r.t. the underlying probability measure Q).

We change measure via an exponential martingale of type

t 1 [t
ze = e ([ o x)aw— 5 [ s as)
0 0

where b, 3 : Ry x R® — R" and 0 : R, x R" — R"*? are continuous functions.

Corollary 11.9 (Drift transformations for SDE). Suppose that (X, Q) is a weak solu-
tion of (IL32). If (Z:)1>0 is a Q-martingale and P < Q on F; with relative density Z,
foranyt > 0, then (X, P) is a weak solution of

dX, = (B+ob)(t,X,)dt + o(t,X;) dB;, B ~ BM(R%).  (11.3.8)

Proof. By (I1.3.7), the equation (I1.3.8)) holds with
t
B, = W,— / b(s, Xs) ds.
0

Girsanov’s Theorem implies that B is a Brownian motion w.r.t. P. U

Note that the Girsanov transformation induces a corresponding transformation for the

martingale problem: If (X, ()) solves the martingale problem for the operator
L 1§ i +B-V r (11.3.9)
= - aQ” ——(—— . a = 00 .
2 4= OO’ ’ ’

then (X, P) is a solution of the martingale problem for

L = L+ (ob):V = L+b-o"V.

This “Girsanov transformation for martingale problems” carries over to diffusion

processes with more general state spaces than R".
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Doob’s h-transform

The h-transform is a change of measure involving a space-time harmonic function that
applies to general Markov processes. In the case of It diffusions, it turns out to be a
special case of the drift transform studied above. Indeed, suppose that h € C1?(R, x
R™) is a strictly positive space-time harmonic function for the generator (11.3.9) of the
It6 diffusion (X, @)), normalized such that h(0,0) = 1:

%—Fﬁh — 0,  h(0,0) = 1. (11.3.10)

Then, by Itd’s formula, the process
Zt - h(t, Xt)7 t Z 0,

is a positive local ()-martingale satisfying Z, = 1 ()-almost surely. We can therefore
try to change the measure via (Z;). To understand the effect of such a transformation,
we write Z; in exponential form. By the Itd-Doeblin formula and (IL.3.10),

dZ, = (o'Vh)(t, X;) - dW,.

Hence Z; = exp(L; — $[L];) where

t t
L, = /—dZS = /(JTVlogh)(s,Xs)~dWS
0 Zs 0

is the stochastic logarithm of Z. Thus if (Z, ()) is a martingale, and P < @ with local

densities = Z, then (X, P) solves the SDE (IT.3.7) with b = 67V logh, i.e.,

|
dQ | Fy
dX; = (B+o00"Vliogh)(t,X,) dt + o(t,X;) dB;, B ~ BM(RY) w.rt. P.

(11.3.11)
The proces (X, P) is called the h-transform of (X, Q).

Example. If X; = IV, is a Brownian motion w.r.t. () then
dX, = Vlogh(t,X,)dt+dB,, B ~ BM(R?%) w.rt. P.

For example, choosing h(t,z) = exp(a - z — $|a|?t), € R%, (X, P) is a Brownian

motion with constant drift «, i.e., dX; = adt + dB,.
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11.4 Path integrals and bridges

One way of thinking about a stochastic process is to interpret it as a probability mea-
sure on path space. This useful point of view will be developed further in this and the

following section. We consider an SDE
dWy = b(W,) dt + dB;, Wy = o, B ~ BM(RY (11.4.1)

with initial condition 0 € R? and b € C(R¢,R?). We will show that the solution con-
structed by Girsanov transformation is a Markov process, and we will study its transition
function, as well as the bridge process obtained by conditioning on a given value at a
fixed time.

Let /1, denote the law of Brownian motion starting at o on (€2, V') where Q = C'(R,, R%)

and W;(x) = x; is the canonical Brownian motion on (2, u,). Let

t 1 t
Z, = exp (/ b(W) - dW, — 5/ (W) ? ds) : (11.4.2)
0 0
Note that if b(x) = —V H (z) for a function H € C*(R?) then by It6’s formula,
1 t
Z, = exp (H(WO) — H(W,) + 5/ (AH — |[VH|?) (Ws)ds) : (11.4.3)
0

This shows that Z is more robust w.r.t. variations of (V) if b is a gradient vector field,
because (I1.4.3) does not involve a stochastic integral. This robustness is crucial for

certain applications, see the example below. Similarly as above, we assume:
Assumption (A). The exponential (Z;);>¢ is a martingale w.r.t. 1.

We note that by Novikov’s criterion, the assumption always holds if
b(z)] < c-(1+]z]) for some finite constant ¢ > 0 : (11.4.4)

Exercise (Martingale property for exponentials). Prove that (Z;) is a martingale if
(IT.44) holds. Hint: Prove first that Elexp [ |b(W,)|* ds] < oo for e > 0 sufficiently
small, and conclude that E[Z.| = 1. Then show by induction that E|Zy.] = 1 for any
ke N
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If (A) holds then by the Kolmogorov extension theorem, there exists a probability mea-
sure 12 on FY such that ;% and p1, are mutually absolutely continuous on each of the

o-algebras F)V, t € [0, 00), with relative densities

it

= 7 o-a.S.
dpo | FY ol

Girsanov’s Theorem implies:

Corollary 11.10. Suppose that (A) holds. Then:
1) The process (W, ib) is a weak solution of (I1.3.6).

2) For any t € [0,00), the law of (W, ub) is absolutely continuous w.r.t. Wiener

measure i, on FV with relative density Z,.

The first assertion follows since B; = W, — fg b(W,) ds is a Brownian motion w.r.t. 1,

and the second assertion holds since % o W=1 = b,

Path integral representation

Corollary yields a rigorous path integral representation for the solution (W, 18)
of the SDE (IL.3.6): If ;" denotes the law of (W,)<; on C([0,¢], R?) w.r.t. sz} then

t t
pt(de) = exp (/ b(xs) - dxs — %/ |b(x,)|? ds) plt(d). (11.4.5)
0 0

By combining (I1.4.3) with the heuristic path integral representation

1 1 [
13 0,t _ _ - /12 2
o' (de) = - P ( 5 /o || ds) do(dxo) H dxs
0<s<t
of Wiener measure, we obtain the non-rigorous but very intuitive representation

1 1t
“ubt(dr) = gexp( /0 2!, — b(x,)|? ds) do(dzy) H drs 7 (11.4.6)

2
0<s<t
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of u2!. Hence intuitively, the “likely” paths w.r.t. ! should be those for which the

action functional .
1
](.CC) = —/ ‘x;—b(ﬂfs)’Q ds
2 Jo
takes small values, and the “most likely trajectory” should be the solution of the deter-

ministic ODE

. = b(s, )

obtained by setting the noise term in the SDE (I1.3.6) equal to zero. Of course, these
arguments do not hold rigorously, because (x) = oo for u%!- and p%¢- almost every .
Nevertheless, they provide an extremely valuable guideline to conclusions that can then

be verified rigorously, for instance via (11.4.3).

Example (Likelihood ratio test for non-linear filtering). Suppose that we are observ-
ing a noisy signal (,) taking values in R? with xy = 0. We interpret (1) as a realization
of a stochastic process (X;). We would like to decide if there is only noise, or if the
signal is coming from an object moving with law of motion dz/dt = —V H(x) where
H € C?*(R?). The noise is modelled by the increments of a Brownian motion (white
noise). This is a simplified form of models that are used frequently in nonlinear filtering
(in realistic models often the velocity or the acceleration is assumed to satisfy a similar

equation). In a hypothesis test, the null hypothesis and the alternative would be

HO : Xt = Bt7
H1 . dXt = b(Xt) dt + dBt,
where (B;) is a d-dimensional Brownian motion, and b = —V H. In a likelihood ratio

test based on observations up to time ¢, the test statistic would be the likelihood ratio
dp®t /dpdt which by can be represented in the robust form

dub’t
d,ug’t

(x) = exp <H(:c0) — H(x) + %/0 (AH — |VH|?)(xs) ds) (11.4.7)

The null hypothesis H, would then be rejected if this quantity exceeds some given value

c for the observed signal z, i.e. , if

t
H(xg) — H(z:) + %/ (AH — |[VH]*)(x,)ds > loge. (11.4.8)
0
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Note that the robust representation of the density ensures that the estimation procedure
is quite stable, because the log likelihood ratio in (IT.4.8)) is continuous w.r.t. the supre-

mum norm on C([0, ], RY).

The Markov property

Recall that if (A) holds then there exists a (unique) probability measure ;2 on (Q, FY)
such that

P[A] = E,[Z; A forany ¢t >0 and A € F,".
Here F, denotes expectation w.r.t. Wiener measure y,, with start in . By Girsanov’s
Theorem, the process (W, u?) is a weak solution of (IL4.I). Moreover, we can easily
verify that (W, %) is a Markov process:

Theorem 11.11 (Markov property). If (A) holds then (W, u’) is a time-homogeneous

Markov process with transition function

p(z,C) = W el = E[Z;W,eCl VCeBRY.

Proof. Let 0 < s < t,and let f : R? — R, be a non-negative measurable function.

Then, by the Markov property for Brownian motion,

EJlfWOIFEY] = ElfW)Z|FY)/Z,
t
= m e ([oov)-aw,— 3 [ povorar) 2]
= BwlfWiZisl = 0 )(W,)
fto- and 2-almost surely where E° denotes the expectation w.r.t. zi°. O

Remark. 1) If bis time-dependent then one verifies in the same way that (W, 1) is a
time-inhomogeneous Markov process.
2) It is not always easy to prove that solutions of SDE are Markov processes. If the

solution is not unique then usually, there are solutions that are not Markov processes.
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Bridges and heat kernels

We now restrict ourselves to the time-interval [0, 1], i.e., we consider a similar setup
as before with Q = C([0, 1], R%). Note that F}V is the Borel o-algebra on the Banach
space €2. Our goal is to condition the diffusion process (W, 1?) on a given terminal value
W, =y, y € R More precisely, we will construct a regular version y — ug’ v of the

conditional distribution p®[-|W; = y] in the following sense:
(i) Forany y € RY, i} is a probability measure on 5(Q2),and 1} [ =y = 1.

(ii) Disintegration: For any A € 5(Q), the function y — 1’ [A] is measurable,

and
b _ b b
Ho [A] - /Rd luo,y[A] Py (07 dy)

(iii) The map y — Mg,y is continuous w.r.t. weak convergence of probability mea-

sures.

Example (Brownian bridge). For b = 0, a regular version y — pu,, of the condi-
tional distribution p,[ - [W; = y] w.r.t. Wiener measure i, can be obtained by linearly
transforming the paths of Brownian motion, cf. Theorem 8.11 in [14]: Under p,, the
process

XV = W, —tW, + ty, 0<t<I1,

is independent of W, with terminal value y, and the law p,,, of (X} )te[o,l} W.LL [, 1S
a regular version of y,[ - |W; = y|. The measure f,, is called “pinned Wiener mea-

sure”.

The construction of a bridge process described in the example only applies for Brown-
ian motion and other Gaussian processes. For more general diffusions, the bridge can
not be constructed from the original process by a linear transformation of the paths. For
perturbations of a Brownian motion by a drift, however, we can apply Girsanov’s The-

orem to construct a bridge measure.

We assume for simplicity again that b is the gradient of a C? function:

b(z) = —VH(x) with H € C*(RY).
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Then the exponential martingale (Z;) takes the form

z0 = e (H0V) - HV) < [@n - HP) 45,

cf. (I1.4.3). Note that the expression on the right-hand side is defined y,, ,-almost surely
for any y. Therefore, (Z;) can be used for changing the measure w.r.t. the Brownian

bridge.

Theorem 11.12 (Heat kernel and Bridge measure). Suppose that (A) holds. Then:

1) The measure p8(o,dy) is absolutely continuous w.r.t. d-dimensional Lebesgue

measure with density
p11)<07 y) = p1<07 y) : EO,y[Zl]'

2) A regular version of ul| - |W, = y] is given by

b _ py) expH) (1T oy .
() = BOD OO o, (0 [ — [VHP)w:) ds ) (),

The theorem yields the existence and a formula for the heat kernel 24 (0, ), as well as a

path integral representation for the bridge measure ,uf;y:

1
ug’y(dx) X exp (%/ (AH — |[VH|*)(x,) ds) oy (dx). (11.4.9)
0

Proof ofll1I. 12l Let F : Q) — R, and ¢ : R — R, be measurable functions. By the

disintegration of Wiener measure into pinned Wiener measures,

BUF-gW)] = E[Fg(W)Z] = / EolF 2] 9(y) p1(0.) dy.

Choosing F' = 1, we obtain

/ o) o dy) = / 9(y) By Z1) pr(o,y) dy
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for any non-negative measurable function g, which implies 1).

Now, choosing g = 1, we obtain by 1) that

E,, |FZ

EJF] = /Eo,y[FZl] poy)dy = /M p(o,dy)  (11.4.10)
Eo,y[Zl]

= /Ei’,y[F] pi (o, dy) (11.4.11)

This proves 2), because W7 =y ugy—a.s., and y — ,uf;y is weakly continuous. U

Remark (Non-gradient case). If b is not a gradient then things are more involved be-
cause the expressions for the relative densities Z; involve a stochastic integral. In prin-
ciple, one can proceed similarly as above after making sense of this stochastic integral

for y1,,-almost every path .

Example (Reversibility in the gradient case). The representation (I1.4.9) immedi-
ately implies the following reversibility property of the diffusion bridge when b is a
gradient: If R : C([0,1],R?) — C([0,1],R?) denotes the time-reversal defined by
(Rx); = x1_4, then the image ,uf;y o R7! of the bridge measure from o to y coincides
with the bridge measure ugp from y to o. Indeed, this property holds for the Brownian

bridge, and the relative density in (I1.4.9) is invariant under time reversal.

SDE for diffusion bridges

An important application of the h-transform is the interpretation of diffusion bridges by
a change of measure w.r.t. the law of the unconditioned diffusion process (W, u’) on
C([0, 1], R?) satisfying

th = dBt + b(Wt) dt, WO = 0,

with an R%-valued Brownian motion B. We assume that the transition density (¢, z, y) +
p2(x,y) is smooth for t > 0 and bounded for ¢t > ¢ for any ¢ > 0. Then for y € R,

p°(-, ) satisfies the Kolmogorov backward equation

9
apf(-,y) = L'%)(,y)  forany t >0,
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where L’ = %A + b - V is the corresponding generator. Hence

ht,z) = pl_(zy)/ploy), t <1,

is a space-time harmonic function with 4(0,0) = 1. Since h is bounded fort < 1 — ¢
for any € > 0, the process h(t,W;) is a martingale under 1}, for £ < 1. Now let 11}, be
the measure on C([0, 1], R?) that is absolutely continuous w.r.t. u2 on F}V with relative
density h(t, W) for any ¢ < 1. Then the marginal distributions of the process (W;);<1

under %, pib | respectively are

Wiy oo s Wa) ~ 0} (0, 0)ph, _y (21, 22) - - -pfk_tk_l(:pk_l, ) A (dx) w.rt. pb,
pfs’l (0, 561)29?241 (3717 372) e 'pgk—tk,_l (Jikfh Jfk)pl{_tk (SCk, y)

p5(0,y)

N (d) WL il .

This shows that y — ug,y coincides with the regular version of the conditional distribu-
tion of p® given W7, i.e., Mg,y is the bridge measure from o to y. Hence, by Corollary
we have shown:

Theorem 11.13 (SDE for diffusion bridges). The diffusion bridge (W, ,ugyy) is a weak
solution of the SDE

dW, = dB; + b(W,)dt + (Vlogp: ,(-,y))(W,) dt, t < 1. (11.4.12)

Note that the additional drift 3(¢, ) = Vlogp}_,(-,y)(z) is singular as ¢ 1 1. Indeed,
if at a time close to 1 the process is still far away from y, then a strong drift is required

to force it towards y. On the o-algebra 7", the measures 1% and 1}, are singular.

Remark (Generalized diffusion bridges). Theorem [IT.13] carries over to bridges

of diffusion processes with non-constant diffusion coefficients o. In this case, the
SDE (I1.4.12) is replaced by

AWy = o(Wy) dB; + b(W;) dt + (00" Viegpi_i(-,y)) (W) dt.  (11.4.13)

The last term can be interpreted as a gradient of the logarithmic heat kernel w.r.t. the

Riemannian metric g = (o0”)~! induced by the diffusion process.
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11.5 Large deviations on path spaces

In this section, we apply Girsanov’s Theorem to study random perturbations of a dy-

namical system of type
dX: = b(X7)dt+edB, X; =0, (11.5.1)

asymptotically as € | 0. We show that on the exponential scale, statements about the
probabilities of rare events suggested by path integral heuristics can be put in a rigorous

form as a large deviation principle on path space.

Let Q) = Cy([0, 1], RY) endowed with the supremum norm ||w|| = sup {|w(t)| : t € [0,1]},
let 1« denote Wiener measure on 3(£2), and let Wy (w) = w(t).

Support of Wiener measure

For h € €, we consider the translation operator 77, : {2 — 2,

Th(w) = w+h,

1

and the translated Wiener measure pp = po 7, . We recall the Cameron-Martin

Theorem from Section For the convenience of the reader, we also give a second

proof that is based on Girsanov’s Theorem:

Theorem 11.14 (Cameron, Martin 1944). Let h € Q). Then j; < p if and only if h is

contained in the Cameron-Martin space
Hey = {h€Q : hisabsolutely contin. with h' € L*([0,1],R%)} .

In this case, the relative density of i, w.r.t. | is

d,LLh /t/ l/t 112
i/ W dW,—= [ |h.|?ds). 1152
I exp(os 5/ 5) (11.5.2)
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Proof. “=" is a consequence of Girsanov’s Theorem: For h € Hg,,, the stochastic
integral [ A/ dW has finite deterministic quadratic variation [ [ A’ - dW]; = fol |h'|? ds.

Hence by Novikov’s criterion,

t 1 t
Z, = eXp(/ h’~dW——/\h’|2ds>
0 2 0

is a martingale w.r.t. Wiener measure p. Girsanov’s Theorem implies that w.r.t. the

measure v = Z; - p, the process (V) is a Brownian motion translated by (h;). Hence

pn = po(W+h™" = voW? = u

“«<" To prove the converse implication let i € €, and suppose that y;, < pu. Since W
is a Brownian motion w.r.t. 1, W — h is a Brownian motion w.r.t. y,. In particular, it
is a semimartingale. Moreover, IV is a semimartingale w.r.t.  and hence also w.r.t. y,.
Thus h = W — (W — h) is also a semimartingale w.r.t. z1;,. Since h is deterministic, this

implies that A has finite variation. We now show:
Claim. The map g — fol g - dh is a continuous linear functional on L*([0, 1], RY).

The claim implies h € H¢),. Indeed, by the claim and the Riesz Representation Theo-
rem, there exists a function f € L?([0, 1], R) such that

1 1
/ g-dh = / g-fds  forany g € L*([0,1],R?).
0 0

Hence h is absolutely continuous with /' = f & L*([0,1],R?). To prove the claim
let (g,) be a sequence in L%([0,1],RY) with ||g,||zz — 0. Then by It0’s isometry,
[ gn dW — 0in L?(), and hence p- and ju,-almost surely along a subsequence. Thus

also
/gn-dh = /gn-d(W+h)—/gn-dW — 0

p-almost surely along a subsequence. Applying the same argument to a subsequence of
(9n), we see that every subsequence (g, ) has a subsequence (g,,) such that [ g,,-dh — 0.
This shows that [ g, - dh converges to 0 as well. The claim follows, since (g,,) was an

arbitrary null sequence in L2([0, 1], R9). O
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A first consequence of the Cameron-Martin Theorem is that the support of Wiener mea-
sure is the whole space 2 = Cy([0, 1], R%):

Corollary 11.15 (Support Theorem). For any h € Q2 and § > 0,

pl{weQ : |lw—"n||<d}] > o

Proof. Since the Cameron-Martin space is dense in {2 w.r.t. the supremum norm, it is
enough to prove the assertion for h € H¢y,. In this case, the Cameron-Martin Theorem

implies
pll|W—=nhl[<d6] = pn[|W][<d] > o0
as p[||W|| < 0] > 0and p_p < p. ]
Remark (Quantitative Support Theorem). More explicitly,
W —hl <] = ua[IW) <]

1 1 /1
= Elexp(— [ W -dW—= [ |WN]*ds); max|W,| <§
2 s<1
0 0 <

where the expectation is w.r.t. Wiener measure. This can be used to derive quantitative

estimates.

Schilder’s Theorem

We now study the solution of (IT.3.1) for b = 0, i.e.,
Xta — \/g Bta t e [0, ]_],

with € > 0 and a d-dimensional Brownian motion (B, ). Path integral heuristics suggests
that for h € Heyy,

“ P[)(6 =~ h,] = M[W ~ _:| ~ e—[(h/\/g) _ €_I(h)/8 .
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where I : 2 — [0, oo] is the action functional defined by

5L W ()P ds ifwe Ho,
I(w) =

+00 otherwise.

The heuristics can be turned into a rigorous statement asymptotically as € — 0 on the
exponential scale. This is the content of the next two results that together are know as

Schilder’s Theorem:

Theorem 11.16 (Schilder’s large derivation principle, lower bound).

1) Forany h € Hepr and 6 > 0,

h%nf elog u[veW € B(h,8)] > —I(h).

2) For any open subset U C (),

lini%nfglog plvVew e U] > —inf I(w).

wel

Here B(h,0) ={w € Q : ||w — h|| < J} denotes the ball w.r.t. the supremum norm.
Proof. 1) Let ¢ = \/81(h). Then for ¢ > 0 sufficiently small,

u[VEW € B(L6)] = pW € B(h/VE,6/V2)
= gy B0.5/VE)]

_ E[exp(—% Olh’.dW—2—1€/01\h/|2ds>;B(O,%)]
(_éj(h)_%w[{/o hﬂdec}mB(O,%ﬂ
> ;exp(-gm— M)

v
@

>

o]

3

where E stands for expectation w.r.t. Wiener measure. Here we have used that

M[/lh'.dW>c} < czE[(/lh’~dW>2] — 2A(h)/E < 1/4
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by It6’s isometry and the choice of c.

2) Let U be an open subset of 2. For h € U N H¢yy, there exists § > 0 such that
B(h,d) C U. Hence by 1),

limiionf elog plveW e U] > —I(h).

Since this lower bound holds for any h € U N Hgyy, and since [ = oo on U \ Heypy, we

can conclude that

lim&)nfalog plveWw et > — inf I(h) = —inf I(w).

heUNHc v welU

O

To prove a corresponding upper bound, we consider linear approximations of the Brow-

nian paths. For n € N let
Wt(n) = (1 — S)Wk/n + 8Wk+1/n

whenever t = (k + s)/nfork € {0,1,...,n— 1} and s € [0, 1].

Theorem 11.17 (Schilder’s large deviations principle, upper bound).

1) Foranyn € Nand \ > 0,

limsup elog p[I(veEW™) >\ < =\
el0

2) For any closed subset A C (),

limsup elog u[veW € A] < —inf I(w).
el0 wEA

Proof. 1) Lete > 0andn € N. Then

1 n
I(Vew®™) = §5Zn(Wk/n—W<k—1>/n>2-
k=1
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Since the random variables 7y, := /n - (W}, m—Wa-1 /n) are independent and standard

normally distributed, we obtain
PIVEWO) =N = D Il = 23/e]
< exp(—2Ac/e) [exp ( Z |7k | )]

where the expectation on the right hand side is finite for ¢ < 1/2. Hence forany ¢ < 1/2,

limsup elog p[I(veW™) >\ < —2c\.
el0

The assertion now follows as ¢ T 1/2.

2) Now fix a closed set A C Q and A < inf {/(w) : w € A}. To prove the second

assertion it suffices to show

limsup elog pu[veW € 4] < =\ (11.5.3)
el0

By the Theorem of Arzéla-Ascoli, the set {/ < A} is a compact subset of the Banach
space §2. Indeed, by the Cauchy-Schwarz inequality,

lw(t) — ’/ du < VoaVi—s Vs, telo,1]

holds for any w € Q satisfying /(w) < A. Hence the paths in {/ < A} are equicontinu-
ous, and the Arzéla-Ascoli Theorem applies.

Let 0 denote the distance between the sets A and {/ < A} w.r.t. the supremum norm.
Note that § > 0, because A is closed, {/ < A} is compact, and both sets are disjoint by

the choice of A. Hence for £ > 0, we can estimate

plvVew e 4] < M[[(\/EW(”)) > A+ pll[vVeEW — \/EW(n)Hsur) > 4].

The assertion (IL.3.3)) now follows from

limsup elog p[l(vEW™) >\ < =X, and (11.5.4)
el0

limsup elog p[|[W — W™ || >0/vE] < =\ (11.5.5)
el0

The bound (I1.5.4) holds by 1) for any n € N. The proof of (IL.5.5) reduces to an
estimate of the supremum of a Brownian bridge on an interval of length 1/n. We leave

it as an exercise to verify that (I1.5.3)) holds if n is large enough. O
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Remark (Large deviation principle for Wiener measure). Theorems and
show that

plVew € Al ~ exp ( ! inf [(w))

£ weA
holds on the exponential scale in the sense that a lower bound holds for open sets and

an upper bound holds for closed sets. This is typical for large deviation principles,
see e.g. [10] or [11]. The proofs above based on “exponential tilting” of the underly-
ing Wiener measure (Girsanov transformation) for the lower bound, and an exponential
estimate combined with exponential tightness for the upper bound are typical for the

proofs of many large deviation principles.

Random perturbations of dynamical systems

We now return to our original problem of studying small random perturbations of a

dynamical system
dX: = b(X;)dt++/edBy, X; = 0. (11.5.6)
This SDE can be solved pathwise:

Lemma 11.18 (Control map). Suppose that b : R? — R% is Lipschitz continuous.
Then:

1) Forany functionw € C(|0, 1], R?) there exists a unique function v € C([0, 1], R?)
such that

x(t) = /Ot b(x(s)) ds + w(t) Vi elo,1]. (11.5.7)

The function x is absolutely continuous if and only if w is absolutely continuous,

and in this case,

) = bx@)+J(t)  forae te|0,1]. (11.5.8)

2) The control map J : C([0,1],R?) — C([0,1],RY) that maps w to the solution
J(w) = x of (LL5.7) is continuous.
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Proof. 1) Existence and uniqueness holds by the classical Picard-Lindelof Theorem.
2) Suppose that x = J(w) and z = J (w) are solutions of (IL.5.7)) w.r.t. driving paths
w,w € C[0,1],R%). Then for t € [0, 1],

o) =501 = | [ (et — 0@ ds + VEelt) - 30
< [ lo) ~306)| ds -+ VEI(Om — 300
where I € R, is a Lipschitz constant for b. Gronwall’s Lemma now implies
o)~ 70 < exp(t) VEllo —Blluy Vi€ [0,1],

and hence
||l’ - ZEHsup S eXp(L) \/E ||w - @HSUP'

This shows that the control map 7 is even Lipschitz continuous. L
For £ > 0, the unique solution of the SDE (I1.5.6)) on [0, 1] is given by
X = J(VEB).

Since the control map J is continuous, we can apply Schilder’s Theorem to study the

large deviations of X© as e | 0:

Theorem 11.19 (Fredlin & Wentzel 1970, 1984). If b is Lipschitz continuous then the

large deviations principle

1im¢%nf elog P[IX*eU] > - in[fj Iy(z) for any open set U C (,
& S

1im¢%nf elog P[X*e A > - inlf4 Iy(z)  forany closed set A C Q,
G xe
holds, where the rate function I, : Q) — [0, 00| is given by

L[ a/(s) — b(x(s))2ds  for = € How,
+00 fOr er\HCM

Ib(ZL‘) =
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Proof. For any set A C (2, we have
PX*eAl = PeBeJ '(4)] = peW e T '(A).
If A is open then J~!(A) is open by continuity of 7, and hence

liminf elog P[X*€ A] > — inf I
iminf ¢log P ] = et (w))

by Theorem [IT.16 Similarly, if A is closed then J*(A) is closed, and hence the
corresponding upper bound holds by Theorem Thus it only remains to show that

inf [ = f I
L IC) inf Iy(2).

To this end we note that w € J'(A) if and only if z = J(w) € A, and in this case
w' =z’ — b(x). Therefore,

inf I(w) = inf / ' (s)|? ds
weJT ~1(A) weJT~1(A) OHCM 2
_ . = 2 _
= me;ggmgx( s) — b(z(s))[” ds inf I,(z).

O

Remark. The large deviation principle in Theorem generalizes to non-Lipschitz
continuous vector fields b and to SDEs with multiplicative noise. However, in this case,
there is no continuous control map that can be used to reduce the statement to Schilder’s

Theorem. Therefore, a different proof is required, cf. e.g. [10].
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Chapter 12
Extensions of 1to calculus

This chapter contains an introduction to some important extensions of Itd calculus and
the type of SDE considered so far. We will consider SDE for jump processes driven
by white and Poisson noise, Stratonovich calculus and Brownian motion on curved
surfaces, stochastic Taylor expansions and numerical methods for SDE, local times and

a singular SDE for reflected Brownian motion, as well as stochastic flows.

We start by recalling a crucial martingale inequality that we will apply frequently to
derive L? estimates for semimartingales. For real-valued cadlag functions x = (x¢):>0
we set

xy = sup|wz for t > 0, and xy = |xol.
s<t

Then the Burkholder-Davis-Gundy inequality states that for any p € (0, 00) there

exist universal constants c,, C),, € (0, co) such that the estimates
¢ E[IMEP] < BIMLY) < G, E[[MJ] (12.0.1)

hold for any continuous local martingale M satisfying M, = 0, cf. [37]. The inequality
shows in particular that for continuous martingales, the H? norm, i.e., the LP norm of
M, is equivalent to E[[M]%*]"/?. Note that for p = 2, by Itd’s isometry and Doob’s L2
maximal inequality, Equation (I2.0.1)) holds with ¢, = 1 and C},, = 4. The Burkholder-
Davis-Gundy inequality can thus be used to generalize arguments based on 1t6’s isome-
try from an L? to an L? setting. This is, for example, important for proving the existence

of a continuous stochastic flow corresponding to an SDE, see Section [12.6 below.
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In these notes, we only prove an easy special case of the Burkholder-Davis-Gundy in-

equality that will be sufficient for our purposes: For any p € [2, 00),
E[(Mp)P]Y? < \JeJ2 p E[[M])/*)V/P (12.0.2)

This estimate also holds for cadlag local martingales and is proven in Theorem [14.24]

12.1 SDE with jumps

Let (S,S, ) be a o-finite measure space, and let d,n € N. Suppose that on a proba-
bility space (€2, A, P), we are given an R%-valued Brownian motion (B;) and a Poisson
random measure N (dt dy) over Ry x S with intensity measure A\ ) ® v. Let (F)
denote a complete filtration such that (B;) is an (F;) Brownian motion and N,;(B) =

N((0,t] x B) is an (F;) Poisson point process, and let

N(dtdy) = N(dt dy) — No,0)(dt) v(dy).

If T is an (F;) stopping time then we call a predictable process (w,t) — G(w) or
(w,t,y) — Gy(y)(w) defined for finite ¢ < T'(w) and y € S locally square integrable
iff there exists an increasing sequence (7,,) of (F;) stopping times with 7" = sup 7,
such that for any n, the trivially extended process G I(<r,) is contained in L2(P ®
A), L2(P ® \ ® v) respectively. For locally square integrable predictable integrands,
the stochastic integrals [, G, dB, and Joaxs Gs(¥) N(ds dy) respectively are local
martingales defined for ¢ € [0, 7).

In this section, we are going to study existence and pathwise uniqueness for solutions

of stochastic differential equations of type

dX; = b(X)dt+o(X)dB, +/ (X, y) N(dt dy). (12.1.1)

yeSs
Here b : R, x D(R,,R") — R", ¢ : R, x D(R,,R") — R" and ¢ : R, x
D(R,,R™) x S — R™ are cadlag functions in the first variable such that b;, o, and ¢;
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are measurable w.r.t. the o-algebras B; := o(x — x5 : s < t), B, ® S respectively for

any t > 0. We also assume local boundedness of the coefficients, i.e.,

sup sup sup ([bs(z)] + [los(@)[| + |es(z, y)]) < oo (12.1.2)

s<t mzx;<r yeS

for any ¢, 7 € (0, 00).

Note that the assumptions imply that b is progressively measurable, and hence b,(z) is
a measurable function of the path (z;)s<; up to time ¢. Therefore, b,(z) is also well-
defined for cadlag paths (z,)s<¢ with finite life-time ¢ provided ¢ > ¢. Corresponding
statements hold for o; and ¢;. Condition (12.1.2) implies in particular that the jump
sizes are locally bounded. Locally unbounded jumps could be taken into account by
extending the SDE (I2Z.1.1) by an additional term consisting of an integral w.r.t. an

uncompensated Poisson point process.

Definition. Suppose that T is an (F;) stopping time.

1) A solution of the stochastic differential equation (I2.11) for t < T is a cadlag
(F:) adapted stochastic process (X;)i<r taking values in R" such that almost

surely,

t t
X; = Xo+/ bs(X) ds+/ os(X) st+/ cs—(X,y) N(dsdy) (12.1.3)
0 0 (0%

holds forany t < T.

2) A solution (X;)<r is called strong iff it is adapted w.r.t. the completed filtration
F? = o(Xo, FPM\P generated by the initial value, the Brownian motion and the

Poisson point process.

For a strong solution, X, is almost surely a measurable function of the initial value X
and the processes (Bjs)s<; and (Ny)s<; driving the SDE up to time ¢. In Section

we saw an example of a solution to an SDE that does not possess this property.

Remark. The stochastic integrals in (I2.1.3) are well-defined strict local martingales.

Indeed, the local boundedness of the coefficients guarantees local square integrabil-
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ity of the integrands as well as local boundedness of the jumps for the integral w.r.t.
N. The process o(X) is not necessarily predictable, but observing that o, (X (w)) =
0s— (X (w)) for P ® X almost every (w, s), we may define

/ 0,(X) dB, = / o, (X) dB,.

LP Stability

In addition to the assumptions above, we assume from now on that the coefficients in

the SDE (12.1.1)) satisfy a local Lipschitz condition:

Assumption (A1). For any ¢, € R, and for any open bounded set U C R", there
exists a constant . € R, such that the following Lipschitz condition Lip(¢y, U)
holds:

[be(2) = be(@)| + low(z) — o@D + ez, 0) — (T, 0)l[12) < L-supla, — T

s<t
for any ¢ € [0, ] and 2,7 € D(R,,R"™) with z,, 7, € U for s < t,.

We now derive an a priori estimate for solutions of (I2.1.1)) that is crucial for studying

existence, uniqueness, and dependence on the initial condition:

Theorem 12.1 (A priori estimate). Fix p € [2,00) and an open set U C R", and let T
be an (F,) stopping time. Suppose that (X,) and (X,) are solutions of (IZL.1) taking
values in U fort < T, and let

g = E{ sup | X —)~(8|p} :

S<IAT

If the Lipschitz condition Lip(to, U) holds then there exists a finite constant C' € R
depending only on p and on the Lipschitz constant L such that for any t < t,,

t
e < C-(so+/ 8sds>, o (12.1.4)
0

g £ O g (12.1.5)
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Proof. We only prove the assertion for p = 2. For p > 2, the proof can be carried out

in a similar way by relying on Burkholder’s inequality instead of Itd’s isometry.

Clearly, (1Z.1.3) follows from (IZ.1.4) by Gronwell’s lemma. To prove (I12.1.4), note
that

t t
X, = X0+/ bs(X) ds—l—/ os(X) st—l—/ cs— (X, y) N(ds dy) Vi<T,
0 0 (0%

and an analogue equation holds for X. Hence for t < to,

(X =X)p < T+ 11+ 10 +1V,  where (12.1.6)
I - ‘XO—)?()‘,
tAT N
mno— / 1bo(X) — by(X)] ds,
0
I = sup ‘/ (05(X) — 04(X)) dB,|, and
u<tAT 0
Vo= s | [ (e () - e (Roy) (s dy)|
u<tA\T
(0,u] xS

The squared L2-norms of the first two expressions are bounded by
E[I’] = &, and

tAT _ t
B < L%E[/ (X—X)fds} < LZt/ e, ds.
0 0

Denoting by M, and K, the stochastic integrals in III and IV respectively, Doob’s

inequality and It6’s isometry imply
EMr] = EMj7] < 4E[M,]

tAT N t
_ 4E[/ ||08(X)—08(X)||2ds] < 4L2/ e, ds,
0 0

EIV?] = EIK5;] < 4B[KGy)

_ 4E[/OMT/\CS(X,y)—cs()?,y)\%(dy) as| < 4 /Otgs ds.
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The assertion now follows since by (12.1.6),
& = B[(X-X)5%] < 4-BE+12+11% 41V,
U

The a priori estimate shows in particular that under a global Lipschitz condition, solu-
tions depend continuously on the initial condition in mean square. Moreover, it implies

pathwise uniqueness under a local Lipschitz condition:

Corollary 12.2 (Pathwise uniqueness). Suppose that Assumption (Al) holds. If (X;)
and ()?t) are strong solutions of (12.0.1)) with X, = X, almost surely then

P[Xt = X foranyt} - L

Proof. For any open bounded set U C R" and ¢y € R, the a priori estimate in Theorem
[[2.1limplies that X and X coincide almost surely on [0,y A Tyc) where Tye denotes
the first exit time from U. [

Existence of strong solutions

To prove existence of strong solutions, we need an additional assumption:

Assumption (A2). Foranyi, € R,,

sup/|ct(0,y)|2 v(dy) < oo.

t<to

Here 0 denotes the constant path x = 0 in D(R, R").
Note that the assumption is always satisfied if ¢ = 0.

Remark (Linear growth condition). If both (A2) and a global Lipschitz condition
Lip(to, R™) hold then there exists a finite constant C'(¢,) such that for any x € D(R,, R"),

sup ([ (@)l + ()] + / (o)) < Clto) (14a7,)% (12.17)
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Theorem 12.3 (Ito). Let & : Q0 — R™ be a random variable that is independent of the
Brownian motion B and the Poisson random measure N.

1) Suppose that the local Lipschitz condition (Al) and (A2) hold. Then (I2.0.1)) has

a strong solution (Xy);<¢ with initial condition X, = & that is defined up to the

explosion time
¢ = supTy, where T, = inf{t>0:|X;|>k}.

2) If, moreover, the global Lipschitz condition Lip(ty, R™) holds for any to € R,

then ¢ = oo almost surely.

Proof of We first prove existence of a global strong solution (X;);c[o,00) aSsuming
(A2) and a global Lipschitz condition Lip(¢y, R™) for any ¢, € R,. The first assertion

will then follow by localization.

For proving global existence we may assume w.l.0.g. that £ is bounded and thus square
integrable. We then construct a sequence (X") of approximate solutions to (I2.0.1) by

a Picard-Lindelof iteration, i.e., for £ > 0 and n € Z, we define inductively

X0 = ¢ (12.1.8)

t t
XZTJrl = §+/ bs(Xn) d5+/ Us(Xn> dBs + / Csf(Xnay) N<d3 dy)
0 0
(0,¢] xS

Fix ¢ty € [0,00). We will show below that Assumption (A2) and the global Lipschitz

condition imply that

(i) for any n € N, X" is a square integrable (F}) semimartingale on [0, ] (i.e.,
the sum of a square integrable martingale and an adapted process with square

integrable total variation), and
(ii) there exists a finite constant C'(¢y) such that the mean square deviations

AP = E[(XT - X))
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of the approximations X" and X! satisfy
t
A < C’(to)/ AT ds forany n >0 and t < t,.
0

Then, by induction,
tn
AP < C(to)" =AY forany n €N and t <t.
n:

In particular, >~ >° | A} < co. An application of the Borel-Cantelli Lemma now shows
that the limit X, = lim,_, ., X exists uniformly for s € [0, ¢o] with probability one.
Moreover, X is a fixed point of the Picard-Lindelof iteration, and hence a solution of
the SDE (I2.0.1). Since ¢, has been chosen arbitrarily, the solution is defined almost
surely on [0, 00), and by construction it is adapted w.r.t. the filtration ().

We now show by induction that Assertion (i) holds. If X™ is a square integrable (F})
semimartingale on [0, ¢o] then, by the linear growth condition (I2.1.7), the process
B (X + ([ (X + [
P ® Ao,,). Therefore, by It6’s isometry, the integrals on the right hand side of (I2.1.8)

cs(X™ y)|? v(dy) is integrable w.r.t. the product measure

all define square integrable (F) semimartingales, and thus X" "' is a square integrable

(F?) semimartingale, too.

Assertion (ii) is a consequence of the global Lipschitz condition. Indeed, by the Cauchy-
Schwarz inequality, 1td’s isometry and Lip(to, R™), there exists a finite constant C'(¢y)
such that

NG [(Xn+2 _Xn+1):2i|

< 3tE Uot b, (X™H) — by(X™)|* ds} +3E Uot o, (X4 — g (X™)||* ds
+3E Uot/}cs(X”“,y) — (X", y)|” v(dy) dS}
< Clto) /OtAZ ds forany n > 0 and t < t,.

This completes the proof of global existence under a global Lipschitz condition.

Finally, suppose that the coefficients b, 0 and c only satisfy the local Lipschitz condition
(Al). Then for k € Nand t, € R,, we can find functions b*, ¢* and c* that are globally
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Lipschitz continuous and that agree with b, o and ¢ on paths (x;) taking values in the
ball B(0,k) for t < to. The solution X ) of the SDE with coefficients b*, 0%, c* is
then a solution of (I2Z.0.1) up to ¢t A T}, where T}, denotes the first exit time of X (*) from
B(0, k). By pathwise uniqueness, the local solutions obtained in this way are consistent.
Hence they can be combined to construct a solution of (12.0.1)) that is defined up to the

explosion time ( = sup 7. ]

Non-explosion criteria

Theorem [12.3] shows that under a global Lipschitz and linear growth condition on the
coefficients, the solution to (I2.0.1)) is defined for all times with probability one. How-
ever, this condition is rather restrictive, and there are much better criteria to prove that
the explosion time ( is almost surely infinite. Arguably the most generally applicable
non-explosion criteria are those based on stochastic Lyapunov functions. Consider for

example an SDE of type
dX;, = b(X,y) dt+ o(X;)dBy (12.1.9)

where b : R” — R™ and o : R” — R"*? are locally Lipschitz continuous, and let

1 T
£ = 32 e@)gas+ba) V. al) = o@o),

ij=1

denote the corresponding generator.

Theorem 12.4 (Lyapunov condition for non-explosion). Suppose that there exists a
function ¢ € C?*(R™) such that
(i) ¢(z) >0 foranyx € R",
(ii) ¢(xr) - o0 as|z| — oo, and
(iii) Lo < \p for some \ € R,.
Then the strong solution of (I2.0.1) with initial value xo € R"™ exists up to { = oo

almost surely.
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Proof. We first remark that by (iii), Z; := exp(—At)¢(X;) is a supermartingale up to
the first exit time 7}, of the local solution X from a ball B(0, k) C R". Indeed, by the

product rule and the It6-Doeblin formula,
dZ = —de™Mp(X)dt + e Mdp(X) = dM + e M(Lp — \g)(X) dt

holds on [0, T}] with a martingale M up to 7.
Now we fix t > 0. Then, by the Optional Stopping Theorem and by Condition (i),

p(zo) = Elp(Xo)] = Elexp(=A(t ATk)) o(Xenr, )]
> Elexp(=At) o(Xn,); Ti < 1
> exp(=At) inf ¢y) P[Ti <]

for any k € N. As k — oo, inf}y—; ¢(y) — oo by (ii). Therefore,
Plsup Ty, <t] = klim PT, <t] =0
—00
forany t > 0, i.e., ( = sup T = oo almost surely. O

By applying the theorem with the function p(x) = 1 + |z|? we obtain:

Corollary 12.5. If there exists A € R such that
2z - b(z) +tr(a(z)) < X-(1+|z)*)  foranyz € R"

then ( = oo almost surely.

Note that the condition in the corollary is satisfied if
— -b(x) < const. |z and tra(x) < const. -|z|?

for sufficiently large z € R", i.e., if the outward component of the drift is growing at

most linearly, and the trace of the diffusion matrix is growing at most quadratically.
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12.2 Stratonovich differential equations

Replacing Itd by Statonovich integrals has the advantage that the calculus rules (product
rule, chain rule) take the same form as in classical differential calculus. This is useful
for explicit computations (Doss-Sussman method), for approximating solutions of SDE
by solutions of ordinary differential equations, and in stochastic differential geometry.
For simplicity, we only consider Stratonovich calculus for continuous semimartingales,

cf. [36]] for the discontinuous case.

Let X and Y be continuous semimartingales on a filtered probability space (€2, A, P, (F;)).

Definition (Fisk-Stratonovich integral). The Stratonovich integral [ X o dY is the

continuous semimartingale defined by

t t
1
/ X, o0dY, = / X, dY, + §[X’Y]t forany t > 0.
0 0

Note that a Stratonovich integral w.r.t. a martingale is not a local martingale in general.

The Stratonovich integral is a limit of trapezoidal Riemann sum approximations:

Lemma 12.6. If (7,,) is a sequence of partitions of R with mesh(m,) — 0 then

t X+ Xy
/ X,o0dY, = Ilim g % (Yors — Ys) in the ucp sense.
0 nee SETR
s<t

Proof. This follows since fot X dY =ucp-lim)  _, X, (Yyr — Y) and
(X, Y]y =ucp-lim > _,(Xgn — Xs)(Yons — Ys) by the results above. O

s<t

Ito-Stratonovich formula

For Stratonovich integrals w.r.t. continuous semimartingales, the classical chain rule
holds:
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Theorem 12.7. Let X = (X!, ..., X%) with continuous semimartingales X°. Then for
any function F' € C*(R?),

F(X,) — F(Xy) Z/ o (X JodX!  Vt>0. (12.2.1)

Proof. To simplify the proof we assume F' € C3. Under this condition, (IZ.2.1)) is just

a reformulation of the Ito6 rule
d ¢

aF -
F(Xy) - F(Xy) = 2/0 % ) dX! + Z/ mlaﬂ X,) d[ X", X7],.
B (12.2.2)

that

Indeed, applying Itd’s rule to the C?

oF ,
J
Ozt (X0) Z/@xl(? j Xo) dX5

for some continuous finite variation process A. Hence the difference between the
Statonovich integral in (I12.2.1)) and the It6 integral in m i

2on00x], = 33 [t .

O

Remark. For the extension of the proof to C? functions F' see e.g. [36], where also a

generalization to cadlag semimartingales is considered.

The product rule for Stratonovich integrals is a special case of the chain rule:

Corollary 12.8. For continuous semimartingales X,Y,

t t
XY, — XY, = XsodYst/YsodXs V> 0.
0 0

Exercise (Associative law). Prove an associative law for Stratonovich integrals.
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Stratonovich SDE

Since Stratonovich integrals differ from the corresponding Itd integrals only by the co-
variance term, equations involving Stratonovich integrals can be rewritten as It6 equa-
tions and vice versa, provided the coefficients are sufficiently regular. We consider a
Stratonovich SDE in R? of the form

d
odX, = bX)dt+) op(X)odBf, Xy = (12.2.3)
k=1
with 2o € R", continuous vector fields b, 0, ...,04 € C(R" R"), and an R%-valued
Brownian motion (B;).
Exercise (Stratonovich to Itd conversion). 1) Prove thatfor oy, ..., 04 € C1(R", R"),

the Stratonovich SDE (12.2.3)) is equivalent to the Itd SDE

d
dX, = b(X)dt+ Y op(Xy)dB;,  Xo = (12.2.4)
k=1

where

- 1

b= b+520k-VUk.

k=1

2) Conclude that if b and o1, ...,04 are Lipschitz continuous, then there is a unique
strong solution of (12.2.3)).

Theorem 12.9 (Martingale problem for Stratonovich SDE). Let b € C(R",R") and
01,...,04 € C*(R™,R"), and suppose that (X;);> is a solution of (IZ2.3) on a given
setup (0, A, P, (F;), (Bt)). Then for any function F' € C3(R™), the process

M = F(X,)— F(Xo) - /th)(Xs)ds,

LF = O'k-V(Ok'VF)+b-VF,

1
2

B
Il S8
—_

is a local (FF) martingale.
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Proof. By the Stratonovich chain rule and by (12.2.3)),
F(X,) - F(X,) = /Ot VF(X)-odX
- /Ot(b V) (X)dt + ) /Ot(o—k . VF)(X)odB*. (12.2.5)
k
By applying this formula to o, - VF', we see that
(0n - VE)X)) = A+ / o, - V(o - VF)(X) dB'
I
with a continuous finite variation process (A;). Hence
/0 t(ak .VF)(X)odB* = /0 t(ak -VF)(X) dB* + [(0}, - VF)(X), B,

t
= local martingale +/ or - V(op - VEF)(X)dt.
0
(12.2.6)

The assertion now follows by (12.2.3) and (12.2.6). O

The theorem shows that the generator of a diffusion process solving a Stratonovich SDE
is in sum of squares form. In geometric notation, one briefly writes b for the derivative

b - V in the direction of the vector field b. The generator then takes the form
1

Brownian motion on hypersurfaces

One important application of Stratonovich calculus is stochastic differential geometry.
It6 calculus can not be used directly for studying stochastic differential equations on
manifolds, because the classical chain rule is essential for ensuring that solutions stay
on the manifold if the driving vector fields are tangent vectors. Instead, one considers
Stratonovich equations. These are converted to Itd6 form when computing expectation
values. To avoid differential geometric terminology, we only consider Brownian motion
on a hypersurface in R"*?, cf. [38]], [20] and [22]] for stochastic calculus on more general

Riemannian manifolds.
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Let f € C°°(R™"!) and suppose that ¢ € R is a regular value of f, i.e., V f(x) # 0 for
any z € f~!(c). Then by the implicit function theorem, the level set

M, = [ = {zeR": f(z)=c}

is a smooth n-dimensional submanifold of R"™!. For example, if f(z) = |z|? and c = 1

then M. is the n-dimensional unit sphere S™.

For x € M,, the vector

V/f(z)
n(z) = e s"
IV f ()]
is the unit normal to M, at x. The tangent space to ). at x is the orthogonal comple-
ment
T,M, = span{n(z)}"
Let P(z) : R — T, M, denote the orthogonal projection onto the tangent space w.r.t.

the Euclidean metric, i.e.,

Px)v = wv—v-n(x)n(z), veR".
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Fork € {1,...,n+ 1}, we set Py(x) = P(x)e.

Definition. A Brownian motion on the hypersurface M, with initial value oy € M, is
a solution (X) of the Stratonovich SDE
n+1

odX, = P(X;)odB, = Y Pu(X)odBf, Xo =, (1227
k=1

with respect to a Brownian motion (B;) on R" 1,

We now assume for simplicity that M, is compact. Then, since c is a regular value of
f, the vector fields P are smooth with bounded derivatives of all orders in a neigh-
bourhood U of M, in R, Therefore, there exists a unique strong solution of the SDE
(12.2.7) in R™*! that is defined up to the first exit time from U. Indeed, this solution

stays on the submanifold M. for all times:

Theorem 12.10. If X is a solution of ([2.2.7) with o € M, then almost surely, X, € M,
foranyt > 0.

The proof is very simple, but it relies on the classical chain rule in an essential way:

Proof. We have to show that f(X;) is constant. This is an immediate consequence of

the Stratonovich formula:

n+1

F06) =500 = [ Vi) edx, = Y- [ VA0 Pt edst = 0
0 e 70

since Py () is orthogonal to V f(x) for any z. O

Although we have defined Brownian motion on the Riemannian manifold M, in a non-
intrinsic way, one can verify that it actually is an intrinsic object and does not depend on

the embedding of M, into R"*! that we have used. We only convince ourselves that the
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corresponding generator is an intrinsic object. By Theorem [12.9] the Brownian motion

(X}) constructed above is a solution of the martingale problem for the operator

1n+1 1n+1
= = P.-V)P. - = = P2
S PR P

From differential geometry it is well-known that this operator is %A v, where Ay de-

notes the (intrinsic) Laplace-Beltrami operator on /..

Exercise (Ito SDE for Brownian motion on M_). Prove that the SDE (12.2.7) can be

written in It6 form as

1
dXt = P(Xt) dBt — §H(Xt)n(Xt) dt

where k() = X div n(z) is the mean curvature of M, at z.

T on

Doss-Sussmann method

Stratonovich calculus can also be used to obtain explicit solutions for stochastic differ-
ential equations in R that are driven by a one-dimensional Brownian motion (B;). We
consider the SDE

odX, = b(X,)dt+ o(X,)odB, X, = a, (12.2.8)

where a € R", b : R® — R" is Lipschitz continuous and o : R® — R" is C? with
bounded derivatives. Recall that (12.2.8) is equivalent to the It6 SDE
1
dx, = (b+ 50 Vo)(Xy) dt + o(Xy) dB, Xo, = .a. (12.2.9)

We first determine an explicit solution in the case b = 0 by the ansatz X; = F(B;)
where ' € C*(R, R"). By the Stratonovich rule,

OdXt = F/(Bt) o dBt = O'(F(Bt)) o dBt
provided F'is a solution of the ordinary differential equation

F'(s) = o(F(s)). (12.2.10)
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Hence a solution of with initial condition X, = a is given by
Xt = F(Bt, a,)

where (s,z) +— F(s,z) is the flow of the vector field o, i.e., F(-,a) is the unique
solution of with initial condition a.

Recall from the theory of ordinary differential equations that the flow of a vector field o
as above defines a diffeomorphism a — F'(s, a) for any s € R. To obtain a solution of

(12.2.8) in the general case, we try the “variation of constants” ansatz

with a continuous semimartingale (C;) satisfying Cy = a. In other words: we make a
time-dependent coordinate transformation in the SDE that is determined by the flow F'

and the driving Brownian path (B;). By applying the chain rule to (IZ.2.11]), we obtain

OF OF
OdXt = E(Bt, Ct) 9] dBt + %(Bt, Ct) o dCt
OF
= O'(Xt) o) dBt + a—<Bt7 Ct) o} dCt
x
where 25 (s, ) denotes the Jacobi matrix of the diffeomorphism F'(s, ). Hence (X;) is a

solution of the SDE (12.2.8)) provided (C}) is almost surely absolutely continuous with
derivative p oF

i (,),—I(j}}t,ct)—1 b(F (B, Cy)). (12.2.12)
For every given w, the equation (I12.2.12) is an ordinary differential equation for C(w)
which has a unique solution. Working out these arguments in detail yields the following

result:

Theorem 12.11 (Doss 1977, Sussmann 1978). Suppose that b : R™ — R"™ is Lipschitz
continuous and o : R™ — R" is C? with bounded derivatives. Then the flow F of the
vector field o is well-defined, F(s,-) is a C? diffeomorphism for any s € R, and the
equation ([2.2.12) has a unique pathwise solution (Cy);>¢ satisfying Cy = a. Moreover,
the process Xy = F(By, C,) is the unique strong solution of the equation ([2.2.8),
(12.2.9) respectively.
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We refer to [23]] for a detailed proof.

Exercise (Computing explicit solutions). Solve the following Itd stochastic differen-

tial equations explicitly:
X, = %Xt dt++/1+X2dB,, X, = 0, (12.2.13)
dX; = Xi(1+X7?)dt+ (1+ X})dB;, X, = 1. (12.2.14)
Do the solutions explode in finite time?

Exercise (Variation of constants). We consider nonlinear stochastic differential equa-

tions of the form
dXt = f(t, Xt) dt + C(t)Xt dBt, XO =,

where f : Rt x R — R and ¢ : Rt — R are continuous (deterministic) functions.

Proceed as follows :

a) Find an explicit solution Z; of the equation with f = 0.

b) To solve the equation in the general case, use the Ansatz
Xt - Ct . Zt .

Show that the SDE gets the form
dCy(w)

dt
Note that for each w € €, this is a deterministic differential equation for the

= f(t, Zy(w) - Ci(w))/Zs(w) ; Co=z. (12.2.15)

function ¢ — Cy(w). We can therefore solve (12.2.13) with w as a parameter to
find Ct (CU)
c) Apply this method to solve the stochastic differential equation
1
dXt:ydt—i—OéXtdBt, XOI.T>O,

t
where « 1s constant.

d) Apply the method to study the solution of the stochastic differential equation
dXt:X?dt+OéXtdBt7 XOZ.CC>0,

where o and v are constants. For which values of v do we get explosion?
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Wong Zakai approximations of SDE

A natural way to approximate the solution of an SDE driven by a Brownian motion is
to replace the Brownian motion by a smooth approximation. The resulting equation can
then be solved pathwise as an ordinary differential equation. It turns out that the limit
of this type of approximations as the driving smoothed processes converge to Brownian

motion will usually solve the corresponding Stratonovich equation.

Suppose that (B;);>o is a Brownian motion in R¢ with B, = 0. For notational conve-
nience we define B, := 0 for t < 0. We approximate B by the smooth processes
t2

B = Brouyr,  e(t) = (2m) e (- o).

Other smooth approximations could be used as well, cf. [25] and [23]. Let X (k) denote

the unique solution to the ordinary differential equation

d d
£X§’“> = (X)) +o(xF) %Bik), x® =g (12.2.16)

with coefficients b : R” — R” and ¢ : R* — R"*4,

Theorem 12.12 (Wong, Zakai 1965). Suppose that b is C* with bounded derivatives

and o is C? with bounded derivatives. Then almost surely as k — oo,
Xt(k) — X uniformly on compact intervals,
where (X}) is the unique solution of the Stratonovich equation

OdXt = b(Xt) dt + U(Xt) (] dBta XO = a.

If the driving Brownian motion is one-dimensional, there is a simple proof based on
the Doss-Sussman representation of solutions. This shows that X*) and X can be
represented in the form Xt(k) = F(Bt(k), Ct(k)) and X, = F(By, C;) with the flow F
of the same vector field o, and the processes C*) and C' solving w.r.t. B®),
B respectively. Therefore, it is not difficult to verify that almost surely, X*) — X
uniformly on compact time intervals, cf. [25]. The proof in the more interesting general
case is much more involved, cf. e.g. Ikeda & Watanabe [23, Ch. VI, Thm. 7.2].
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12.3 Stochastic Taylor expansions

In the next section we will study numerical schemes for 1t6 stochastic differential equa-
tions of type
d
dX, = b(X,)dt + > op(X,) dBf (12.3.1)
k=1
in RV, N € N. A key tool for deriving and analyzing such schemes are stochastic

Taylor expansions that are introduced in this section.

We will assume throughout the next two sections that the coefficients b, 01, ..., 0, are
C* vector fields on RY, and B = (B!,..., B%) is a d-dimensional Brownian motion.

Below, it will be convenient to set

BY = t.
A solution of (12.3.7)) satisfies
t+h d t+h
X = Xo + / b(X)ds + Z/ or(X,) dB" (12.3.2)
t k—1 t

for any ¢, h > 0. By approximating b(X;) and o, (X;) in (I2.3.2) by b(X;) and o4 (X)
respectively, we obtain an Euler approximation of the solution with step size h. Sim-
ilarly, higher order numerical schemes can be obtained by approximating b(X;) and

o (Xs) by stochastic Taylor approximations.

Ito-Taylor expansions

Suppose that X is a solution of (IZ.3.1)), and let f € C*°(R"). Then the Itd-Doeblin

formula for f(X') on the interval [¢, + h] can be written in the compact form

d t+h
F(Xipn) = F(X0) + ) / (Lif)(X,) dB* (12.3.3)
k=0 "1
for any t, h > O,where BY = t, a = 007,
N
1 O f
- j_Z L . 12.3.4
Lof 2ijZ:1a 5o b V/S and (12.3.4)
Lif = o5 -V, fork=1,...,d. (12.3.5)
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By iterating this formula, we obtain It6-Taylor expansions for f(X). For example, a

first iteration yields

t+h d t+h  ps
F(Xis) = O+ e [ asi+ 30 [ [ euen)ox) aplas

d

k=0 k,1=0
The first two terms on the right hand side constitute a first order Taylor expansion for
f(X) in terms of the processes B*, k = 0,1,...,d, and the iterated Itd integral in the
third term is the corresponding remainder. Similarly, we obtain higher order expansions
in terms of iterated It integrals where the remainders are given by higher order iterated
integrals, cf. Theorem [12.14] below. The next lemma yields L? bounds on the remainder

terms:

Lemma 12.13. Suppose that G : Q x (t,t + h) — R is an adapted process in L*(P ®
)\(t,tJrh))- Then

t+h s1 Sn—1 2
( / / e / Gy, dBE - dBY dBf;)
t t t

foranyn € Nand k = (ky,...,k,) € {0,1,...,d}", where

hn—f—m(k)
E

< sup FE [G?]

nl o setirh)

m(k) == {1 <i<n:k; =0}
denotes the number of integrations w.r.t. dLt.

Proof. By Itd’s isometry and the Cauchy-Schwarz inequality,

t+h 2] t+h
E </ G, dBf) < / E[GZ] ds for any k # 0, and
t t

2

t+h t+h
( | e ds) <[ e
t t

E

By iteratively applying these estimates we see that the second moment of the iterated

integral in the assertion is bounded from above by

t+h S1 Sn—1
t t t
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The lemma can be applied to control the strong convergence order of stochastic Taylor
expansions. For k& € N we denote by C(R) the space of all C* functions with bounded
derivatives up to order k. Notice that we do not assume that the functions in C} are
bounded.

Definition (Stochastic convergence order). Suppose that Ay, h > 0, and A are ran-

dom variables, and let o > 0.

1) Ay, converges to A with strong L? order o iff

1/2

E[l4, - AP]Y? = o).

2) Ay converges to A with weak order o iff

E[f(A)] - E[f(A)] = O(h®)  forany f € C**VI(R).

Notice that convergence with strong order « requires that the random variables are de-
fined on a common probability space. For convergence with weak order « this is not

necessary. If A; converges to A with strong order « then we also write
A, = A+ O(hY).

Examples. 1) If B is a Brownian motion then B, converges to B; almost surely as

h | 0. By the law of the iterated logarithm, the pathwise convergence order is
By, — By = O(hl/2 loglog h™') almost surely.

On the other hand, the strong L? order is 1 /2, and the weak order is 1 since by Kol-

mogorov’s forward equation,

BlfBua)) - BUB)) = [ BLASBIs < Boway

for any f € C?. The exercise below shows that similar statements hold for more general

1t6 diffusions.
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2) The n-fold iterated It6 integrals w.r.t. Brownian motion considered in Lemma

have strong order (n 4+ m)/2 where m is the number of time integrals.

Exercise (Order of Convergence for It6 diffusions). Let (.X;);>¢ be an N-dimensional
stochastic process satisfying the SDE (I2Z.3.1) where b, o1, : RY — RY k =1,...,d,
are bounded continuous functions, and B is a d-dimensional Brownian motion. Prove
thatas h | 0,

1) X, converges to X; with strong L? order 1/2.

2) X4 converges to X; with weak order 1.

Theorem 12.14 (It6-Taylor expansion with remainder of order «). Suppose that
a = j/2 for some j € N. If X is a solution of (I12.3.1) with coefficients b, 01, . ..,04 €
C’bLQO‘J (RN, RY) then the following expansions hold for any f € C’,_;,LZOHrlJ (RN):

FXen) = D > (LriLra, L f) (Xp) x (12.3.6)
n<2a k:n+m(k)<2« .

/ / / Gy, dBim -+ -dB2 dB¥ + O(h),

E[f(Xen)] = ) EL3f) (X )J—+O(h“ (12.3.7)

n<a

Proof. Tteration of the Itd-Doeblin formula (12.3.3)) shows that (12.3.6) holds with a

remainder term that is a sum of iterated integrals of the form

t+h

with k& = (kl, e k:n) satisfying n+m(k) >2aandn — 1+ m(ky,... k1) < 20
By Lemma[I2.13] these iterated integrals are of strong L? order (n + m(k))/2. Hence

the full remainder term is of the order O(h?).

Equation (12.3.7)) follows easily by iterating the Kolmogorov forward equation

BUM) = BUCW) + [ o)X ds.
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Alternatively, it can be derived from (I12.3.6) by noting that all iterated integrals involv-

ing at least one integration w.r.t. a Brownian motion have mean zero. L

Remark (Computation of iterated It6 integrals). Iterated Itd integrals involving only
a single one dimensional Brownian motion B can be computed explicitly from the

Brownian increments. Indeed,

t+h S1 Sn—1
/ / / dBs, ---dBy, dBs, = hy(h, By, — By)/nl,
t t t

where h,, denotes the n-th Hermite polynomial, cf. (I4.5.1). In the multi-dimensional
case, however, the iterated Itd integrals can not be represented in closed form as func-
tions of Brownian increments. Therefore, in higher order numerical schemes, these

integrals have to be approximated separately. For example, the second iterated It6 inte-

h s h
I = / / dB*dB! = / B¥aB!
0 0 0

of two components of a d dimensional Brownian motion satisfies I} + I'* = BFB!.

gral

Hence the symmetric part can be computed easily. However, the antisymmetric part
It — I}* is the Lévy area process of the two dimensional Brownian motion (B*, B).
The Lévy area can not be computed explicitly from the increments if & # [. Controlling

the Lévy area is crucial for a pathwise stochastic integration theory, cf. [[18,[19,29].

Exercise (Lévy Area). If c(t) = (z(t),y(t)) is a smooth curve in R? with ¢(0) = 0,
then

A0 = [ v = [ray- [y

describes the area that is covered by the secant from the origin to ¢(s) in the interval
[0,t]. Analogously, for a two-dimensional Brownian motion B; = (X, Y;) with By = 0,

one defines the Lévy Area

t t
Ay = / X dY, — / Y,dX.
0 0

1) Let a(t), 3(t) be C*-functions, p € R, and

Vi = ipA; - @ (X7 +Y7) + 8(0).
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Show using It0’s formula, that e'* is a local martingale provided o (t) = a/(t)? — p?

and §'(t) = a(t).

2) Let ty € [0,00). The solutions of the ordinary differential equations for « and 3
with a(ty) = [(tp) = 0 are

a(t) = p-tanh(p- (to — 1)),

B(t) = —logcosh(p- (to —1)).
Conclude that )
E[e?] = ———  VpeR.
[e7] cosh(pty) pe

3) Show that the distribution of A; is absolutely continuous with density

1

fa(z) = m-

12.4 Numerical schemes for SDE

Let X be a solution of the SDE

d
dX; = b(X,)dt + Y on(X,) dBy (12.4.1)

k=1
where we impose the same assumptions on the coefficients as in the last section. By
applying the Itd6-Doeblin formula to o (X) and taking into account all terms up to
strong order O(h'), we obtain the Itd-Taylor expansion

d

Xipn =X = b(X)h + Y ou(X,) (Bf,, — B (12.4.2)
k=1
d t+h s
+ Y (01 Voy) (Xt)/ / dBLdBY + O (h*?).
k=1 ¢ t

Here the first term on the right hand side has strong L? order O(h), the second term
O(h'/?), and the third term O(h). Taking into account only the first two terms leads to
the Euler-Maruyama scheme with step size h, whereas taking into account all terms up

to order O(h) yields the Milstein scheme:
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e Euler-Maruyama scheme with step size h

d
X = X0 = b(X[)Vh 4+ > on(X]) (Bl — BY)  (t=0,h,2h,3h,..)
k=1

e Milstein scheme with step size h

d d t+h s
XPop= XD = (X! h+ Y on(X]) (Bf, =Bl + > (o1 Voy) (X} / / dB! dB*
k=1 t t

k,l=1

The Euler and Milstein scheme provide approximations to the solution of the SDE
(I2:4.T]) that are defined for integer multiples ¢ of the step size h. For a single approx-
imation step, the strong order of accuracy is O(h) for Euler and O(h*/?) for Milstein.
To analyse the total approximation error it is convenient to extend the definition of the
approximation schemes to all ¢ > 0 by considering the delay stochastic differential

equations

dX! = b(X})ds + Y on(X[,,) dBE, (12.4.3)
k

s

dBi) dBY12.4.4)
Ls]n

dX? = b(X[y,)ds + ) (ak<xgjh)+(alvgk)<xgjh>/
k,l

respectively, where
|s]n = max{t € hZ :t < s}

denotes the next discretization time below s. Notice that indeed, the Euler and Milstein
scheme with step size h are obtained by evaluating the solutions of (12.4.3) and (12.4.4)
respectively at t = kh with k € Z .

Strong convergence order

Fix a € RY, let X be a solution of (12.3.1) with initial condition X, = a, and let
X" be a corresponding Euler or Milstein approximation satisfying (12.4.3), (12.4.4)

respectively with initial condition X = a.
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Theorem 12.15 (Strong order for Euler and Milstein scheme). Lez t € [0, c0).

1) Suppose that the coefficients b and oy, are bounded and Lipschitz continuous. Then
the Euler-Maruyama approximation on the time interval [0, t| has strong L* order
1/2 in the following sense:

sup | X! — X,| = O(h'/?).
s<t
2) If. moreover, the coefficients b and o}, are C? with bounded derivatives then the

Milstein approximation on the time interval |0, t] has strong L? order 1, i.e.,

| X! — X;| = O(h).

A corresponding uniform in time estimate for the Milstein approximation also holds but
the proof is too long for these notes. The assumptions on the coefficients in the theorem
are not optimal and can be weakened, see e.g. Milstein and Tretyakov [33]. However,
it is well-known that even in the deterministic case a local Lipschitz condition is not
sufficient to guarantee convergence of the Euler approximations. The iterated integral
in the Milstein scheme can be approximated by a Fourier expansion in such a way that
the strong order O(h) still holds, cf. Kloeden and Platen [26,33]XXX

Proof. For notational simplicity, we only prove the theorem in the one-dimensional
case. The proof in higher dimensions is analogous. The basic idea is to write down an

SDE for the approximation error X — X",
1) By (I2.4.3) and since X" = X, the difference of the Euler approximation and the

solution of the SDE satisfies the equation
t t
Xh—Xx, = /O (b(X],),) — b(X,)) ds + /0 (o(X]),) — 0(X,)) dB,.
This enables us to estimate the mean square error

g = E [sup’Xf—Xsﬂ .

s<t
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By the Cauchy-Schwarz inequality and by Doob’s L? inequality,
t

& < Qt/OtE [b(XT,y,) = o(X)[] ds + 8/0 E||o(Xy,) = o(X,)[] ds

t
< (2t+8).L2./ E[‘Xﬁjh—Xsﬂ ds (12.4.5)
0
t
< (4t +16)-L*- </ ghds + Cm),
0

where ¢t — C} is an increasing real-valued function, and L is a joint Lipschitz constant

for b and 0. Here, we have used that by the triangle inequality,
B||Xly, - %] < 2B {|xty, - XU + 2B {|x0 - X[,

and the first term representing the additional error by the time discretization on the
interval [[s]p, | s|n + h] is of order O(h) uniformly on finite time intervals by a similar

argument as in Theorem [12.14l By (12.4.5]) and Gronwall’s inequality, we conclude that
gl < (4t +16)L*C; - exp ((4t + 16)L%t) - h,

and hence /2! = O(v/h) for any t € (0, 00). This proves the assertion for the Euler

scheme.

2) To prove the assertion for the Milstein scheme we have to argue more carefully. We

will show that

eh = sup F “Xﬁ —Xs‘z]

s<t

is of order O(h?). Notice that now the supremum is in front of the expectation, i.e., we
are considering a weaker error than for the Euler scheme. We first derive an equation
(and not just an estimate as above) for the mean square error. By (I12.4.4)), the difference

of the Milstein approximation and the solution of the SDE satisfies
t
X, - X! = / (b(Xs) = b(X[,),)) ds (12.4.6)
0

" / (0(X.) — o(XP, ) — (00') (XL, ) (B — By,)) dB.
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By It6’s formula, we obtain
t
X, — XM? = 2/ (X = X"d(X - X" + [X - X",
Ot t t
= 2/ (X, — XM phds + 2/ (X, — XM aldB, + / |l ds
0 0 0

where 3] = b(X,) = b(X],,) and of = o(X,) —a(X[\},) — (00')(X]),)(Bs = Bys),.)

are the integrands in (I2.4.6). The assumptions on the coefficients guarantee that the

stochastic integral is a martingale. Therefore, we obtain
t t
E[X,—X]]’] = 2/ E[(X,— X! B ds + / Ellaf] ds.  (12.4.7)
0 0

We will now show that the integrands on the right side of (I12.4.7) can be bounded by
a constant times " + h2. The assertion then follows similarly as above by Gronwall’s

inequality.

In order to bound E[|a”|?] we decompose " = o', + ol | where

a?,l = U(XS) - O-(XLSJh) - (UU,) (XLSJh)(BS - BLth)
is an additional error introduced in the current step, and

gy = (X)) = o(X[y),) + ((00) (X)) = (00)(X[,),)) (Bs = Bsy,)

is an error carried over from previous steps. By the error estimate in the Ito-Taylor

expansion, o’ | is of strong order O(h) uniformly in s, i.e.,

Ellol "] < Cih? for some finite constant C1.
Furthermore, since B, — B, is independent of F| fj I
Ellalo[?] < 20+ I B [|Xp, - X[, 1Y) < 20+ HI2el
and hence

Ella"] < Cy(h* 4 M) for some finite constant Cl. (12.4.8)
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It remains to prove an analogue bound for F[(X, — X") 8"]. Similarly as above, we

decompose 3 = Sl + B where
Blo=b(X|g,) = b(X]y,)  and B2 =b(X,) = b(X|y,).
By the Cauchy-Schwarz inequality and the Lipschitz continuity of b,
El(X, - X") gl < (1) B[54 < Leh (12.4.9)
Moreover, there is a finite constant C3 such that

B [(Xs), = X[yp,) Bea] = E[(Xjs), = X[p,) B [B(Xs) = b(X 5,) 1 7]
< Csh(M)? < Cy(h2+ e, (12.4.10)

Here we have used that by Kolmogorov’s equation,

E [b(Xs) — b(X s, FF] = /L E [(Lob)(X,)|FP] dr, (12.4.11)

s]h
and Lyb is bounded by the assumptions on b and o.

Finally, let 2" := (X, — X!") — (X, — X}, ). By (IZZ86).

Zh = B dr + / ol dB,, and
L

’ L] sl

S S

E 18] dr + 2/ E [|al?] dr < Cyh(B*+ED).

E1

B(20] < o [

[s)n

Here we have used the decomposition 3 = 7, + !, and (IZ4.8). Hence

E[Z!BM] < || 28] 2 |[0(Xs) = b(X (5|l < Csh(B®+eM'V? < 205 (W +£P).

I
By combining this estimate with (12.4.10) and (12.4)), we eventually obtain
E[(X, — X" gl < Cg(h* 4 M) for some finite constant Cj. (12.4.12)

O
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Weak convergence order

We will now prove under appropriate assumptions on the coefficients that the Euler

scheme has weak convergence order h'. Let

N 2
Lf = lzaiﬂ' o7

2..1 axiaxj_'_b.vf

denote the generator of the diffusion process (X;). We assume that the coefficients
b,o1,...,04 are in C3(RY RY). It can be shown that under these conditions, for f €

C3(RY), the Kolmogorov backward equation

ou
E(t,x) = (Lu)(t, z), u(0,z) = f(z), (12.4.13)

has a unique classical solution u : [0,00) x RY — R such that u(t,-) € C3(R") for
any t > 0, cf. XXX. Moreover, if (X;) is the unique strong solution of (I2.3.1)) with

Xo = a, then by It6’s formula,

E[f(X3)] = u(t,a).

Theorem 12.16 (Weak order one for Euler scheme). Suppose that b,o1,...,04 €
C3 (RN RN), and let (X;) and (X[) denote the unique solution of (IZ3.1) with X, = a

and its Euler approximation, respectively. Then

Bf(X")] = Elf(X))] = O(h)  foranyt>0and [ € CJ(RY).

Proof. Fixt > 0. The key idea (that is common with many other proofs) is to consider

the “interpolation”

Ay = u(t —s, X for s € [0, 1].

Notice that A; = u(0, X!*) = f(X}) and Ay = u(t,a) = E[f(X})], whence

E[f(X")] — E[f(X))] = E[A, — A (12.4.14)
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We can now bound the weak error by applying It6’s formula. Indeed, by and
({12.4.13)) we obtain

t
A= to = it [ =B s X0 4 (e s x| ds
0

= M, + /t [(Lru)(t — s, X)) — (Lu)(t — s, X])] ds.

Here M, is a martingale, Y., := (Y;)sc[0,4, and

wl»—‘

(et = 33 o Do) + bayy,) - V()

is the generator at time ¢ of the delay equation (I2.4.3)) satisfied by the Euler scheme.
Note that £}'(z¢.) is similar to £(z;) but the coefficients are evaluated at x|, instead

of x;. Taking expectations we conclude

t
E[A, — Ad) = / E [(Chu)(t — s, X2,) — (Cu)(t — 5, X™)] ds.
0
Thus the proof is complete if we can show that there is a finite constant C' such that

|(Lru)(t — s, X{,) — (Lu)(t —s,X])| < Ch forse[0,t]and h € (0,1].
(12.4.15)
This is not difficult to verify by the assumptions on the coefficients. For instance, let us

assume for simplicity that d = 1 and b = 0, and let @ = 0. Then

|(Lou)(t — 5, X)) — (Lu)(t — 5, X.)]

< 5B [(a(X) ~a(X]y,)) vt — 5, X0]|
< 3 \E (B [a(X3) = a(X[g T, ] u'(t = s X))

}E[ (a(X}) —a(X]y,)) (W'(t—s, X —u"(t —s,X],))]|-

Since u” is bounded, the first summand on the right hand side is of order O(h), cp.
(I2.4.11). By the Cauchy-Schwarz inequality, the second summand is also of order
O(h). Hence (12.4.13)) is satisfied in this case. The proof in the general case is similar.

L

Stochastic Analysis Andreas Eberle



12.5. LOCAL TIME 439

Remark (Generalizations).

1) The Euler scheme is given by
AX] = b(X")h + o(X]") AB;, AB,independent ~ N(0,hl;), t € hZ,.

It can be shown that weak order one still holds if the A B, are replaced by arbitrary
i.i.d. random variables with mean zero, covariance hl;, and third moments of
order O(h?), cf. [26].

2) The Milstein scheme also has weak order h', so it does not improve on Euler
w.r.t. weak convergence order. Higher weak order schemes are due to Milstein

and Talay, see e.g. [33].

12.5 Local time

The occupation time of a Borel set U C R by a one-dimensional Brownian motion (B;)

is given by
t
LV = / Iy(By) ds.
0

Brownian local time is an occupation time density for Brownian motion that is infor-

mally given by
t
“LY = / 04(Bs) ds”
0

for any a € R. It is a non-decreasing stochastic process satisfying

LY = /Lgda.
U

We will now apply stochastic integration theory for general predictable integrands to
define the local time process (L¢):>o for a € R rigorously for Brownian motion, and,

more generally, for continuous semimartingales.
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Local time of continuous semimartingales

Let (X;) be a continuous semimartingale on a filtered probability space. Note that by

1t6’s formula,

P = X0 = [ pOx)ax. + 5 [ e dil.

Informally, if X is a Brownian motion then the last integral on the right hand side
should coincide with L¢ if f” = d,. A convex function with second derivative J, is
f(z) = (x — a)*. Noting that the left derivative of f is given by f’ = I, ), this

motivates the following definition:

Definition. For a continuous semimartingale X and a € R, the process L defined by

t
1
(Xt —a,)+ _ (XO —a,)+ e / I(a,oo)(Xs) dXS + 5[/?
0

is called the local time of X at a.

Remark. 1) By approximating the indicator function by continuous functions it can be

easily verified that the process [, o) (X) is predictable and integrable w.r.t. X.

2) Alternatively, we could have defined local time at a by the identity
t 1 .
(Xt — a)+ — (XO — a)+ — /0 I[a,oo)(Xs) dXS + 5[/?

involving the right derivative [|, ) instead of the left derivative /(, ). Note that

t
L?_[A’? = / ]{a}(Xs)dXs
0

This difference vanishes almost surely if X is a Brownian motion, or, more generally,
a continuous local martingale. For semimartingales, however, the processes L* and Lo
may disagree, cf. the example below Lemma [I2.17] The choice of L® in the definition
of local time is then just a standard convention that is consistent with the convention of

considering left derivatives of convex functions.
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Lemma 12.17 (Properties of local time, Tanaka formulae).

1) Suppose that ¢, : R — [0,00), n € N, is a sequence of continuous functions with
[ on=1and p,(x) = 0forx & (a,a+ 1/n). Then

t

L} = ucp— lim | ¢,(X,)d[X]s.
0

n—oo

In particular, the process (L{)i>o is non-decreasing and continuous.

2) The process L* grows only when X = q, i.e.,

¢
/ Itx,zaydly = 0 foranyt > 0.
0
3) The following identities hold:
! 1
0
t 1
(Xt — a)_ — (XO — a)_ = —/ I(foo,a}(Xs) dXS + 5[;?, (1252)
0
t
| X; —a| —[Xg—a|] = / sgn (X —a)dXs + L, (12.5.3)
0
where sgn(z) := +1 for x > 0, and sgn(z) := —1 for x < 0.

Remark. Note that we set sgn(0) := —1. This is related to our convention of using left
derivatives as sgn(z) is the left derivative of |z|. There are analogue Tanaka formulae
for L* with the intervals (a, c0) and (—o0, a] replaced by [a, 00) and (—o0, a), and the

sign function defined by sgn(z) := +1 for z > 0 and sgn(z) := —1 for z < 0.

Proof. 1) Forn € Nlet f,(x) := [*_[? ¢,(2)dzdy. Then the function f, is C*
with f/ = ¢,,. By Itd’s formula,

fn<Xt) - fn(XO) - /Ot fr/z(Xs) dXs = 5 /Ot ‘Pn(Xs) d[X]s- (12-5'4)

Asn — oo, f!(X,) converges pointwise to I(, ) (X;). Hence

t t
/OfV’L(Xs)dXs —>/OI(Q7OO)(XS)dXS
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in the ucp-sense by the Dominated Convergence Theorem Moreover,
fa(Xp) = fu(Xo) = (Xe—a)" = (Xo—a)"

The first assertion now follows from (12.5.4).
2) By 1), the measures ¢, (X;) d[X]; on R, converge weakly to the measure d_L{ with

distribution function L*. Hence by the Portemanteau Theorem, and since ¢, (z) = 0 for
r & (a,a+1/n),

t t

/ ]{|Xsfa\>e} dL‘; S lilginf/ ]{|Xs,a|>€} (pn(Xs) d[X]S =0
0 n=ee Jo

for any ¢ > 0. The second assertion of the lemma now follows by the Monotone

Convergence Theorem as ¢ | 0.
3) The first Tanaka formula (12.5.1)) holds by definition of L®. Moreover, subtracting
[12.5.2) from (12.3.1)) yields

(Xe-a)- (=) = [ ax.

which is a valid equation. Therefore, the formulae (12.5.2)) and (I2.5.1) are equivalent.
Finally, (12.3.3) follows by adding (12.3.1]) and (12.3.2). O

Remark. In the proof above it is essential that the Dirac sequence ((,,) approximates
04 from the right. If X is a continuous martingale then the assertion 1) of the lemma
also holds under the assumption that ,, vanishes on the complement of the interval
(a—1/n,a+1/n). For semimartingales however, approximating &, from the left would

lead to an approximation of the process L2, which in general may differ from L°.

Exercise (Brownian local time). Show that the local time of a Brownian motion B in

a € Ris given by
1 t
L} = ucp—lim — / Tta—c.ate)(Bs) ds.
0

e—0 2¢

Example (Reflected Brownian motion). Suppose that X; = | B;| where (B;) is a one-
dimensional Brownian motion starting at 0. By Tanaka’s formula (12.5.3)), X is a semi-

martingale with decomposition

Xe =Wy + Ly (12.5.5)
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where L; is the local time at O of the Brownian motion B and W, := fot sgn(Bs) dBs.
By Lévy’s characterization, the martingale IV is also a Brownian motion, cf. Theorem
TT.2] We now compute the local time LX of X at 0. By (12.3.2) and Lemma[12.17, 2),

1 t
§LtX = X, —XJ+/ I(—0,0)(X) dX (12.5.6)
0

t t t
- /OI{O}(BS)dWer/O Ioy(Bs)dL, = /0 dL, = L,  as.,

ie., Lf( = 2L;. Here we have used that fot Loy (Bs) dW vanishes almost surely by It6’s

isometry, as both W and B are Brownian motions. Notice that on the other hand,
t
LY = X7 - X, + / Iwn(Xs)dXs =0 as,
0

so the processes L~ and L~ do not coincide. By (12.5.3) and (I2.5.6), the process X
solves the singular SDE
1
dX; = dW; + 3 dL;

driven by the Brownian motion W. This justifies thinking of X as Brownian motion
reflected at (.

The identity (I12.5.3) can be used to compute the law of Brownian local time:
Exercise (The law of Brownian local time).

a) Prove Skorohod’s Lemma: If (v;);>0 is a real-valued continuous function with
yo = 0 then there exists a unique pair (x, k) of functions on [0, co) such that
(i) r=y+Fk,
(i1) x is non-negative, and
(iii) k is non-decreasing, continuous, vanishing at zero, and the measure dk; is
carried by the set {t : x; = 0}.

The function k is given by k; = sup,,(—ys).

b) Conclude that the local time process (L;) at 0 of a one-dimensional Brownian
motion (B;) starting at 0 and the maximum process S; := sup,., B have the

same law. In particular, L, ~ |B;| for any ¢ > 0.
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¢) More generally, show that the two-dimensional processes (|B|, L) and (S — B, 5)

have the same law.

Notice that the maximum process (S;):>o is the generalized inverse of the Lévy sub-
ordinator (7}),>o introduced in Section [I0.1l Thus we have identified Brownian local

time at O as the inverse of a Lévy subordinator.

Ito-Tanaka formula

Local time can be used to extend Itd’s formula in dimension one from C? to general

convex functions. Recall that a function f : R — R is convex iff

For a convex function f, the left derivatives

: . f(@) = flx—h)
fo(x) = lim .

exist, the function f” is left-continuous and non-decreasing, and

b

f0) = fla) = / f'(x)dx  foranya,be R.
The second derivative of f in the distributional sense is the positive measure f” given
by

f"(la;b)) = fL(b) = f_(a)  foranya,beR.
We will prove in Theorem [12.24] below that there is a version (¢, a) — L¢ of the local
time process of a continuous semimartingale X such that ¢ — L¢ is continuous and

a — L} is cadlag. If X is a local martingale then L is even jointly continuous in ¢ and

a. From now on, we fix a corresponding version.

Theorem 12.18 (Ito-Tanaka formula, Meyer). Suppose that X is a continuous semi-

martingale, and f : R — R is convex. Then

F(X,) — / FLX,) dX, + = / L f"(da). (12.5.7)
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Proof. We proceed in several steps:
1) Equation (12.3.7) holds for linear functions f.

2) By localization, we may assume that | X;| < C for a finite constant C'. Then both
sides of (I12.5.7) depend only on the values of f on (—C, ('), so we may also assume

w.l.o.g. that f is linear on each of the intervals (—oo, —C/] and [C, 0), i.e.,

supp(f”) € [-C,C].

Moreover, by subtracting a linear function and multiplying f by a constant, we may

even assume that f vanishes on (—oo, C], and f” is a probability measure. Then

xT

fy) =p(—o0y) and  f(x) = / H(—00,y) dy (125.8)

where p = f".

3) Now suppose that 11 = d, is a Dirac measure. Then f/ = [(, o) and f(z) = (z—a)".
Hence Equation (I2.5.7)) holds by definition of L*. More generally, by linearity, (12.5.7))
holds whenever p has finite support, since then y is a convex combination of Dirac

measures.

4) Finally, if p is a general probability measure then we approximate ;o by measures
with finite support. Suppose that Z is a random variable with distribution x, and let
i, denote the law of Z,, := 27"[2"Z]. By 3), the It6-Tanaka formula holds for the
functions f,(z) := [*_ p,(—o0,y) dy,ie.,

fn(Xi) = fn(Xo) /f o) dX, +;/L§”,un(da) (12.5.9)

forany n € N. As n — 00, pi,(—00, Xs) = pu(—00, X;), and hence

/f dX—>/f

in the ucp sense by dominated convergence. Similarly, f,,(X:) — f.(Xo) — f(X:) —
f(Xo). Finally, the right continuity of a — L¢ implies that

/R L pn(da) — /R L p(da),

since Z,, converges to Z from above. The Ito-Tanaka formula (12.5.7) for f now follows
from (12.53.9) as n — oo. O
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Clearly, the Ito-Tanaka formula also holds for functions f that are the difference of
two convex functions. If f is C? then by comparing the It6-Tanaka formula and Itd’s
formula, we can identify the integral [ L f”(da) over a as the stochastic time integral
f(f f"(X;)d[X]s. The same remains true whenever the measure f”(da) is absolutely

continuous with density denoted by f”(a):

Corollary 12.19. For any measurable function V : R — [0, 00),

t
/Lg V(a)da — / V(X)) dX], V¥t>0. (12.5.10)
R 0

Proof. The assertion holds for any continuous function V' : R — [0,00) as V' can be
represented as the second derivative of a C? function f. The extension to measurable

non-negative functions now follows by a monotone class argument. L

Notice that for V' = I, the expression in (12.5.10)) is the occupation time of the set B

by (X;), measured w.r.t. the quadratic variation d[X];.

12.6 Continuous modifications and stochastic flows

Let Q = Cy(R,,R?) endowed with Wiener measure iy and the canonical Brownian
motion Wy (w) = w(t). We consider the SDE

dXt = bt(X) dt + O't(X) th, XO = a, (1261)

with progressively measurable coefficients b, o : R, x C(R,, R") — R R"*< respec-

tively satisfying the global Lipschitz condition
|bi(x) — b (Z)| + ||oe(x) —oe(Z)|]|] < L(x—72)f Vt,x,© (12.6.2)
for some finite constant L € R, as well as

sup (|bs(0)| +|os(0)]]) < oo VL (12.6.3)

s€[0,t]
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Then by Itd’s existence and uniqueness theorem, there exists a unique global strong
solution (X{):>o of (I2.6.1)) for any initial condition a € R™. Our next goal is to show
that there is a continuous modification (¢, a) — & of (X). The proof is based on the
multidimensional version of the Kolmogorov-Centsov continuity criterion for stochastic
processes that is significant in many other contexts as well. Therefore, we start with a
derivation of the Kolmogorov-Centsov criterion from a corresponding regularity result

for deterministic functions.

Continuous modifications of deterministic functions

Let x : [0,1)? — E be a bounded measurable function from the d-dimensional unit
cube to a separable Banach space (F, || - ||). In the applications below, £ will either be
R™ or C([0,t], R™) endowed with the supremum norm. The average of 2 = () ,e[0,1)4

over a smaller cube @ C [0, 1)¢ is denoted by z:

@ |
To = T, du = T, du.
@ ]2 vol(Q) Jo
Let D, be the collection of all dyadic cubes Q = [’ [(k; — 1)27", k;2™™) with

=1
ki,....kq € {1,2,...,2"}. Foru € [0,1)¢ and n € N, we denote the unique cube

in D,, containing u by @, (u). Notice that u — x¢, () is the conditional expectation
of = given o(D,,) w.r.t. the uniform distribution on the unit cube. By the martingale

convergence theorem,
z, = lim zg,.)  foralmostevery u € [0,1)%,
n—o0

where the limit is w.r.t. weak convergence if F is infinite dimensional.

Theorem 12.20 (Besov-Holder embedding). Ler 3 > 2d and q > 1, and suppose that

zw =zt )”"
du d 12.6.4
</[ / (u—oljvap ™ (1208

T, = i
T = lim zq.n

is finite. Then the limit
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exists for every u € [0,1)%, and 7 is a Holder continuous modification of x satisfying

8 B
—B
log2 g — 2d P

1T, — To|| < |u — v|B=2)/a, (12.6.5)

For s = 2=¢ < 1, the constant Bg,, is essentially a Besov norm of order (s, q,q),
q k)

or equivalently, a Sobolev-Slobodecki norm of order (s, q). The assertion of the theo-
rem says that the corresponding Besov space is continuously embedded into the Holder

space of order (5 — 2d)/q, i.e., there is a finite constant C' such that

1Z [ tor(8-2ay/a) < C 17| Besov((8-d)/q.0.0)-

Proof. Let e(@) denote the edge length of a cube (). The key step in the proof is to
show that the inequality

4 B

lxg — zoll < g2 7 T Boac e(Q)P-24/a (12.6.6)

holds for arbitrary cubes @), Q C (0, 1]% such that Q C Q This inequality is proven by

a chaining argument: Let

Q=Q>Q D - DQ,=Q

be a decreasing sequence of a subcubes that interpolates between Q and Q . We assume
that the edge lengths e;, := e(Qy) satisfy

1 1
g_/’_ql p— 5 ek;/q fOI. k, > 1 and eﬁ/q > 5 eg/q' (1267)

Since vol(Qy) = ¢f and |u — v| < V/d ej_, for any u, v € Qj_1, we obtain

][ ][ v) du dv ][ ][ |y — x||? du dv
Qr JQr_1 Qr JQr_1

Y A

L du dv e,;/ ekd/qeg/q
</Q/Q (lu — vl /Va)? ) 1

< 2By, P < 4By o(Q)F2/a g (B-20k/8,

1/q

Hka — LQp_1 H

IA
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In the last two steps, we have used (12.6.7) and e,_; > ¢;. Noting that

oo

SO 2k = 12— 1) < 1/(alog2),

k=1
Equation (I2.6.6) follows since ||zq — 4|l < D70, |zq, — 7q,_, -
Next, consider arbitrary dyadic cubes @Q,,(u) and Q,,(v) with u,v € [0,1)¢ and n, m €
N. Then there is a cube Q C [0, 1)% such that Q D Q,,(u) U Q,,(v) and
e(Q) < lu—v|+27" 2™

By (12.6.6) and the triangle inequality, we obtain

12Quw) — Z@mw |l < 2Q.w — 2ol + |1 — 2guw (12.6.8)

8 B )<ﬁ—2d>/q

< .
= log2 8- 2d

Bg, (|u —v|+27" 4277

Choosing v = w in (I2.6.8)), we see that the limit Z,, = lim,,_,», 2, (x) €Xists. Moreover,
for v # u, the estimate (12.6.5)) follows as n, m — oo. O

Remark (Garsia-Rodemich-Rumsey). Theorem is a special case of a result by
Garsia, Rodemich and Rumsey where the powers in the definition of B, are replaced
by more general increasing functions, cf. e.g. the appendix in [19]. This result allows
to analyze the modulus of continuity more carefully, with important applications to

Gaussian random fields [4].

Continuous modifications of random fields

The Kolmogorov-Centsov continuity criterion for stochastic processes and random fields
is a direct consequence of Theorem [12.20)

Theorem 12.21 (Kolmogorov, Centsov). Suppose that (E,|| - ||) is a Banach space,
C = HZ:1 I} is a product of bounded real intervals I, ...,1; C R, and X,, : Q) — E,
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u € C, is an E-valued stochastic process (a random field) indexed by C'. If there exists

constants q,c,e € Ry such that
E[||Xu— X|1Y] < clu—v|*™*  forany u,v e C, (12.6.9)
then there exists a modification (£,)uec of (Xu)uec such that

E[(il;]i %)q] < oo forany a€[0,e/q). (12.6.10)

In particular, u — &, is almost surely a-Holder continuous for any o < €/q.

A direct proof based on a chaining argument can be found in many textbooks, see
e.g. [37, Ch. I, (2.1)]. Here, we deduce the result as a corollary to the Besov-Holder

embedding theorem:

Proof. By rescaling we may assume w.l.o.g. that C' = [0, 1)¢. For 3 > 0, the assumption

(12.6.9) implies

X, — X, ||
E[/ qdudv}
clo  |u—0

IN

c//|u—v|d+€5dudv (12.6.11)
clc

Vd
< const. / pdte=Bpd=1 g,

0

Hence the expectation is finite for 5 < 2d + ¢, and in this case,

Xu - XU 7
/ M dudv < oo almost surely.
cle Ju—vl

Thus by Theorem [[2.20] &, = limsup,,_,. Xq, () defines a modification of (X,,) that
is almost surely Holder continuous with parameter (8 — 2d)/q for any 8 < 2d + ¢.

Moreover, the expectation of the g-th power of the Holder norm is bounded by a multiple
of the expectation in (12.6.11)). O

Example (Holder continuity of Brownian motion). Brownian motion satisfies (12.6.9)
withd = 1 and ¢ = § — 1 for any v € (2, 00). Letting 7 tend to oo, we see that almost
every Brownian path is a-Holder continuous for any o < 1/2. This result is sharp in the

sense that almost every Brownian path is not %—H()'lder—continuous, cf. [14, Thm. 1.20].
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In a similar way, one can study the continuity properties of general Gaussian random
fields, cf. Adler and Taylor [4]]. Another very important application of the Besov-Holder
embedding and the resulting bounds for the modulus of continuity are tightness results
for families of stochastic processes or random random fields, see e.g. Stroock and Varad-
han [40]. Here, we consider two different applications that concern the continuity of

stochastic flows and of local times.

Existence of a continuous flow

We now apply the Kolmogorov-Centsov continuity criterion to the solution a — (X2)

of the SDE (I12.6.1)) as a function of its starting point.

Theorem 12.22 (Flow of an SDE). Suppose that ([2.6.2) and ({[2.6.3) hold.

1) There exists a function § : R™ x Q — C(R,R"), (a,w) — &*(w) such that

(i) £* = (§8)i>0 is a strong solution of (I2.6.1) for any a € R", and
(ii) the map a — £%(w) is continuous w.r.t. uniform convergence on finite time

intervals for any w € ().

2) Ifo(t,x) = 5(x,) and b(t, z) = b(x,) with Lipschitz continuous functions
5:R" — R™ and b : R* — R"*4 then ¢ satisfies the cocycle property

&holw) = &0 w) Vst>0, aeR" (12.6.12)
for py-almost every w, where
Ow) = w(-+t) € CR4,RY
denotes the shifted path, and the definition of & has been extended by
Ew) = &w—w(0)) (12.6.13)

to paths w € C (R, R?) with starting point w(0) # 0.
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Proof. 1) We fix p > d. By the a priori estimate in Theorem there exists a finite

constant ¢ € R such that
E[(X*— X" < c-e?la—alf forany t >0 and a,a € R", (12.6.14)

where X denotes a version of the strong solution of (I2.6.1) with initial condition a.

Now fix t € R,. We apply the Kolmogorov-Centsov Theorem with £ = C([0, t], R")
endowed with the supremum norm || X||; = X;. By (12.6.14), there exists a modifi-
cation £ of (X?)s<taecrn such that a — (£%)s<; is almost surely o-Holder continuous
w.rt. || - ||; for any o < %. Clearly, for ¢t; < t5, the almost surely continuous map
(s,a) — &% constructed on [0, ¢;] x R™ coincides almost surely with the restriction of
the corresponding map on [0, 5] x R™. Hence we can almost surely extend the definition

to R, x R™ in a consistent way.

2) Fixt > 0 and a € R™. Then pp-almost surely, both sides of solve the same

SDE as a function of s. Indeed,
t+s t+s
o = [ Henaur [ aeaw,
t t
= £§+/ g(&;ﬂrr) d'r’+/ (&) d(W,00y),
0 0

oo, — g+ [H(efo0)dr+ [ 3t o0 W, 00)
0 0

hold pi-almost surely for any s > 0 where r — W, 0 ©, = W, , is again a Brownian

motion, and (&7 0 ©,) (w) == ) (©,(w)). Pathwise uniqueness now implies
e = 5 0 0, forany s > 0, almost surely.

Continuity of ¢ then shows that the cocycle property (12.6.12) holds with probability

one for all s, ¢ and a simultaneously. L

Remark (Extensions). 1) Joint Holder continuity in t and a: Since the constant p in
the proof above can be chosen arbitrarily large, the argument yields a-Holder continuity
of a — &% for any o < 1. By applying Kolmogorov’s criterion in dimension n + 1, it

is also possible to prove joint Holder continuity in ¢ and a. In Section [[3.1] we will
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prove that under a stronger assumption on the coefficients b and o, the flow is even

continuously differentiable in a.

2) SDE with jumps: The first part of Theorem[12.22]extends to solutions of SDE of type
driven by a Brownian motion and a Poisson point process. In that case, under a
global Lipschitz condition the same arguments go through if we replace C'([0, t], R") by
the Banach space D([0, t], R™) when applying Kolmogorov’s criterion. Hence in spite

of the jumps, the solution depends continuously on the initial value a !

3) Locally Lipschitz coefficients: By localization, the existence of a continuous flow can
also be shown under local Lipschitz conditions, cf. e.g. [36]]. Notice that in this case,

the explosion time depends on the initial value.

Above we have shown the existence of a continuous flow for the SDE (12.6.1)) on the

canonical setup. From this we can obtain strong solutions on other setups:

Exercise. Show that the unique strong solution of (I2.6.1)) w.r.t. an arbitrary driving
Brownian motion B instead of IV is given by X (w) = £(B(w)).

Markov property

In the time-homogeneous diffusion case, the Markov property for solutions of the SDE

(12.6.1) is a direct consequence of the cocycle property:

Corollary 12.23. Suppose that o(t,x) = o(x;) and b(t,z) = E(xt) with Lipschitz

continuous functions ¢ : R* — R and b : R* — R". Then (£2)1>0 is a time-

W,P
)

homogeneous (F, Markov process with transition function

pe(a,B) = Pl eB], t=20, aeR"

Proof. Let f : R" — R be a measurable function. Then for 0 < s < ¢,

Ow) = wt)+ (w(t+-) —w(t)),
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and hence, by the cocycle property and by (12.6.13),

W) = FEC (wt+:)—w(t))

for a.e. w. Since w(t+-) —w(t) is a Brownian motion starting at 0 independent of ;"""

we obtain

E[f )IF " lw) = EBfEFN] = (pf)(&(w))  almost surely.

O

Remark. Without pathwise uniqueness, both the cocycle and the Markov property do

not hold in general.

Continuity of local time

The Kolmogorov-Centsov continuity criterion can also be applied to prove the existence
of a jointly continuous version (a,t) — L¢ of the local time of a continuous local
martingale. More generally, recall that the local time of a continuous semimartingale
X = M + A s defined by the Tanaka formula

1 t t
§Lg = (Xo—a)t—(X;—a)" —/ I (4,00)(Xs) dM, —/ Tig,00)(Xs) dAg (12.6.15)
0 0

almost surely for any a € R.

Theorem 12.24 (Yor). There exists a version (a,t) — L{ of the local time process that

is continuous in t and cadlag in a with
t
=g = 2/ Itx,—qy dA,. (12.6.16)
0

In particular, (a,t) — L{ is jointly continuous if M is a continuous local martingale.
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Proof. By localization, we may assume that M is a bounded martingale and A has
bounded total variation VA2’ (A). The map (a,t) — (X; — a)™ is jointly continuous in ¢

and a. Moreover, by dominated convergence,

is continuous in ¢ and cadlag in a with

t
Zf—Zg_ = —/0 ]{a}(XS)dAS.

Therefore it is sufficient to prove that

t
Y;a = / I(moo)(Xs)dMs
0

has a version such that the map a — (Y*)s<; from R to C([0, ¢], R™) is continuous for

any t € [0, 00).
Hence fix t > 0 and p > 4. By Burkholder’s inequality,

E[(Y@_yb)zp] _ Ehg;t) /OSIM(X)dMT (12.6.17)
t p/2
< Ci(p) E /I(a,b}(X)d[M] ]
0

holds for any a < b with a finite constant C'; (p). The integral appearing on the right hand
side is an occupation time of the interval (a, b]. To bound this integral, we apply 1td’s
formula with a function f € C' such that f'(z) = (x Ab— a)* and hence f” = I(,y.
Although f is not C?, an approximation of f by smooth functions shows that Itd’s

formula holds for f, i.e.,
t t
/0 Lon(X)d[M] = /0 Ty () d[X]

= =2 (v - g0 - [ ) ax)

< (b—a) + 2

[ reoav| + p-dv®
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Here we have used in the last step that | f'| < [0 — a| and | f| < (b — a)?/2. Combining
this estimate with[12.6.17/and applying Burkholder’s inequality another time, we obtain

([fMYﬂMDM1>

< Co(p,t) [b—al?’? (1 + [MPY

By -y

IA

Ca(p, 1) <|b —af?+E

with a finite constant Cs(p,t). The existence of a continuous modification of a —

(V%) 4<; now follows from the Kolmogorov-Centsov Theorem. O

s

Remark. 1) The proof shows that for a continuous local martingale, a — (L%)s<; is

a-Holder continuous for any o < 1/2and ¢t € R,

2) For a continuous semimartingale, L~ = L¢ by (I2.6.16).
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Chapter 13
Variations of parameters in SDE

In this chapter, we consider variations of parameters in stochastic differential equations.
This leads to a first introduction to basic concepts and results of Malliavin calculus. For
a more thorough introduction to Malliavin calculus we refer to [35]], 341, [41]], [23], [32]
and [9].

Let i denote Wiener measure on the Borel o-algebra B(€2) over the Banach space ) =
([0, 1], R?) endowed with the supremum norm ||w|| = sup {|w(#)| : t € [0,1]}, and
consider an SDE of type

dX, = b(X)dt+o(X)dW,, Xy = z, (13.0.1)

driven by the canonical Brownian motion W;(w) = w(t). In this chapter, we will be
interested in dependence of strong solutions on the initial condition and other param-
eters. The existence and uniqueness of strong solutions and of continuous stochastic
flows has already been studied in Sections [12.1] and We are now going to prove
differentiability of the solution w.r.t. variations of the initial condition and the coeffi-

cients, see Section [I3.1l A main goal will be to establish relations between different
types of variations of (13.0.1):

e Variations of the initial condition: z — x(¢)
e Variations of the coefficients: b(x) — b(e,z), o(x) — o(e,x)
e Variations of the driving paths: W, — W, +¢H,, (H,) adapted
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e Variations of the underlying probability measure: p — p® = 2°-pu

Section [13.2] introduces the Malliavin gradient which is a derivative of a function on
Wiener space (e.g. the solution of an SDE) w.r.t. variations of the Brownian path. Bis-
mut’s integration by parts formula is an infinitesimal version of the Girsanov Theorem,
which relates these variations to variations of Wiener measure. After a digression to
representation theorems in Section [0.4] Section [I13.3]discusses Malliavin derivatives of
solutions of SDE and their connection to variations of the initial condition and the coef-
ficients. As a consequence, we obtain first stability results for SDE from the Bismut in-
tegration by parts formula. Finally, Section[13.4lsketches briefly how Malliavin calculus
can be applied to prove existence and smoothness of densities of solutions of SDE. This
should give a first impression of a powerful technique that eventually leads to impres-

sive results such as Malliavin’s stochastic proof of Hormander’s theorem, cf. [21]], [34]].

13.1 Variations of parameters in SDE

We now consider a stochastic differential equation

d
dX; = b(e, XP)dt+ Y on(e. XD dWE, X5 = a(e), (1310
k=1

on R™ with coefficients and initial condition depending on a parameter € € U, where U
is a convex neighbourhood of 0 in R™, m € N. Here b, 0, : U x R™ — R" are functions
that are Lipschitz continuous in the second variable, and = : U — R". We already
know that for any € € U, there exists a unique strong solution (X7 ):>o of (I3.1.1)). For
p € [1,00) let

. apl/p
X, = B[ sw xip] "
te[0,1]

Exercise (Lipschitz dependence on €). Prove that if the maps x, b and o}, are all Lip-
schitz continuous, then € — X* is also Lipschitz continuous w.r.t. || - || ., i.e., there exists

a constant L,, € R, such that

||X€+h_X€||p < Ly |hl, forany ¢,h € R™ with e,e+h € U.
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We now prove a stronger result under additional regularity assumptions.

Differentation of solutions w.r.t. a parameter

Theorem 13.1. Let p € [2,00), and suppose that x, b and o}, are C* with bounded

derivatives up to order 2. Then the function € — X°¢ is differentiable on U w.rt. || -

and the differential Y*¢ = “5— is the unique strong solution of the SDE
. 0b o Ob x e
dayy = (85( X;)+ 8—(5,Xt)Y; ) dt (13.1.2)
d
a(fk a &Ik c c
Z( + Sk (e, XE)YE) AW,
Yy = ( ), (13.1.3)

that is obtained by formally differentiating (I3.11) w.r.t. €.

Here and below 2 and denote the differential w.r.t. the € and z variable, and 2’

e
denotes the (total) d1fferent1a1 of the function x.

Remark. Note that if (X[) is given, then (I3.1.2) is a linear SDE for (Y;) (with
multiplicative noise). In particular, there is a unique strong solution. The SDE for the
derivative process Y is particularly simple if o is constant: In that case, (I3.1.2) is a

deterministic ODE with coefficients depending on X*.

Proof of 3.1l We prove the stronger statement that there is a constant M, € (0,00)
such that
| X =X —Yeh|| < M, |hf (13.1.4)

holds for any €, € R™ with €, + h € U, where Y is the unique strong solution of
(I3.1.2). Indeed, by subtracting the equations satisfied by X**", X¢ and Y*h, we obtain
fort € [0, 1]:

t d t
| Xith - X7 - ViR < III+/ IHIdHZ’/HIdek”
0 k=1 70
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where
I = z(e+h)—z(e) —2'(e)h,

h
I = b(e+h, X)) —b(e, X?) = ¥(e, X9) , and
Yeh
e+h 5 / 5 h
II, = Uk(€+h7X )_O-k(gvX )_O-k(gaX ) Veh :

Hence by Burkholder’s inequality, there exists a finite constant C), such that

t d
E[(X*h — X*—Y°h)[?] < Cp-<|1|p+/E[|H|p+Z|IHk|p] ds | .
0 k=1

(13.1.5)
Since z, b and o}, are C? with bounded derivatives, there exist finite constants Cj, Cyy,
C'r such that

1 < il (13.1.6)
b

1| < Culh]*+ ’%(S,XE)(XEJFFL — X —-Y*h)|, (13.1.7)
0

L, < Cumlh? + ‘%(e, X)X — X°—Y*h)|. (13.1.8)

Hence there exist finite constants 6’1,, C’p such that
d
BllIp + Y ) < G, (A7 + E[| X7 — X* = Yeh|"])
k=1
and thus, by (I3.1.3)) and (I3.1.6),

t
B(X*™ =X = Yeh)"] < Clh*+CC, / E[(X* — X® = Y*h)?] ds
0

for any ¢t < 1. The assertion (I3.1.4) now follows by Gronwall’s lemma. O

Derivative flow and stability of stochastic differential equations

We now apply the general result above to variations of the initial condition, i.e., we

consider the flow

d
dgf = b(E) dt+ Y on(&) dWE, & = . (13.1.9)
k=1
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Assuming that b and o}, (k = 1,. .., d) are C? with bounded derivatives, Theorem [13.1]
shows that the derivative flow
0
ye — / — Y el
t () <8xk & ) Lkt
exists w.r.t. || - ||, and (Y;"):> satisfies the SDE

d
dyy = VE)Ydit )y on&) Y dwl, Yy = L. (13.110)

k=1
Note that again, this is a linear SDE for Y if £ is given, and Y is the fundamental solu-
tion of this SDE.

Remark (Flow of diffeomorphisms). One can prove that x — £/ (w) is a diffeomor-

phism on R” for any ¢ and w, cf. [27] or [15]].
In the sequel, we will denote the directional derivative of the flow &; in direction v € R"
by Y,

Yo = Y4 = Yiu o= 0.
(i) Constant diffusion coefficients. Let us now first assume that d = n and o(x) = I,
for any x € R". Then the SDE reads

et = b(&%) dt + dW, & =
and the derivative flow solves the ODE
dy* = b’(f"”)Y dt, Yy, = I,

This can be used to study the stability of solutions w.r.t. variations of initial conditions

pathwise:

Theorem 13.2 (Exponential stability I). Suppose that b : R* — R" is C? with
bounded derivatives, and let
kK = sup supv-b(x)v.

zeR™ yeR™
[v|=1
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Then for anyt > 0 and x,y,v € R",

0,61 < €l,  and |G -¢] < Mz -yl

The theorem shows in particular that exponential stability holds if £ < 0.

Proof. The derivative Y7, = 0,/ satisfies the ODE

ay, = b ()Y, dt.
Hence
dly,? = 2Y,-V()Y,dt < 2&|Y,dL,
which implies
|6v§f|2 = |K)$t|2 < 62“t|v|2, and thus
1
&5 =&/l = ‘/@c—y il_s)ﬁsyds < ez -y
0

O

Example (Ornstein-Uhlenbeck process). Let A € R™™". The generalized Ornstein-
Uhlenbeck process solving the SDE

A& = A& dt + dW,
is exponentially stable if k = sup {v- Av : v € S" 1} <.

(ii) Non-constant diffusion coefficients. If the diffusion coefficients are not constant,
the noise term in the SDE for the derivative flow does not vanish. Therefore, the deriva-
tive flow can not be bounded pathwise. Nevertheless, we can still obtain stability in an

L? sense.

Lemma 13.3. Suppose thatb, o1, . ..,04 : R* — R"™ are C? with bounded derivatives.
Then for any t > 0 and x,v € R", the derivative flow Y;', = 0,7 is in L*(Q, A, P),
and

CEIVIP = 2BV K(E)YE)
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where

oi(2) oy ().

DO | =
[]=

K(z) = V(x)+

k=1

Proof. Let V" denote the k-the component of Y,,. The Itd product rule yields
dy,? = 2v,-dY,+>» d[Yy"]
k

WLID oy )y, de+23 Ve oble) dW + 3 b (©)il? d.
k k

Noting that the stochastic integrals on the right-hand side stopped at

T, =inf{t > 0:|Y, | > n} are martingales, we obtain

tA\Ty,
E[|Yonnl?] = \v|2+2E[/ Y, K(€)Y, ds|.
0

The assertion follows as n — oo. |

Theorem 13.4 (Exponential stability II). Suppose that the assumptions in Lemmall3.3!
hold, and let

Kk = sup sup v- K(x)v. (13.1.11)
=

Then for anyt > 0 and x,y,v € R",
El0,£5%] < e*Yv|*, and (13.1.12)

Ell&g -¢P? < eflz—yl (13.1.13)

Proof. Since K (z) < kI, holds in the form sense for any =, Lemmal[l3.3limplies
d
@EHYU,HQ] < 26E[|Y,[7)-

(I3.1.12) now follows immediately by Gronwell’s lemma, and (I3.1.13) follows from
(BL12) since & — & = [} 0, 7" g5, O
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Remark. (Curvature) The quantity —x can be viewed as a lower curvature bound
w.r.t. the geometric structure defined by the diffusion process. In particular, exponential
stability w.r.t. the L? norm holds if x < 0, i.e., if the curvature is bounded from below

by a strictly positive constant.

Consequences for the transition semigroup

We still consider the flow (&) of the SDE (13.0.1]) with assumptions as in Lemma[13.3]
and Theorem [[3.4] Let

m@B) = PleBl, xR, BeBR",

denote the transition function of the diffusion process on R". For two probability mea-

sures /i, v on R™, we define the L? Wasserstein distance

Walpr) = inf BX Y]
Xw,quNz/

as the infimum of the L? distance among all couplings of 1 and v. Here a coupling of 1
and v is defined as a pair (X, Y") of random variables on a joint probability space with
distributions X ~ pand Y ~ v. Let x be defined as in .

Corollary 13.5. Foranyt > 0 and z,y € R",

Wa(pe(z,- ), pe(y, ) < ez —yl

Proof. The flow defines a coupling between p;(x,- ) and p;(y, - ) for any ¢, z and y:

gf ~ pt(x7 ’ )7 &J ~ pt(y7 ’ )

Therefore,
Wa(pi(z,- )(y,-)” < B[l — &P,

The assertion now follows from Theorem [13.4] O
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Exercise (Exponential convergence to equilibrium). Suppose that x is a stationary
distribution for the diffusion process, i.e., i is a probability measure on 3(R"™) satisfying
pp: = p for every t > 0. Prove that if £ < 0 and [ |z|* u(dz) < oo, then for any
z € R, Wa(pe(x,- ), 1) — 0 exponentially fast with rate « as ¢ — co.

Besides studying convergence to a stationary distribution, the derivative flow is also

useful for computing and controlling derivatives of transtion functions. Let

(0] () = / prla, dy) £ () = ELF(€)]

denote the transition semigroup acting on functions f : R” — R. We still assume the
conditions from Lemma[I3.3]

Exercise (Lipschitz bound). Prove that for any Lipschitz continuous function f :
R" —- R,
pefllue < €| fllup  VE=0,

where || f|[Lip = sup {|f(z) = f(y)l/|lz —yl: 2,y € R" st x F# y}.

For continuously differentiable functions f, we even obtain an explicit formula for the

gradient of p, f:

Corollary 13.6 (First Bismut-Elworthy Formula). For any function f € C}(R") and
t > 0, pif is differentiable with

v-Vepf = E[Y5 -Vef]l VzveRM (13.1.14)

Here V.p; f denotes the gradient evaluated at x. Note that Y;", - Vo f is the directional

derivative of f in the direction of the derivative flow V" .

Proof ofI3.6] For A € R\ {0},

)@+ ) — (pef)(z T4\ x g z+sv
(p f)( + )\) (p f)( ) _ %E[f(t >_f<€t)] — %/0 E[Y;,t -Vgﬁsvf] ds.

The assertion now follows since x — &/ and x — Y., are continuous, V f is continuous

and bounded, and the derivative flow is bounded in 2. O
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The first Bismut-Elworthy Formula shows that the gradient of p,f can be controlled
by the gradient of f for all ¢ > 0. In Section we will see that by applying an
integration by parts on the right hand side of (I3.1.14), for ¢ > 0 it is even possible
to control the gradient of p;f in terms of the supremum norm of f, provided a non-

degeneracy condition holds, cf. (??).
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13.2 Malliavin gradient and Bismut integration by parts

formula

Let W;(w) = w; denote the canonical Brownian motion on 2 = Cy([0, 1], R?) endowed
with Wiener measure. In the sequel, we denote Wiener measure by P, expectation

values w.r.t. Wiener measure by F[ - |, and the supremum norm by || - ||.

Definition. Let w € (). A function F : Q) — R is called Fréchet differentiable at w iff

there exists a continuous linear functional d,F" : Q) — R such that

[P +h) — Fw) = ()R = o(llall)  forany he Q.

If a function F' is Fréchet differentiable at w then the directional derivatives

oF . Flw+eh)-Flw)
%(w) = lim = (d,F)(h)

e—0 £

exist for all directions A € (2. For applications in stochastic analysis, Fréchet differ-
entiability is often too restrictive, because {2 contains “too many directions”. Indeed,
solutions of SDE are typically not Fréchet differentiable as the following example indi-

cates:

Example. Let F' = fol W dW?2 where W; = (W}, W2) is a two dimensional Brownian
motion. A formal computation of the derivative of F' in a direction h = (h', h?) € Q

yields
oF

1 1
o /0 hi AW} +/0 W} dh?.
Clearly, this expression is NOT CONTINUOUS in h w.r.t. the supremum norm.

A more suitable space of directions for computing derivatives of stochastic integrals is

the Cameron-Martin space

Hen = {h: 0,1] = R? : ho =0, h abs. contin. with 1’ € L2([0, 1],Rd)]}.
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Recall that H ), is a Hilbert space with inner product

1
(hag)H = / h:ﬁ ' gzi dta h7g € HCM-
0

The map h + ' is an isometry from Hcy, onto L2([0, 1], RY). Moreover, Heyy is

continuously embedded into (2, since

1
Bl = sup bl < /|h;|dt < ()Y
] 0

telo,1

for any h € Hgjy by the Cauchy Schwarz inequality.

As we will consider variations and directional derivatives in directions in Hcyy, it is
convenient to think of the Cameron-Martin space as a tangent space to {2 at a given
path w € Q2. We will now define a gradient corresponding to the Cameron-Martin inner
product in two steps: at first for smooth functions F' : {2 — R, and then for functions

that are only weakly differentiable in a sense to be specified.

Gradient and integration by parts for smooth functions

Let C}(Q) denote the linear space consisting of all functions F' : Q — R that are
everywhere Fréchet differentiable with continuous bounded derivative dF' : 2 — (¥,
w +— d,F. Here ' denotes the space of continuous linear functionals [ : @ — R

endowed with the dual norm of the supremum norm, i.e.,

Nl = sup{i(h) : heQ with ||h|| < 1}.

Definition (Malliavin Gradient I). Ler ' € C}(R) and w € Q.
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1) The H-gradient (D" F)(w) is the unique element in Hc )y satisfying

(D"F)(w),h), = g—];(w) = (d,F)(h)  forany h € Hoy.

H
(13.2.1)

2) The Malliavin gradient (DF)(w) is the function t — (D, F)(w) in L*([0, 1], RY)
defined by

(D,F)(w) = %(DHF)(w)(t) fora.e. t €[0,1]. (13.2.2)

In other words, D F is the usual gradient of F’ w.r.t. the Cameron-Martin inner product,
and (DF)(w) is the element in L*([0, 1], R?) identified with (D F')(w) by the canoni-
cal isometry h > h’ between Hcy, and L%([0, 1], RY). In particular, for any h € Heyy
and w € (),

OF

Sr@) = (W(DTRW), = 0 (DF)w):

H
1
_ / B (DJF)(w) dt, (13.23)
0

and this identity characterizes D F' completely. The examples given below should help

to clarify the definitions.

Remark.

1) The existence of the [H-gradient is guaranteed by the Riesz Representation The-
orem. Indeed, for w € Q and F' € C}(Q), the Fréchet differential d,F is a
continuous linear functional on 2. Since H¢y, is continuously embedded into
(), the restriction to Hc ), is a continuous linear functional on H¢); w.r.t. the H-
norm. Hence there exists a unique element (D F')(w) in Hey, such that (I3.2.1)
holds.

2) By definition of the Malliavin gradient,

1
IDY P = A\QFWWﬁ-
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3) Informally, one may think of D, [ as a directional derivative of [ in direction

I(4,1), because

. d 1 29
DF = SDUF() = /O<DHF>'I&,11 = Ot

Of course, this is a purely heuristic representation, since /(; ;) is not even contin-

uous.
Example (Linear functions on Wiener space).

1) Brownian motion: Consider the function F/(w) = Wi(w) = w!, where s € (0, 1]
andi € {1,...,d}. Clearly, F'is in C}(€) and

0 1 d i i i !
%WS = d_{—j(WS + €hs) ’8:0 = hs = /0 h; t € ](073) (t) dt

for any h € Hcyy. Therefore, by the characterization in (13.2.3), the Malliavin
gradient of F'is given by

(DIW)(w) = e Lot forevery w € Q anda.e. ¢t € (0,1).

Since the function F' : 2 — R is linear, the gradient is deterministic. The H-

gradient is obtained by integrating DW:
t t
DEW! = /DTWSZ' dr = /ei Iosy = (sAt)e.
0 0

2) Wiener integrals: More generally, let

1
F = /gs-dWs
0

where g : [0,1] — R%is a C" function. Integration by parts shows that

1
F = g -W - / g, Wy ds almost surely. (13.2.4)
0

The function on the right hand side of (I3.2.4) is defined for every w, and it is
Fréchet differentiable. Taking this expression as a pointwise definition for the

stochastic integral F', we obtain

OF ! !
— = g-h—/g;-hsds = /gs-h’sds
Oh S 0
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for any h € Hcyy. Therefore, by (13.2.3),

t
D/F = g and DFF = /gsds.
0

Theorem 13.7 (Integration by parts, Bismut). Let FF € C}(Q) and G € L3(Q x
[0,1] = RY P ® \). Then

E[/OIDtF-tht} - E[F/Oth-dV[Q]. (13.2.5)

To recognize (I3.2.3) as an integration by parts identity on Wiener space let H; =
fot G,ds. Then

1
/ DF-Gydt = (D"F,H), = 0gF.
0
Replacing F in (I3.2.3) by F - F with F, F € C}(€2), we obtain the equivalent identity

1
E[FoyF] = —E[aHFfHE[Fﬁ/ Gt-th} (13.2.6)
0

by the product rule for the directional derivative.

Proof of Theorem[[3.70 The formula (I3.2.6) is an infinitesimal version of Girsanov’s

Theorem. Indeed, suppose first that GG is bounded. Then, by Novikov’s criterion,

) ¢ et
zZr = exp(e/o GS'dWS_?/O |G| ds)

is a martingale for any € € R. Hence for [, = fot G, ds,
E[FW +eH)] = E[F(W)Z].

The equation (I3.2.6) now follows formally by taking the derivative w.r.t. ¢ at ¢ = 0.
Rigorously, we have

F(W +¢eH) — F(W)}

_ E[F(W)ng_l. (13.2.7)

E
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As € — 0, the right hand side in converges to E[F(WW) fot G - dW], since
1 1 1
—(Z5-1) = / Z°G - dW  — / G-dW  in L*(P).
€ 0 0
Similarly, by the Dominated Convergence Theorem, the left hand side in (I3.2.7) con-
verges to the left hand side in (I3.2.6):

EE(F(WJraH)—F(W))] - E[ /O (OuF)(W + sH) ds] s B0 F)(W)]

as e — 0 since F' € C}(Q2). We have shown that (I3.2.6)) holds for bounded adapted G.
Moreover, the identity extends to any G € L2(P ® )) because both sides of (I3.2.6)) are
continuous in G w.r.t. the L?(P ® \) norm. O

Remark. Adaptedness of GG is essential for the validity of the integration by parts
identity.

Skorokhod integral

The Bismut integration by parts formula shows that the adjoint of the Malliavin gradient

coincides with the It0 integral on adapted processes. Indeed, the Malliavin gradient
D:CH) C LA QA P) — L*(Qx[0,1] =R, AR B, P® ),
F — (DeF)o<i<t,

is a densely defined linear operator from the Hilbert space L?((2, A, P) to the Hilbert
space L*(Q x [0,1] = R4, A® B, P ® \). Let

§: Dom(6) C L* (2 x [0,1]] = RE, A® B,P®)\) — L*(Q, A, P)
denote the adjoint operator (i.e., the divergence operator corresponding to the Malli-

avin gradient). By (I3.2.6), any adapted process G € L2(Q2 x [0,1] € RY, AR B, PR \)

is contained in the domain of §, and
1
oG = / Gy - dW, forany G € L2
0

Hence the divergence operator ¢ defines an extension of the Itd integral G — |, 01 G- dW;
to not necessarily adapted square integrable processes G : Q x [0,1] — R<. This

extension is called the Skorokhod integral .
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Exercise (Product rule for divergence). Suppose that (G )c[o,1] is adapted and bounded,
and F' € C}(2). Prove that the process (F - Gy)iepo,1 is contained in the domain of 4,

and

1
SFG) = F8(G)— / DiF - G, dt.
0

Definition of Malliavin gradient 11

So far we have defined the Malliavin gradient only for continuously Fréchet differen-
tiable functions F' on Wiener space. We will now extend the definition to the Sobolev
spaces DI'P, 1 < p < oo, that are defined as closures of C} () in LP(Q, A, P) w.r.t. the

norm

Y
1Fl, = E[IFI"+[[DTF[[5] "

In particular, we will be interested in the case p = 2 where

1
1FI12, = E[F2 + / D, F|? dt} .
0
Theorem 13.8 (Closure of the Malliavin gradient).

1) There exists a unique extension of D! to a continuous linear operator

DE. DY — LP(Q— HP)
2) The Bismut integration by parts formula holds for any F' € D'2.

Proof forp=2. 1) Let F € D2 and let (F, ),y be a Cauchy sequence w.r.t. the (1,2)
norm of functions in C} () converging to F' in L?(£2, P). We would like to define

DHF .= 1lim D"F, (13.2.8)

n—o0
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w.r.t. convergence in the Hilbert space L?(Q) — H, P). The non-trivial fact to be shown
is that DY F is well-defined by (I3.2.8), i.e., independently of the approximating se-

quence. In functional analytic terms, this is the closability of the operator D.

To verify closability, we apply the integration by parts identity. Let (F,,) and (F},) be
approximating sequences as above, and let . = lim F}, and L =lmF, in L*(Q, P).

We have to show L = L. To this end, it suffices to show
(L—L,h)y = 0 almost surely for any h € H. (13.2.9)
Hence fix h € H, and let ¢ € CZ(€2). Then by (I3.2.6),

E(L-L,h)g-¢] = lim E[u(F, —F,)-¢]

n—o0

n—o0

1
—  lim {E[(Fn _ Fn)¢/ W dw} _ E[(Fn . Fn)ahqﬁ”
0
= 0
since F, — F,, — 01in L2. As C}(9) is dense in L%(2, A, P) we see that (I3.2.9) holds.

2) To extend the Bismut integration by parts formula to functions F' € D"? let (F,) be
an approximating sequence of C}! functions w.r.t. the (1, 2) norm. Then for any process
G € L%and H, = fot G, ds, we have

E[/lDtFn~tht] - E[(DHF,L,H)H} - E[Fn/lG.dW].

Clearly, both sides are continuous in F,, w.r.t. the (1,2) norm, and hence the identity

extends to F'as n — oo. [l

The next lemma is often useful to verify Malliavin differentiability:

Lemma 13.9. Let F € L*(Q, A, P), and let (F,,)en be a sequence of functions in D'

converging to F w.r.t. the L? norm. If

sup B[||D"E,||%4] < oo (13.2.10)

neN

then I is in D'?, and there exists a subsequence (F,,)cn of (F,) such that

=Y F, = F  wrt the(1,2)norm. (13.2.11)
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The functional analytic proof is based on the theorems of Banach-Alaoglu and Banach-

Saks, cf. e.g. the appendix in [30].

Proof. By (I3.2.10), the sequence (D?F},),cn of gradients is bounded in L?*(Q —
H; P), which is a Hilbert space. Therefore, by the Banach-Alaoglu theorem , there
exists a weakly convergent subsequence (D Fy,);cny. Moreover, by the Banach-Saks
Theorem, there exists a subsequence (DH F,.,)ien of the first subsequence such that the
averages | Ele DHE, are even strongly convergent in L?(2 — H; P). Hence the
corresponding averages ; S | F,, converge in D2, The limit is F' since F,,, — F in

L? and the D'? norm is stronger than the L? norm. O

Product and chain rule

Lemma[13.9]can be used to extend the product and the chain rule to functions in D2,

Theorem 13.10. /) If I and G are bounded functions in D'? then the product FG

is again in D2, and

D(FG) = FDG+GDF a.s.

2) Letm € Nand FOV ... F™ € D2 If¢ : R™ — R is continuously differen-
tiable with bounded derivatives then ¢(FV ... F(™) is in D', and

9%

D (FD, .. FM) = FO . FMYDF®,
¢(”);8xi(”)

Proof. We only prove the product rule, whereas the proof of the chain rule is left as
an exercise. Suppose that (F},) and (G,,) are sequences of C} functions converging to

F and G respectively in D42, If F' and G are bounded then one can show that the ap-
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proximating sequences (F,,) and (G,,) can be chosen uniformly bounded. In particular,

F,G, — FG in L?. By the product rule for the Fréchet differential,

DH(F,G,) F,D"G, +G,D"F,  forany n € N, andl3.2.12)
ID(EG) e < [F| DGl + |Gal |ID" Fol|r.

Thus the sequence (D (F,G),))nen is bounded in L*(Q2 — H; P). By Lemma[13.9

we conclude that £'G is in DV2 and

k—o0

k
DH(FG) = I lim %ZDH(FMGM)
=1

for an appropriate subsequence. The product rule for F'G now follows by (1I3.2.12). O

Clark-Ocone formula

Recall that by 1td’s Representation Theorem, any function F' € L?(Q, A, P) on Wiener
space that is measurable w.r.t. the o-algebra F; = ]-"1W " can be represented as a stochas-

tic integral of an (F;) adapted process:
1
F—E[F] = / Gy - dWy for some G' € L2(0,1).
0

If F is in DY? then the integration by parts formula on Wiener space can be used to

identify the process G explicitly:

Theorem 13.11 (Clark-Ocone). For any F' € D'2,
1
F-E[F] = / G- dW
0

where

Gt = E[DtF|Ft]
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Proof. It remains to identify the process G in the Itd representation. We assume w.l.o.g.
that E[F] = 0. Let H € LL([0, 1], R%). Then by Itd’s isometry and the integration by
parts identity,

1 1 1 1
E[/ Gt~tht] - E[/ G-dW/ HdW] _ E[/ D,F - H, dt
0 0 0 0

1
— E[/ E[D,F|F] - H, dt}
0
for all Setting H, := Gy — E[D,F|F;| we obtain

Gi(w) = E[DF|F](w) P® )\ — ae.

13.3 First applications to stochastic differential equa-

tions

13.4 Existence and smoothness of densities
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Chapter 14

Stochastic calculus for semimartingales

with jumps

Our aim in this chapter is to develop a stochastic calculus for functions of finitely many
real-valued stochastic processes Xt(l), Xt(Q), e ,Xt(d). In particular, we will make sense

of stochastic differential equations of type

WY ) dX®

|M&

with continuous time-dependent vector fields o4, ...,04 : Ry X R® — R". The sample
paths of the driving processes (Xt(k)) and of the solution (Y;) may be discontinuous, but
we will always assume that they are cadlag, i.e., right-continuous with left limits. In
most relevant cases this can be assured by choosing an appropriate modification. For
example, a martingale or a Lévy process w.r.t.a right-continuous complete filtration
always has a cadlag modification, cf. [37, Ch.II, §2] and [36, Ch.I Thm.30].

An adequate class of stochastic processes for which a stochastic calculus can be devel-
oped are semimartingales, 1.e., sums of local martingales and adapted finite variation
processes with cadlag trajectories. To understand why this is a reasonable class of pro-

cesses to consider, we first briefly review the discrete time case.
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Semimartingales in discrete time

If (Fn),—0.1... is a discrete-time filtration on a probability space (€2, A, P) then any

(F.) adapted integrable stochastic process (X,,) has a unique Doob decomposition
X, =Xo+ M, +A — A (14.0.1)

into an (F,,) martingale (1/,,) and non-decreasing predictable processes (A7) and (A,>)
such that My = Ay = A(}‘ = 0, cf. [14, Thm. 2.4]. The decomposition is determined
by choosing

Mn - Mnfl = Xn - anl - E[Xn - anl | Fn71]7

Al — AL =E[Xy—Xp1 | Fooa]t, and AX— A, = E[X, — X, 1 | Futl”™.

In particular, (X,,) is a sub- or supermartingale if and only if A = 0 for any n, or

A7 = 0 for any n, respectively. The discrete stochastic integral
(GoX)n = D Gr(Xp—Xi)
k=1

of a bounded predictable process (G,) w.r.t.(X,) is again a martingale if (X,,) is a
martingale, and an increasing (decreasing) process if G, > 0 for any n, and (X,,)
is increasing (respectively decreasing). For a bounded adapted process (H,,), we can

define correspondingly the integral

(H_oX), = ZHk—l (Xg — Xp—1)

of the predictable process H_ = (Hy_1)gen W.I.t. X.

The Taylor expansion of a function ' € C?*(R) yields a primitive version of the It6

formula in discrete time. Indeed, notice that for k£ € N,
1
F(Xk) - F(Xk—l) = / F/(Xk—l + SAXk) ds AXk
0

1 s
= F/(kal) AXk + / / F//<Xk,1 —|—7’AXk) drds (AXk)Z
0 0
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where AX; := X, — X;,_;. By summing over £, we obtain
n 1 s

F(X,) = F(Xo) + (F'(X)_oX), + Y / / F'(Xy +7AXy) drds (AX)”.
w1 70 Jo

It6’s formula for a semimartingale (X;) in continuous time will be derived in Theorem
below. It can be rephrased in a way similar to the formula above, where the
last term on the right-hand side is replaced by an integral w.r.t. the quadratic variation
process [X]; of X, cf. (XXX).

Semimartingales in continuous time

In continuous time, it is no longer true that any adapted process can be decomposed
into a local martingale and an adapted process of finite variation (i.e., the sum of an
increasing and a decreasing process). A counterexample is given by fractional Brownian
motion, cf. Section 2.3 below. On the other hand, a large class of relevant processes has

a corresponding decomposition.

Definition. Ler (F;);>0 be a filtration. A real-valued (F;)-adapted stochastic process
(X¢)t>0 on a probability space (2, A, P) is called an (F;) semimartingale if and only

if it has a decomposition
Xy = Xo+ M+ A, t >0, (14.0.2)

into a strict local (F;)-martingale (M,) with cadlag paths, and an (JF;)-adapted process
(Ay) with cadlag finite-variation paths such that My = Ay = 0.

Here a strict local martingale is a process that can be localized by martingales with uni-
formly bounded jumps, see Section 2.2 for the precise definition. Any continuous local
martingale is strict. In general, it can be shown that if the filtration is right continuous
and complete then any local martingale can be decomposed into a strict local martingale
and an adapted finite variation process (“Fundamental Theorem of Local Martingales”,

cf. [36]). Therefore, the notion of a semimartingale defined above is not changed if the
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word “strict” is dropped in the definition. Since the non-trivial proof of the Fundamental
Theorem of Local Martingales is not included in these notes, we nevertheless stick to

the definition above.

Remark. (Assumptions on path regularity). Requiring (A;) to be cadlag is just a
standard convention ensuring in particular that ¢t — A;(w) is the distribution function of
a signed measure. The existence of right and left limits holds for any monotone function,
and, therefore, for any function of finite variation. Similarly, every local martingale

w.r.t. a right-continuous complete filtration has a cadlag modification.

Without additional conditions on (A;), the semimartingale decomposition in (14.0.2) is
not unique, see the example below. Uniqueness holds if, in addition, (A;) is assumed to
be predictable, cf. [7,36]. Under the extra assumption that (A;) is continuous, unique-

ness is a consequence of Corollary below.

Example (Semimartingale decompositions of a Poisson process). An (F;) Poisson

process (/V;) with intensity A has the semimartingale decompositions
Nt — Nt+)\t — 0+Nt

into a martingale and an adapted finite variation process. Only in the first decomposi-

tion, the finite variation process is predictable and continuous respectively.

The following examples show that semimartingales form a sufficiently rich class of

stochastic processes.

Example (Stochastic integrals). Let (B;) and (1V;) be a d-dimensional (F;) Brownian
motion and an (F;) Poisson point process on a o-finite measure space (.5, S, /) respec-

tively. Then any process of the form

t t
X, = / H,-dB, + / G(y)N(ds dy) + / K. ds + / La(y)N(ds dy)
0 (0,t] xS 0 (0,t] xS
(14.0.3)
is a semimartingale provided the integrands H, G, K, L are predictable, H and G are
(locally) square integrable w.r.t. P ® A\, P ® A ® v respectively, and K and L are

(locally) integrable w.r.t. these measures. In particular, by the Lévy-Ité6 decomposition,
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every Lévy process is a semimartingale. Similarly, the components of solutions of SDE
driven by Brownian motions and Poisson point processes are semimartingales. More
generally, 1td’s formula yields an explicit semimartingale decomposition of f(¢, X;) for
an arbitrary function f € C? (R, x R") and (X;) as above, cf. Section [T4.4] below.

Example (Functions of Markov processes). If (X;) is a time-homogeneous (F;)
Markov process on a probability space (€2,.4, P), and f is a function in the domain
of the generator £, then f(X,) is a semimartingale with decomposition
t
f(X¢) = local martingale + / (Lf)(Xs) ds, (14.0.4)
0

cf.e.g. [12] or [16]. Indeed, it is possible to define the generator £ of a Markov process
through a solution to a martingale problem as in (14.0.4).

Many results for continuous martingales carry over to the cadlag case. However, there

are some important differences and pitfalls to be noted:

Exercise (Cadlag processes).
1) A stopping time is called predictable iff there exists an increasing sequence (75,)
of stopping times such that 7,, < 7 on {T" > 0} and T" = sup Ty. Show that for

a cadlag stochastic process (X;);>o, the first hitting time
Ty = inf{t>0: X, € A}

of a closed set A C R is not predictable in general.

2) Prove that for a right continuous (F;) martingale (M;);>¢ and an (F;) stopping
time 7', the stopped process (M;nr):>0 is again an (F;) martingale.

3) Prove that a cadlag local martingale () can be localized by a sequence (M;x1,,)

of bounded martingales provided the jumps of (M) are uniformly bounded, i.e.,
sup {|AMy(w)|: t >0, w € Q} < .

4) Give an example of a cadlag local martingale that can not be localized by bounded

martingales.
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Our next goal is to define the stochastic integral G, X w.r.t. a semimartingale X for
the left limit process G = (H,_) of an adapted cadlag process H, and to build up a
corresponding stochastic calculus. Before studying integration w.r.t. cadlag martingales

in Section [14.2] we will consider integrals and calculus w.r.t. finite variation processes

in Section [[4.11

14.1 Finite variation calculus

In this section we extend Stieltjes calculus to cadlag paths of finite variation. The results
are completely deterministic. They will be applied later to the sample paths of the finite

variation part of a semimartingale.

Fix u € (0,00],and let A : [0,u) — R be a right-continuous function of finite variation.
In particular, A is cadlag. We recall that there is a o-finite measure p4 on (0, u) with

distribution function A4, i.e.,
pa((s,t])) = A — Ag forany 0 < s <t < u. (14.1.1)

The function A has the decomposition

A, = A4 Al (14.1.2)
into the pure jump function
A = ) CAA, (14.1.3)
s<t

and the continuous function AS = A, — A%, Indeed, the series in (I4.1.3) converges

absolutely since

Y aAl < VY(A) <oco foranyt € [0,u).

s<t

The measure j14 can be decomposed correspondingly into

Ha = fAc Tt fad
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pas = Y AAG,
s€(0,u)
AA£0

is the atomic part, and p 4. does not contain atoms. Note that p4c is not necessarily

absolutely continuous!

Lebesgue-Stieltjes integrals revisited

Let £1.([0,u), pa) := Ly,

distribution function V,” (A). For G € Elloc([O, u), i1a), the Lebesgue-Stieltjes integral
of H w.r.t. A is defined as

([0,u), |pal) where || denotes the positive measure with

/ G,dA, = /Gr Tisq(r) pra(dr) for0 <s <t <u.
A crucial observation is that the function
t
jA— / G dA, - / Gy pa(dr) . te0u),
0 (0,¢]
is the distribution function of the measure
pr(dr) = G, pa(dr)

with density G' w.r.t. ;14. This has several important consequences:

1) The function [ is again cadlag and of finite variation with

t t
L A N W AT A}
0 0
2) I decomposes into the continuous and pure jump parts
t t
Ir = /GrdAﬁ . It = /GrdAff = ) G, AA,
0 0 o<t

3) For any G e Elloc(m),

t t
/ G.dl, = / G.G, dA,,
0 0

ie.if “dl = G dA” then also “G dI = GG dA”.
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Theorem 14.1 (Riemann sum approximations for Lebesgue-Stieltjes integrals).
Suppose that H : [0,u) — R is a cadlag function. Then for any a € [0,u) and for

any sequence () of partitions with mesh(m,) — 0,

t
lim E H(Agpe — As) = / H,_dA, uniformly fort € [0, al.
n—oo
SETY 0
s<t

Remark. If (A;) is continuous then

t t
/ HS, dAS == / Hs dA87
0 0

because fot AHdA, = ngt AH,AA, = 0 for any cadlag function H. In general,

however, the limit of the Riemann sums in Theorem [14.1] takes the modified form

t t
/ H,_dA, = / H,dAS+)  H,_AA,.
0 0

s<t
Proof. Forn € Nandt > 0,
Y Ho(Aww—4A) = Y / H,dA, = Hy,, dA,
(s,s' At (0,¢]

SETn SETn

s<t s<t
where ||, := max{s € m, : s <r} is the next partition point strictly below r. As
n — 00, ||, — r from below, and thus H,|, — H,_. Since the cadlag function H is

uniformly bounded on the compact interval [0, a], we obtain

t t
/ Hy,y, dA, — / H,_ dA,
0 0

as n — oo by dominated convergence. U

sup
t<a

< /( By, = He] lpal(@) =0
0,a

Product rule

The covariation [H, A] of two functions H, A : [0,u) — R w.r.t.a sequence (m,) of

partitions with mesh (7, ) — 0 is defined by

[H, Al = lim Y (Hone — Ho)(Agn — A), (14.1.4)
SETn
s<t
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provided the limit exists. For finite variation functions, [H, A] can be represented as a

countable sum over the common jumps of H and A:

Lemma 14.2. If H and A are cadlag and A has finite variation then the covariation
exists and is independently of (,,) given by
[H,Al, = > AHAA,

0<s<t

Proof. We again represent the sums as integrals:
t
Z (Hs’/\t - Hs)(As’/\t - As) = / (H]'r]n/\t - HLrJn) dAr
SCTn 0
o<
with |7], as above, and [r], := min{s € m, : s >r}. Asn — oo, Hpq,nt — H|r),
converges to H, — H,_, and hence the integral on the right hand side converges to
t
/ (H, — H,_)dA, = Y AHAA,
0 r<t

by dominated convergence. L

Remark. 1) If H or A is continuous then [H, A] = 0.

2) In general, the proof above shows that

t t
/ HS dAS — / HS— dAs+[H7A]t7
0 0

i.e., [H, A] is the difference between limits of right and left Riemann sums.

Theorem 14.3 (Integration by parts, product rule). Suppose that H, A : [0,u) — R

are right continuous functions of finite variation. Then
t t
H A, — HypAy = / H,_ dAr+/ A,_dH,.+[H, A}, foranyt € [0,u). (14.1.5)
0 0

In particular, the covariation [H, A] is a cadlag function of finite variation, and for
a < u, the approximations in (I4.1.4) converge uniformly on [0, a| w.r.t. any sequence

(7)) such that mesh(m,) — 0.
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In differential notation, reads
d(HA), = H, dA,+ A, dH,+d[H,A],.
As special cases we note that if H and A are continuous then H A is continuous with
d(HA), = H,dA.+ A, dH,,

and if H and A are pure jump functions (i.e. H® = A = 0) then H A is a pure jump

function with
A(HA), = H,_AA. +A._AH,+AAAH,
In the latter case, (I4.1.5)) implies
H, A, — HoAg = > A(HA),.
r<t

Note that this statement is not completely trivial, as it holds even when the jump times

of H A form a countable dense subset of [0, ]!
Since the product rule is crucial but easy to prove, we give two proofs of Theorem [14.3

Proof 1. For (r,) with mesh(m,) — 0, we have

HtAt - HOAO - Z(Hs’/\tAs’/\t - HSAS)

SETn
s<t

- Z HS(AS’/\t - As) + ZAS(HS’/\t - Hs) + Z(As’/\t - As)(Hs’/\t - Hs)

As n — oo, (I4.1.5) follows by Theorem [I14.1]above. Moreover, the convergence of the
covariation is uniform for ¢ € [0, a], a < wu, since this holds true for the Riemann sum
approximations of fot H, dA, and fot A,_ dH, by Theorem [I4.1] O
Proof 2. Note that for ¢ € [0, u),

S>r

s<r
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(Hi= o)A~ A0) = [ () palds)
(0,¢] % (0,¢]

is the area of (0, ¢] x (0, ¢] w.r.t. the product measure pi; ® p4. By dividing the square
(0,t]x (0, t] into the parts {(s,7) | s < r}, {(s,7) | s > r} and the diagonal {(s,7) | s = r}

we see that this area is given by

t t
/ N / N / _ / (A, — Ag) dH, + / (H, — Hy) dA,+ 3 AHAA,
s<r s>r s=r 0 0

s<t

The assertion follows by rearranging terms in the resulting equation. L]

Chain rule

The chain rule can be deduced from the product rule by iteration and approximation of

C! functions by polynomials:

Theorem 14.4 (Change of variables, chain rule, It6 formula for finite variation
functions). Suppose that A : [0,u) — R is right continuous with finite variation, and
let F € C1(R). Then for any t € [0,u),

F(A) — F(A) = /t F'(4,-) dAs + ) (F(A,) — F(A,2) = F'(A,0)AA,),
= (14.1.6)

or, equivalently,
FA) - Fld) = [ P4+ (FA) - F(A). (417

If A is continuous then F'(A) is also continuous, and reduces to the standard

chain rule

F(A) - F(4) = /OtF%As)dAs.
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If A is a pure jump function then the theorem shows that F'(A) is also a pure jump

function (this is again not completely obvious!) with
F(A)=F(A) = ) (F(A) = F(A.).

Remark. Note that by Taylor’s theorem, the sum in converges absolutely
whenever 3 _ (AA,)? < oo. This observation will be crucial for the extension to

[td’s formula for processes with finite quadratic variation, cf. Theorem [14.22| below.

Proof of Theorem 2.4. Let A denote the linear space consisting of all functions I’ €
C(R) satisfying (I4.1.6). Clearly the constant function 1 and the identity F'(t) = ¢ are
in A. We now prove that A is an algebra: Let F',G € A. Then by the integration by

parts identity and by (I£.1.7),

(FG)(A)=(FG)(Ao)

- [(Ftasy e+ [ G ana, + Y ara.a60).

- /t(F(AS)G’(AS) + G(A ) F(A,)) dAS

+ > (F(A,)AG(A), + G(A, ) AF(A), + AF(A),AG(A),)

s<t

_ /O (FGY(A,) dAS+ 3 (FG)(A,) — (FG)(A,-))

s<t

forany t € [0,u),i.e., FG isin A.

Since A is an algebra containing 1 and ¢, it contains all polynomials. Moreover, if F'
is an arbitrary C! function then there exists a sequence (p,) of polynomials such that
pn — F and p/, — F’ uniformly on the bounded set { A, | s < t}. Since (14.1.7) holds
for the polynomials p,,, it also holds for F'. U

University of Bonn 2015/2016



CHAPTER 14. STOCHASTIC CALCULUS FOR SEMIMARTINGALES WITH
490 JUMPS

Exponentials of finite variation functions

Let A : [0,00) — R be a right continuous finite variation function. The exponen-
tial of A is defined as the right-continuous finite variation function (Z;);>o solving the
equation

dz, = Z,_dA, Zy=1 ie.,

t
Zy, = 1 +/ Zo_ dA, forany ¢t > 0. (14.1.8)
0

If A is continuous then Z; = exp(A;) solves (I4.1.8) by the chain rule. On the other
hand, if A is piecewise constant with finitely many jumps then Z; = [, (1 + AA,)

solves (14.1.8), since

7, = ZO+ZAZS — 1+ZZS_AAS — 1+/ Z, dA,.
(0,

s<t s<t

In general, we obtain:

Theorem 14.5. The unique cadlag function solving (I14.1.8) is

Z, = exp(4p)-[J1+ 44, (14.1.9)

s<t

where the product converges for any t > 0.

Proof. 1) We first show convergence of the product

Po= JJa+aa,).

s<t

Recall that since A is cadlag, there are only finitely many jumps with [AA| > 1/2.

Therefore, we can decompose

P,o= exp| Y log(l+AA) |- J[ 1+a44,) (14.1.10)
\AASS\Sél/Q \AAﬁil/z
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in the sense that the product P; converges if and only if the series converges. The series
converges indeed absolutely for A with finite variation, since log(1+ x) can be bounded
by a constant times |x| for |x| < 1/2. The limit S; of the series defines a pure jump
function with variation V,'"($) < const. - V,")(A) for any ¢ > 0.

2) Equation for P,: The chain and product rule now imply by (I£.1.10) that ¢t — P, is

also a finite variation pure jump function. Therefore,

t
P, = P+Y AP, = 1+Y P AA, = 1+/ P,_dAY vt >0,
s<t s<t 0

(14.1.11)
i.e., P is the exponential of the pure jump part AY = > <t AA;.

3) Equation for Z;: Since Z; = exp(Af) P, and exp(A°) is continuous, the product rule

and (I4.111) imply
t t
Zi—1 = /eAi dP8+/ P,_ e dAC
0 0
t t
— / eMP_d(AT+ A%, = / Zy_ dA,.
0 0

4) Uniqueness: Suppose that Z is another cadlag solution of (I4.1.8), and let X, :=
Zy — Zt. Then X solves the equation

t
Xy = / X,_dA, Vt>0
0
with zero initial condition. Therefore,

t
X < /|Xs_|dvt < MV, Vi,
0

where V; := V(! (A) is the variation of A and M, := sup,, | X,|. Iterating the estimate
yields

t
X, < Mt/ ViodV, < MV?/2
0
by the chain rule, and

M t
X < —f/VS"_dVS
nt Jo

M,
(n+1)!

Vit ve>0neN. (14.1.12)
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Note that the correction terms in the chain rule are non-negative since V; > 0 and
[V]; > 0 forall t. As n — oo, the right hand side in (I4.1.12) converges to 0 since M,
and V; are finite. Hence X; = 0 for each ¢ > 0. ]

From now on we will denote the unique exponential of (A;) by (/).

Remark (Taylor expansion). By iterating the equation (I4.1.8)) for the exponential, we

obtain the convergent Taylor series expansion

52;4 = ]_ + Z/ / / dASdeSk—ln'dAsl + Rtn)7
=1 7 (0:t] J(0,s1) (0,5n—1)

where the remainder term can be estimated by
RO] < MYV (n+ 1)

If A is continuous then the iterated integrals can be evaluated explicitly:

// / dAg dA,, - dAs, = (A — Ag)* /KL
(0,¢] 4 (0,s1) (0,55_1)

If A is increasing but not necessarily continuous then the right hand side still is an upper

bound for the iterated integral.

We now derive a formula for £/-£F where A and B are right-continuous finite variation

functions. By the product rule and the exponential equation,

t t
EAER -1 = /O EA dEP + /0 EP dE} +) T AELAEP

s<t

t
= / ELEP d(A+B),+ > ELEP AAAB,

0 s<t

t
= /5i5£d(A+B+[A,B])S
0

for any ¢ > 0. This shows that in general, EAEB £ £4+5,
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Theorem 14.6. If A, B : [0,00) — R are right continuous with finite variation then

EAEB _ 8A+B+[A,B}.

Proof. The left hand side solves the defining equation for the exponential on the right

hand side. O
In particular, choosing B = — A, we obtain:
1 —A+[4]
I )

Example (Geometric Poisson process). A geometric Poisson process with parameters

A > 0 and 0, a € R is defined as a solution of a stochastic differential equation of type
dSt = O'St, dNt —|—OéSt dt (14113)

w.r.t. a Poisson process (/V;) with intensity A\. Geometric Poisson processes are relevant
for financial models, cf.e.g. [39]. The equation (I4.1.13) can be interpreted pathwise

as the Stieltjes integral equation
t t
S, = So+a/ SrdNr+oz/ S,dr , t>0.
0 0
Defining A; = o N; + at, (14.1.13) can be rewritten as the exponential equation
dSt - St, dAt 5
which has the unique solution

S o= So-& = Sy [[l+0AN) = Sp-e(140)M
s<t
Note that for o > —1, a solution (S;) with positive initial value Sy is positive for all ¢,
whereas in general the solution may also take negative values. If « = —\o then (4;)
is a martingale. We will show below that this implies that (.5;) is a local martingale.

Indeed, it is a true martingale which for Sy = 1 takes the form

S, = (1+J)Nte”\”t
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Corresponding exponential martingales occur as “likelihood ratio” when the intensity

of a Poisson process is modified, cf. Chapter [L1] below.

Example (Exponential martingales for compound Poisson processes). For com-
pound Poisson processes, we could proceed as in the last example. To obtain a different

point of view, we go in the converse direction: Let

Ky

Xy = Z 7j
j=1
be a compound Poisson process on R¢ with jump intensity measure v = Ay where \ €
(0, 00) and y is a probability measure on R4\ {0}. Hence the n; are i.i.d. ~ u, and (K;) is
an independent Poisson process with intensity \. Suppose that we would like to change
the jump intensity measure to an absolutely continuous measure v(dy) = o(y)v(dy)
with relative density o € L£(v), and let A = #(R?\ {0}). Intuitively, we could expect
that the change of the jump intensity is achieved by changing the underlying probability

measure P on F;* with relative density (“likelihood ratio”)

Ky ~
Z, = OV em) = V] elAX,).
j=1 s<t

AX#0

In Chapter [LT] as an application of Girsanov’s Theorem, we will prove rigorously that
this heuristics is indeed correct. For the moment, we identify (Z;) as an exponential

martingale. Indeed, Z;, = £ with

A = (A=Nt+ > (o(AX,) 1)
Ag(gs;o
G S (i /(Q(y) 1) Ny(dy). (14.1.14)

Here N, = Zsztl o, denotes the corresponding Poisson point process with intensity
measure v. Note that (A;) is a martingale, since it is a compensated compound Poisson

process

Ay = /(Q(y) -1) Nt(dy) . where N, := N, — tv.
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By the results in the next section, we can then conclude that the exponential (7;) is a

local martingale. We can write down the SDE
t
Zy = 1+ / Zs— dA (14.1.15)
0

in the equivalent form

t

Zy = 1 +/ Zs— (o(y) — 1) N(ds dy) (14.1.16)
(0,t] xR

where N(ds dy) := N(ds dy) — ds v(dy) is the random measure on R* x R¢ with

N((0,t]x B) = Ny(B) forany t > 0 and B € B(R%). In differential notation, (IZ.1.16)

is an SDE driven by the compensated Poisson point process (/V;):
iz, = / Zo- (oly) — 1) N(dt dy).
y€R4

Example (Stochastic calculus for finite Markov chains). Functions of continuous
time Markov chains on finite sets are semimartingales with finite variation paths. There-
fore, we can apply the tools of finite variation calculus. Our treatment follows Rogers
& Williams [38] where more details and applications can be found.

Suppose that (X;) on (€2, .4, P) is a continuous-time, time-homogeneous Markov pro-
cess with values in a finite set .S and cadlag paths. We denote the transition matrices by
p: and the generator (Q-matrix) by £ = (L£(a,b))spes. Thus £ = limy ot~ (p, — 1),
i.e., fora # b, L(a,b) is the jump rate from a to b, and L(a, a) = — 3,2, L£(a, D) is

the total (negative) intensity for jumping away from a. In particular,

(Lf)(a) = D L(a,bf) = > L{ab)(f(b)— f(a))

bes beS,bta

for any real-valued function f = (f(a)).cs on S. It is a standard fact that ((X;), P)

solves the martingale problem for L, i.e., the process

MY = f(Xt)—/t(ﬁf)(Xs)ds >0, (14.1.17)
0
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is an (F;X) martingale for any f : S — R. Indeed, this is a direct consequence of the

Markov property and the Kolmogorov forward equation, which imply
t
B - MU 7Y = B - £0) — [ (€06 dr | 7

= e H) -5 - [ (e sLF)(X,) ds — 0

for any 0 < s < t. In particular, choosing f = Iy for b € S, we see that

M = In(Xy) —/tﬁ(Xs,b) ds (14.1.18)
0

is a martingale, and, in differential notation,

dlgy(Xy) = L(X,b)dt+dM,. (14.1.19)
Next, we note that by the results in the next section, the stochastic integrals

NP = / (X)L ez
0

are martingales for any a, b € S. Explicitly, for any a # b,

NEP =Y Ty (X)) (Tsvy (X My (Xo) = Ty (X sy (X))

s<t
t

- / Iy(X) L(X,b) ds e,
0

N&b = g L(a,b) LY (14.1.20)

where J** = [{s <t : X,_ =a, X, =b}| is the number of jumps from a to b until

time ¢, and
t
Ly = / I,(X5) ds
0
is the amount of time spent at a before time ¢ (‘“local time at a”’). In the form of an

SDE,
4" = L(a,b) dL¢ + dN®*  forany a # b. (14.1.21)

More generally, for any function g : S x S — R, the process

NS =3 gla, b)N®

a,besS
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is a martingale. If g(a,b) = 0 for a = b then by (14.1.20),

t
NE = > (X X,) —/ (Lg")(Xs, X,) ds (14.1.22)
s<t 0
Finally, the exponentials of these martingales are again local martingales. For example,
we find that

N = (14 )% exp(—aL(a, b)LY)

is an exponential martingale for any o € R and a, b € S. These exponential martingales

appear again as likelihood ratios when changing the jump rates of the Markov chains.

Exercise (Change of measure for finite Markov chains). Let (X;) on (2, A4, P, (F3))
be a continuous time Markov chain with finite state space S and generator (Q-matrix)
L, ie.,

t
0

MY = F(X) - F(Xy) - / (LF)(X.) ds

is a martingale w.r.t. P for each function f : S — R. We assume L(a, b) > 0 for a # b.
Let

g(a,b) == L(a,b)/L(a,b) —1 fora #b, g(a,a) := 0,

where £ is another Q-matrix.
1) LetANa) = >, L£(a,b) = —L(a, a) and XMa) = —L(a, a) denote the total jump
intensities at a. We define a “likelihood quotient” for the trajectories of Markov

chains with generators Land £ by Z; = a /(; where

&= oo (- [ea) ITEx,

s<t: Xs_#Xs

and (; is defined correspondingly. Prove that (Z;) is the exponential of (Nt[g} ), and
conclude that (Z,) is a martingale with E[Z;] = 1 for any .
2) Let P denote a probability measure on A that is absolutely continuous w.r.t. P on

F; with relative density Z; for every ¢ > 0. Show that for any f : S — R,

W= 500 - 500 - [ (EF)(X.) ds
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is a martingale w.r.t. P. Hence under the new probability measure P, (X;)isa

Markov chain with generator L.

Hint: You may assume without proof that (]\Aﬂf ]) is a local martingale w.r.t. P if
and only if (Zt]\f/ﬂﬂ) is a local martingale w.r.t. P. A proof of this fact is given in
Section 3.3.

14.2 Stochastic integration for semimartingales

Throughout this section we fix a probability space (£2, A, P) with filtration (F;);>0. We
now define the stochastic integral of the left limit of an adapted cadlag process w.r.t.a
semimartingale in several steps. The key step is the first, where we prove the existence
for the integral [ H,_ dM; of a bounded adapted cadlag process H w.r.t.a bounded

martingale M.

Integrals with respect to bounded martingales

Suppose that M = (M;)s> is a uniformly bounded cadlag (F]) martingale, and H =
(Hy)i>0 is a uniformly bounded cadlag (F/") adapted process. In particular, the left

limit process

H_ = (Ht—)tzo

is left continuous with right limits and (F/)) adapted. For a partition m of R, we con-

sider the elementary processes

Hf = > H.I,w(t), and Hf = > H I,
sem seEm
The process H™ is again cadlag and adapted, and the left limit ™ is left continuous and

(hence) predictable . We consider the Riemann sum approximations

Ir =Y H(Myy — M,)

SET
s<t

Stochastic Analysis Andreas Eberle



14.2. STOCHASTIC INTEGRATION FOR SEMIMARTINGALES 499

to the integral fot H,_ dM; to be defined. Note that if we define the stochastic integral

of an elementary process in the obvious way then

t
Ir = / H™ dM,
0

We remark that a straightforward pathwise approach for the existence of the limit of

I™(w) as mesh(7m) — 0 is doomed to fail, if the sample paths are not of finite variation:

Exercise. Let w € Q and t € (0, 00), and suppose that (7,,) is a sequence of partitions
of R, with mesh(m,) — 0. Prove that if 222 hs(Mgpi(w) — Mg(w)) converges for
every deterministic continuous function % : [0,¢] — R then V;(l)(M (w)) < oo (Hint:
Apply the Banach-Steinhaus theorem from functional analysis).

The assertion of the exercise is just a restatement of the standard fact that the dual space
of C([0, t]) consists of measures with finite total variation. There are approaches to ex-
tend the pathwise approach by restricting the class of integrands further or by assuming
extra information on the relation of the paths of the integrand and the integrator (Young
integrals, rough paths theory, cf. [29], [19]). Here, following the standard development
of stochastic calculus, we also restrict the class of integrands further (to predictable pro-
cesses), but at the same time, we give up the pathwise approach. Instead, we consider

stochastic modes of convergence.

For H and M as above, the process I™ is again a bounded cadlag (F)) martingale as
is easily verified. Therefore, it seems natural to study convergence of the Riemann sum
approximations in the space M?([0, a]) of equivalence classes of cadlag L?-bounded
(FF) martingales defined up to a finite time a. The following fundamental theorem

settles this question completely:

Theorem 14.7 (Convergence of Riemann sum approximations to stochastic inte-
grals). Let a € (0,00) and let M and H be as defined above. Then for every v > 0

there exists a constant A > 0 such that
1™ = R egpay < 7 (14.2.1)

holds for any partitions ™ and 7 of R, with mesh(m) < A and mesh(w) < A.
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The constant A in the theorem depends on M, H and a. The proof of the theorem for
discontinuous processes is not easy, but it is worth the effort. For continuous processes,
the proof simplifies considerably. The theorem can be avoided if one assumes exis-
tence of the quadratic variation of M. However, proving the existence of the quadratic
variation requires the same kind of arguments as in the proof below (cf. [[16]]), or, alter-

natively, a lengthy discussion of general semimartingale theory (cf. [38]]).

Proof of Theorem[[4.7] Let C € (0,00) be a common uniform upper bound for the
processes (H;) and (M;). To prove the estimate in (I4.2.1)), we assume w.l.0.g. that
both partitions 7 and 7 contain the end point a, and 7 is a refinement of 7. If this is not
the case, we may first consider a common refinement and then estimate by the triangle

inequality. Under the additional assumption, we have

Ir-17 = > (H,—Hy)(My—M,) (14.2.2)

sem

where from now on, we only sum over partition points less than a, s’ denotes the suc-

cessor of s in the fine partition 7, and
ls] = max{tern :t<s}

is the next partition point of the rough partition 7 below s. Now fix ¢ > 0. By (14.2.2)),
the martingale property for M, and the adaptedness of H, we obtain

1= Ry = ElU7—17)?]
= E[) (H,— H,))*(My — M,)?] (14.2.3)
sem
<EE[Y (Mg — M)+ QC)1E[Y . > (Mg —M,)]
sem tew SET

7e(e)<s<[t]

where [¢] := min{u € T : u > t} is the next partition point of the rough partition, and
7(e) = min{sem s>t : |Hys— H >e} AJt].

is the first time after ¢ where H deviates substantially from H,. Note that 7; is a random

variable.
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The summands on the right hand side of are now estimated separately. Since

M is a bounded martingale, we can easily control the first summand:
E[Y (My— M| => E[M} - M| =E[M} - M;] <C*  (1424)
The second summand is more difficult to handle. Noting that
E[(My—M)?|F] = BME-M|F]  on {n<s},

we can rewrite the expectation value as

> E[ > E[(Ms-M)|F]] (14.2.5)
tex  m<s<[t]
=Y E[E[M}y - M| F.]] =E[> (My—-M,)?] = B
tew tew

Note that M7,y — M,, # Oonly if 7, < [t], i.e., if H oscillates more than ¢ in the interval
[t, ;]. We can therefore use the cadlag property of H and M to control (14.2.5)). Let

D,y = A{rel0,q] : |[H —H,_|>¢/2}

denote the (random) set of “large” jumps of H. Since H is cadlag, D, /, contains only
finitely many elements. Moreover, for given €, > 0 there exists a random variable
d(w) > 0 such that for u,v € [0, al,

(i Ju—v|<d = |H,—H,<e or (uw,v]NDp#0

() r€D.p, uw,velr,r+d = |M,—M,|<E

Here we have used that H is cadlag, D, is finite, and M is right continuous.

Let A > 0. By (i) and (ii), the following implication holds on {A < §}:
n<[t] = |[H,—H|>c = [L7]NDyp#0 = |Mg—M,|<E,

ie., if , < [t] and A < § then the increment of M between 7; and [¢] is small.
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Now fix & € N and £ > 0. Then we can decompose B = B; + B, where

B = E[Y (My—M,)"; A<6, |D.p| <k] < ke, (14.2.6)
tew
B, = E[Y (My—M,)”; A>dor|D.p|> k]
tew
< B[ (Mg~ M)» P P[A>Sor Dy > K] (142.7)
tew

< V6C*(P[A >8]+ P[|D.ps| > K])"?

In the last step we have used the following upper bound for the martingale increments
ne = My — M;

t

EIY"m)"] = ED_all+2B0> > nnl]

tem t u>t

< 4C?E[Y gt 2B Y B[ Y n?| F]

u>t

<6C°E[> nj] < 6C’E[M;-M| < 6C*
t

This estimate holds by the Optional Sampling Theorem, and since E[Y_ ., n2 | Fi] <
E[M? — M} | 7] < C? by the orthogonality of martingale increments Mr,,, — Mr,

7

over disjoint time intervals (7}, T}, 1] bounded by stopping times.

We now summarize what we have shown. By (I4.2.3), (I£.2.4) and (I4.2.3),
™ = IR < €°C°+4C%(By + By) (14.2.8)

where B; and B, are estimated in (14.2.6) and (I4.2.7). Let v > 0 be given. To bound
the right hand side of by v we choose the constants in the following way:

1. Choose £ > 0 such that C%e? < /4.

2. Choose k € N such that 4/6 C*P[|D.s| > k] Y2 <y,

3. Choose £ > 0 such that 4C%ke? < ~/4, then choose the random variable § de-

pending on € and ¢ such that (i) and (i1) hold.

4. Choose A > 0 such that 4v/6 C*P[A > §] Y2 v/4.

Then for this choice of A we finally obtain

|[™ - [%\\?\42([0,(4) < 4

]
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whenever mesh(7) < A and 7 is a refinement of 7. O

The theorem proves that the stochastic integral H_,M is well-defined as an M2 limit of

the Riemann sum approximations:

Definition (Stochastic integral for left limits of bounded adapted cadlag processes
w.r.t. bounded martingales). For H and M as above, the stochastic integral H_4M is
the unique equivalence class of cadlag (FF) martingales on [0, 00) such that

H_.M}[O,a] = lim Hng}[O,a] in M3 ([0, al)

n—oo

for any a € (0,00) and for any sequence (m,) of partitions of R with mesh(r,) — 0.

Note that the stochastic integral is defined uniquely only up to cadlag modifications. We
will often denote versions of H_,M by f0° H,_ dM;,, but we will not always distinguish
between equivalence classes and their representatives carefully. Many basic properties
of stochastic integrals with left continuous integrands can be derived directly from the

Riemann sum approximations:

Lemma 14.8 (Elementary properties of stochastic integrals). For H and M as above,
the following statements hold:
1) If t — M, has almost surely finite variation then H_,M coincides almost surely
with the pathwise defined Lebesgue-Stieltjes integral fo. H,_ dM,.
2) A(H_M) = H_AM almost surely.
3)If T :Q — [0,00] is a random variable, and H, H, M, M are processes as
above such that H, = H, foranyt < T and M, = ]\Z forany t < T then,

almost surely,

H.W] = H.M on[0,T)
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Proof. The statements follow easily by Riemann sum approximation. Indeed, let (7,,)
be a sequence of partitions of R, such that mesh(m,) — 0. Then almost surely along a

subsequence (7,),

(H,,M)t = nll*)H;o Z HS(MS’/\t - MS)
s<t
SETn

w.r.t. uniform convergence on compact intervals. This proves that H_,M coincides
almost surely with the Stieltjes integral if M has finite variation. Moreover, for ¢ > 0 it
implies

A(H,.M)t = lim H\_tJn(Mt - Mt7> = Ht,AMt (1429)

n—o0

almost surely, where ||, denotes the next partition point of (7, ) below ¢. Since both
H_,M and M are cadlag, (14.2.9) holds almost surely simultaneously for all ¢ > 0.

The third statement can be proven similarly. L

Localization

We now extend the stochastic integral to local martingales. It turns out that unbounded
jumps can cause substantial difficulties for the localization. Therefore, we restrict our-
selves to local martingales that can be localized by martingales with bounded jumps.

Remark 2 below shows that this is not a substantial restriction.

Suppose that (M;);>o is a cadlag (F;) adapted process, where (F;) is an arbitrary filtra-
tion. For an (F;) stopping time 7', the stopped process M7 is defined by

MtT = Mt for any ¢t > 0.

Definition (Local martingale, Strict local martingale). A localizing sequence for M
is a non-decreasing sequence (T,),en of (F;) stopping times such that sup Ty = oo,
and the stopped process M is an (F;) martingale for each n. The process M is called

a local (F;) martingale iff there exists a localizing sequence. Moreover, M is called a
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strict local (F;) martingale iff there exists a localizing sequence (T,,) such that M

has uniformly bounded jumps for each n, i.e.,

sup {|AM(w)| : 0<t<T,(w),weN}t < oo VneN

Remark. 1) Any continuous local martingale is a strict local martingale.

2) In general, any local martingale is the sum of a strict local martingale and a local
martingale of finite variation. This is the content of the “Fundamental Theorem
of Local Martingales”, cf. [36]]. The proof of this theorem, however, is not trivial
and is omitted here.

The next example indicates how (local) martingales can be decomposed into strict (lo-

cal) martingales and finite variation processes:

Example (Lévy martingales). Suppose that X; = [y (N,(dy) — tv(dy)) is a compen-
sated Lévy jump process on R! with intensity measure v satisfying [(|y|A|y|?) v(dy) <
oo. Then (X;) is a martingale but, in general, not a strict local martingale. However,
we can easily decompose X; = M; + A, where 4; = [y Ijy 13 (Ni(dy) — t v(dy))
is a finite variation process, and M, = [yl <1y (Ne(dy) — tv(dy)) is a strict (local)

martingale.
Strict local martingales can be localized by bounded martingales:

Lemma 14.9. M is a strict local martingale if and only if there exists a localizing

sequence (Ty,) such that M is a bounded martingale for each n.

Proof. If M™ is a bounded martingale then also the jumps of M’" are uniformly
bounded. To prove the converse implication, suppose that (7,,) is a localizing sequence

such that AM™" is uniformly bounded for each n. Then
Sp = TpoANinf{t>0: |My|>n} , neN,

is a non-decreasing sequence of stopping times with sup .S, = oo, and the stopped

processes M are uniformly bounded, since

|Mipns,| < n+|AMg,| = n+]|AM forany ¢ > 0.
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Definition (Stochastic integrals of left limits of adapted cadlag processes w.r.t. strict
local martingales).  Suppose that (M) is a strict local (FI) martingale, and
(Hy)¢>o is cadlag and (FT) adapted. Then the stochastic integral H_,M is the unique

equivalence class of local (F]) martingales satisfying
H M|,y = H-M|,, as, (14.2.10)

whenever T is an (FF) stopping time, H is a bounded cadlag (FF) adapted process
with H|jo 1y = H| o,7) almost surely, and M is a bounded cadlag (FF) martingale with
M’ 01 = M} 0.7] almost surely.

You should convince yourself that the integral H_,M is well defined by (I4.2.10) be-
cause of the local dependence of the stochastic integral w.r.t. bounded martingales on H
and M (Lemma[I4.8 3). Note that f]t and f, only have to agree for ¢t < 7', so we may
choose ﬁt = H; - Ity<ry. This is crucial for the localization. Indeed, we can always
find a localizing sequence (7},) for M such that both H, - I ;.1 and M ™ are bounded,
whereas the process H stopped at an exit time from a bounded domain is not bounded
in general!

Remark (Stochastic integrals of cadlag integrands w.r.t. strict local martingales are
again strict local martingales). This is a consequence of Lemma and Lemma
2:If (T},) is a localizing sequence for M such that both H™ = H -] 0,7, and M

are bounded for every n then
H M = H"M™ on [0,T)],

and, by Lemma[14.8] A(H (_",) M™) =H M AMT is uniformly bounded for each n.
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Integration w.r.t. semimartingales

The stochastic integral w.r.t.a semimartingale can now easily be defined via a semi-
martingale decomposition. Indeed, suppose that X is an (F/) semimartingale with
decomposition

Xy = Xo+M+A , t>0,

into a strict local (F/) martingale M and an (F]) adapted process A with cadlag finite-
variation paths ¢ — A;(w).

Definition (Stochastic integrals of left limits of adapted cadlag processes w.r.t. semi-
martingales ). For any (F]) adapted process (Hy;);>o with cadlag paths, the stochastic
integral of H w.r.t. X is defined by

H_.X = H_.M+ H—.Aa

where M and A are the strict local martingale part and the finite variation part in
a semimartingale decomposition as above, H_,M is the stochastic integral of H_
w.rt. M, and (H_,A); = fot H,_ dA, is the pathwise defined Stieltjes integral of H_
w.rt. A.

Note that the semimartingale decomposition of X is not unique. Nevertheless, the inte-

gral H_,X is uniquely defined up to modifications:

Theorem 14.10. Suppose that (m,) is a sequence of partitions of R, with mesh(m,) —
0. Then for any a € [0, ),

(H_.X)t = 1111)120 Z HS(XS’/\t - XS)
SETn
s<t

w.r.t. uniform convergence for t € [0, a] in probability, and almost surely along a subse-

quence. In particular:
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1) The definition of H_,X does not depend on the chosen semimartingale decompo-
sition.

2) The definition does not depend on the choice of a filtration (F;) such that X is an
(FT) semimartingale and H is (F]) adapted.

3) If X is also a semimartingale w.r.t. a probability measure () that is absolutely
continuous w.r.t. P then each version of the integral (H_,X)p defined w.r.t. P is

a version of the integral (H_,X )¢ defined w.r.t. Q).

The proofs of this and the next theorem are left as exercises to the reader.

Theorem 14.11 (Elementary properties of stochastic integrals).

1) Semimartingale decomposition: The integral H X is again an (F]) semi-
martingale with decomposition H_,X = H_ M + H_,A into a strict local mar-
tingale and an adapted finite variation process.

2) Linearity: The map (H, X) — H_,X is bilinear.

3) Jumps: A(H_,X) = H_AX almost surely.

4) Localization: If T is an (F]) stopping time then

(H-oX)T = H_ X" = (H-Iom)-X.

14.3 Quadratic variation and covariation

From now on we fix a probability space (€2, .A,P) with a filtration (F;). The vector
space of (equivalence classes of) strict local (F)) martingales and of (F}) adapted
processes with cadlag finite variation paths are denoted by M|, and F'V respectively.
Moreover,

S = Mgy +FV

denotes the vector space of (F}’) semimartingales. If there is no ambiguity, we do not

distinguish carefully between equivalence classes of processes and their representatives.
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The stochastic integral induces a bilinear map S x § — S, (H, X ) — H_,X on the
equivalence classes that maps § X M. to Mj,. and § X FV to F'V.
A suitable notion of convergence on (equivalence classes of) semimartingales is uniform

convergence in probability on compact time intervals:

Definition (ucp-convergence). A sequence of semimartingales X,, € S converges to a

limit X € S uniformly on compact intervals in probability iff

P
sup | X} — X3 — 0 asmn — oo forany a € R,.
t<a

By Theorem (I4.10), for H, X € S and any sequence of partitions with mesh(m,) — 0,
the stochastic integral [ H_ dX is a ucp-limit of predictable Riemann sum approxima-

tions, i.e., of the integrals of the elementary predictable processes H™".

Covariation and integration by parts

The covariation is a symmetric bilinear map & x § — FV. Instead of going once
more through the Riemann sum approximations, we can use what we have shown for

stochastic integrals and define the covariation by the integration by parts identity
t t
XY, — XYy = / X dY +/ Yo dXs+[X,Y]:.
0 0

The approximation by sums is then a direct consequence of Theorem [14.10}

Definition (Covariation of semimartingales). For X,Y € S,

X,Y] = XY—XOYO—/X_dY—/Y_dX.

Clearly, [X, Y] is again an (F]) adapted cadlag process. Moreover, (X,Y) — [X,Y]

is symmetric and bilinear, and hence the polarization identity

XY] = (XY= [X] -]
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holds for any X, Y € & where
Xl = [XX]

denotes the quadratic variation of X. The next corollary shows that [ X, Y] deserves

the name “covariation”:

Corollary 14.12. For any sequence (7,,) of partitions of R, with mesh(m,) — 0,

[X,Y], = wuep—lim Y (Xyn — X,)(Yan — V). (14.3.1)

n—o00
SETY
s<t

In particular, the following statements hold almost surely:
1) [X] is non-decreasing, and [ X, Y] has finite variation.
2) AIX,)Y] = AXAY.
3 (X, Y] = [XT)Y] = [X,)YT] = [XT ) YT].
4) X Y]l < [X]Pv)YR

Proof. (14.3.1) is a direct consequence of Theorem [14.10, and 1) follows from (14.3.1))
and the polarization identity. 2) follows from Theorem [4.11] which yields

AX,Y] = AXY)=AX_Y) = A(Y_.X)
= X_AY +Y.AX + AXAY — X_AY — Y_AX
=  AXAY.

3) follows similarly and is left as an exercise and 4) holds by (14.3.1)) and the Cauchy-

Schwarz formula for sums. [l

Statements 1) and 2) of the corollary show that [X, Y] is a finite variation process with
decomposition
X,Y), = [X.Y[+) AX.AY, (143.2)

s<t

into a continuous part and a pure jump part.
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If Y has finite variation then by Lemma

X,V], = ) AXAY..

s<t
Thus [X, Y]¢ = 0 and if, moreover, X or Y is continuous then [X, Y] = 0.

More generally, if X and Y are semimartingales with decompositions X = M + A,
Y =N+ Binto M, N € Mj,. and A, B € FV then by bilinearity,

(X, Y]® = [M,N]°+[M,B|°+[A N+ [A, Bl =[M,N].
It remains to study the covariations of the local martingale parts which turn out to be the

key for controlling stochastic integrals effectively.

Quadratic variation and covariation of local martingales

If M is a strict local martingale then by the integration by parts identity, M2 — [M] is a

strict local martingale as well. By localization and stopping we can conclude:

Theorem 14.13. Let M € M;,,. and a € [0,00). Then M € MJ([0,a]) if and only if
My € L£? and [M], € LY. In this case, M? — [M]; (0 <t < a) is a martingale, and

IM|Bepag = E[M]+ E[[M]]. (14.3.3)

Proof. We may assume M, = 0; otherwise we consider M = M — M. Let (T,,) be a
joint localizing sequence for the local martingales M and M? — [M] such that M7" is

bounded. Then by optional stopping,
E[M}y.] = E[[Mr,] forany t >0 andanyn € N. (14.3.4)
Since M? is a submartingale, we have

EM] < liminf E[M{,] < E[M/] (14.3.5)

n—oo
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by Fatou’s lemma. Moreover, by the Monotone Convergence Theorem,

E[M})] = lim E[[M]r].

n—oo

Hence by (14.3.3), we obtain
EM}] = E[M]] for any ¢ > 0.

For t < a, the right-hand side is dominated from above by E [[M],], Therefore, if [M],
is integrable then M is in M3 ([0, a]) with M? norm E[[M],]. Moreover, in this case,

the sequence (MEATH —[M ]MTn) is uniformly integrable for each ¢ € [0, al, because,

neN

sup |[M? — [M],| < sup|M*+[M], €CLt,
t<a t<a

Therefore, the martingale property carries over from the stopped processes MEAT" —
[M]t/\Tn to Mt2 — [M]t ]

Remark. The assertion of Theorem also remains valid for a = oo in the sense
that if My is in £2 and [M],, = lim;_,o[M]; is in £ then M extends to a square
integrable martingale (M;).c(o,o satisfying (14.3.4) with a = oo. The existence of
the limit M., = lim,_,., M, follows in this case from the L? Martingale Convergence

Theorem.

The next corollary shows that the A% norms also control the covariations of square

integrable martingales.

Corollary 14.14. The map (M, N) — [M, N| is symmetric, bilinear and continuous on
M?2([0, a)) in the sense that
Efsup |[[M, Nls} < |[M|[ar2o.ap V] a2 (0.1

t<a

Proof. By the Cauchy-Schwarz inequality for the covariation (Cor. [14.12/4),

M, N} < [MPINL? < [MI2INT? Vi<

a a
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Applying the Cauchy-Schwarz inequality w.r.t. the L2-inner product yields

1/2 1/2

E[sup |[M,N}|]] < E[[M]a}

t<a -

E[[N],] < M arzqo,ap | N arzqo,a)

by Theorem U

Corollary 14.15. Let M € M,,,. and suppose that [M], = 0 almost surely for some

a € [0, 00]. Then almost surely,
M, = My, foranyt e [0,a].

In particular, continuous local martingales of finite variation are almost surely constant.

Proof. By Theorem[I4.13] ||M — My||rr2(0,0) = E[[M]a] = 0. O
The assertion also extends to the case when a is replaced by a stopping time. Combined
with the existence of the quadratic variation, we have now proven:

»Non-constant strict local martingales have non-trivial quadratic variation«
Example (Fractional Brownian motion is not a semimartingale). Fractional Brow-

nian motion with Hurst index H € (0, 1) is defined as the unique continuous Gaussian

process (B ) satisfying

E[BY] = 0 and  Cov[BY,BF] = ("4 |1 sH)

DO | =

for any s,¢ > 0. It has been introduced by Mandelbrot as an example of a self-similar
process and is used in various applications, cf. [2]. Note that for H = 1/2, the covari-
ance is equal to min(s, t), i.e., B 1/2 i a standard Brownian motion. In general, one can
prove that fractional Brownian motion exists for any H € (0, 1), and the sample paths
t — Bl (w) are almost surely a-Holder continuous if and only if o« < H, cf. e.g. [19].

Furthermore,

vY(B") = oo  foranyt>0 almostsurely, and
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0 if H>1/2,
B") = lm > (B, -B) = <t ifH=1/2,
SETR
s<t oo if H<1/2 .

Since [BH]; = oo, fractional Brownian motion is not a semimartingale for H < 1/2.
Now suppose that H > 1/2 and assume that there is a decomposition B = M, + A,

into a continuous local martingale M and a continuous finite variation process A. Then
[M] = [BY] = 0  almostsurely ,

so by Corollary T4.T.T1l M is almost surely constant, i.e., B has finite variation paths.
Since this is a contradiction, we see that also for H > 1/2, B is not a continuous
semimartingale, i.e., the sum of a continuous local martingale and a continuous adapted
finite variation process. It is possible (but beyond the scope of these notes) to prove that
any semimartingale that is continuous is a continuous semimartingale in the sense above
(cf. [36]]). Hence for H # 1/2, fractional Brownian motion is not a semimartingale and
classical It6 calculus is not applicable. Rough paths theory provides an alternative way

to develop a calculus w.r.t. the paths of fractional Brownian motion, cf. [19].

The covariation [M, N| of local martingales can be characterized in an alternative way

that is often useful for determining [M, N] explicitly.

Theorem 14.16 (Martingale characterization of covariation). For M, N € M,
the covariation [M, N is the unique process A € FV such that

(i) MN —A € M,. , and

(i) A A = AMAN , Ay=0 almostsurely .

Proof. Since [M,N] = MN — MyNy— [ M_ dN — [ N_ dM, (i) and (ii) are satisfied
for A = [M, N]. Now suppose that A is another process in F'V satisfying (i) and (ii).
Then A — A is both in My and in FV, and A(A — A) — 0 almost surely. Hence A — A
is a continuous local martmgale of finite variation, and thus A — A= Ay — AO =0
almost surely by Corollary [14 O
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The covariation of two local martingales M and N yields a semimartingale decomposi-
tion for M N:
MN = local martingale + [M, N].

However, such a decomposition is not unique. By Corollary [14.13] it is unique if we
assume in addition that the finite variation part A is continuous with Aq = 0 (which is

not the case for A = [M, N] in general).

Definition. Let M, N € M;,,.. If there exists a continuous process A € F'V such that
(i) MN — A € M,., and
(ii) AA = 0 , Ay = 0 almostsurely,

then (M, N) = A is called the conditional covariance process of M and N.

In general, a conditional covariance process as defined above need not exist. General
martingale theory (Doob-Meyer decomposition) yields the existence under an additional
assumption if continuity is replaced by predictability, cf. e.g. [36l]. For applications it is
more important that in many situations the conditional covariance process can be easily

determined explicitly, see the example below.

Corollary 14.17. Let M, N € M.
1) If M is continuous then (M, N) = [M, N| almost surely.
2) In general, if (M, N) exists then it is unique up to modifications.
3) If (M) exists then the assertions of Theorem hold true with [M] replaced
by (M).

Proof. 1) If M is continuous then [V, N] is continuous.
2) Uniqueness follows as in the proof of [14.16
3)If (T},) is a joint localizing sequence for M? — [M] and M? — (M) then, by monotone

convergence,

E[(M)] = lim E[(M)yg] = lim E[[Mhar,] = E[[M])]

n—o0 n—oo

University of Bonn 2015/2016



CHAPTER 14. STOCHASTIC CALCULUS FOR SEMIMARTINGALES WITH
516 JUMPS

for any ¢ > 0. The assertions of Theorem now follow similarly as above. U

Examples (Covariations of Lévy processes).
1) Brownian motion: If (5;) is a Brownian motion in R? then the components ( BF) are
independent one-dimensional Brownian motions. Therefore, the processes BF B! — §y,t

are martingales, and hence almost surely,
[B*,B', = (B*BY = t-6, forany t>0.
2) Lévy processes without diffusion part: Let

X, = / y (Ne(dy) — t Iy <iyv(dy)) + bt
R\ {0}

with b € R% a o-finite measure v on R? \ {0} satisfying [(|y|* A 1) v(dy) < oo, and a
Poisson point process (N;) of intensity v. Suppose first that supp(v) C {y € R?: |y| > ¢}

for some & > 0. Then the components X* are finite variation processes, and hence

(XF XY, = Y AXFAXD = / yEyt Ny(dy). (14.3.6)
s<t
In general, (I4.3.6) still holds true. Indeed, if X(®) is the corresponding Lévy process
with intensity measure 1) (dy) = I{,>; v(dy) then || XEF — XF|[ 120, — 0 as
el 0foranya € Ry and k € {1,...,d}, and hence by Corollary 14.14]
k oyl : )k 3 (o)l _ kA vl
(X, X', = uep-lim [XOF XE] = Y CAXFAXL

el0
4 s<t

On the other hand, we know that if X is square integrable then M, = X; — itV (0) and

MM — t%(o) are martingales, and hence

8%

Xk X! = (M M = t- .
X5 X0 WM, M) OprOp,

3) Covariations of Brownian motion and Lévy jump processes: For B and X as

above we have

(B* X" = [B¥ X1 = 0  almostsurely forany kandl.  (14.3.7)
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Indeed, holds true if X' has finite variation paths. The general case then follows
once more by approximating X' by finite variation processes. Note that independence
of B and X has not been assumed! We will see in Section 3.1 that (I4.3.7) implies
that a Brownian motion and a Lévy process without diffusion term defined on the same

probability space are always independent.

Covariation of stochastic integrals

We now compute the covariation of stochastic integrals. This is not only crucial for
many computations, but it also yields an alternative characterization of stochastic inte-

grals w.r.t. local martingales, cf. Corollary below.

Theorem 14.18. Suppose that X and Y are (F]) semimartingales, and H is (F])
adapted and cadlag. Then

[/H_ dX, Y] = /H_ d[X,Y] almost surely. (14.3.8)

Proof. 1. We first note that (I4.3.8) holds if X or Y has finite variation paths. If, for
example, X € F'V then also f H_dX € FV, and hence

[/H dX,Y] = Y AH_X)AY = Y H AXAY = /H d[X,Y] .

The same holds if Y € FV.
2. Now we show that (I4.3.8) holds if X and Y are bounded martingales, and H

is bounded. For this purpose, we fix a partition 7, and we approximate /_ by the

elementary process H™ = Zseﬂ Hg - I Let

I = H™dX = Y H(Xun—X,)

(O7t] sem

We can easily verify that

ImYy] = /H7T d[X,Y] almost surely. (14.3.9)
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Indeed, if (7,,) is a sequence of partitions such that = C 7, for any n and mesh(7,) — 0

then

> Iy —INVon=Y) = DY Ho Y (Xon—X)(You—Y).
r€Tn SET rET,

r<t s<r<s'At

Since the outer sum has only finitely many non-zero summands, the right hand side

converges as n — 00 to

ZHS([X7 Y]S//\t - [X7 Y]S) = HZT d[X7 Y]7

sem (0,1]

in the ucp sense, and hence (14.3.9) holds.
Having verified (14.3.9) for any fixed partition 7, we choose again a sequence (7,,) of

partitions with mesh(m,) — 0. Then

n—oo

/H dX = lim I™ in M?*([0,a]) foranya € (0, 00),

and hence, by Corollary [[4.14] and (14.3.9),

n—oo

[/H dX,Y] = ucp-lim[I™ Y] = /H d[X,Y].

3. Now suppose that X and Y are strict local martingales. If 7" is a stopping time such
that X7 and Y7 are bounded martingales, and H I o,7) 1s bounded as well, then by Step
2, Theorem[14.11/and Corollary [14.12

[/H_ ax,y]" = [(/H_ dx)" YT = [/(H_ o) X7, V7]
- /H Lom d[XT,YT] = (/H dx,v))".

Since this holds for all localizing stopping times as above, (14.3.9)) is satisfied as well.

4. Finally, suppose that X and Y are arbitrary semimartingales. Then X = M + A and
Y = N + B with M, N € M),. and A, B € FV. The assertion (I4.3.8) now follows
by Steps 1 and 3 and by the bilinearity of stochastic integral and covariation. L

Perhaps the most remarkable consequences of Theorem [14.18]is:
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Corollary 14.19 (Kunita-Watanabe characterization of stochastic integrals).
Let M € M;,. and G = H_with H (F]') adapted and cadlag. Then G,M is the
unique element in M, . satisfying

(i) (GeM)y = 0 , and

(ii) [GoM,N] = G.M,N] forany N € M,..

Proof. By Theorem [14.18] G, M satisfies (i) and (ii). It remains to prove uniqueness.
Let L € M) such that Ly = 0 and

[L,N] = G,M,N] forany N € M.
Then [L — G,M,N| = 0 forany N € Mj,.. Choosing N = L — G, M, we conclude
that [L — G,M]| = 0. Hence L — G, M is almost surely constant, i.e.,
L—GM = Ly—(GM)y = 0.
0]

Remark. Localization shows that it is sufficient to verify Condition (ii) in the Kunita-

Watanabe characterization for bounded martingales N.

The corollary tells us that in order to identify stochastic integrals w.r.t. local martingales
it is enough to “test” with other (local) martingales via the covariation. This fact can be
used to give an alternative definition of stochastic integrals that applies to general pre-
dictable integrands. Recall that a stochastic process (Gy)>o is called (F]) predictable
iff the function (w,t) — G(w) is measurable w.r.t. the o-algebra P on  x [0, c0)

generated by all (F)) adapted left-continuous processes.

Definition (Stochastic integrals with general predictable integrands).

Let M € My, and suppose that G is an (FT) predictable process satisfying

t
/ G?d[M], < oo almost surely for any t > 0.
0
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If there exists a local martingale G,M € My, . such that conditions (i) and (ii) in
Corollary[I4.19 hold, then G, M is called the stochastic integral of G w.r.t. M.

Many properties of stochastic integrals can be deduced directly from this definition, see
e.g. Theorem [I4.21] below.

The It6 isometry for stochastic integrals w.r.t. martingales

Of course, Theorem[I14.1§|can also be used to compute the covariation of two stochastic
integrals. In particular, if M is a semimartingale and G = H_ with H cadlag and
adapted then

[G.M,G.M] = GJM,G.M] = G4[M].

Corollary 14.20 (It isometry for martingales). Suppose that M € Mj,,.. Then also
(f G dM)® - [ G2 d[M] € My, and

H/GdMHjW([o,a]) N EK/OaGdMﬂ - E[/Oand[M]} Va>0, as.

Proof. If M € M. then GoM € M., and hence (G.M)? — [G,M] € M.
Moreover, by Theorem

G M3y = ElGMl] = E[(G][M])d].
O

The It6 isometry for martingales states that the M2 ([0, a]) norm of the stochastic integral
[ G dM coincides with the L*(2 x (0, a], Pas) norm of the integrand (w, t) — Gy(w),

where Py is the measure on €2 X R, given by
Poap(dwdt) = P(dw) [M](w)(dt).

This can be used to prove the existence of the stochastic integral for general predictable
integrands G' € L?(Pyy), cf. Section 2.5 below.
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14.4 1t6 calculus for semimartingales

We are now ready to prove the two most important rules of Itd calculus for semimartin-
gales: The so-called “Associative Law” which tells us how to integrate w.r.t. processes

that are stochastic integrals themselves, and the change of variables formula.

Integration w.r.t. stochastic integrals

Suppose that X and Y are semimartingales satisfying dY = G dX for some predictable
integrand é, e, Y — Y, = f G dX. We would like to show that we are allowed to
multiply the differential equation formally by another predictable process G, i.e., we
would like to prove that [ G dY = [ GG dX:

dY = GdX — GdY = GGdX

The covariation characterization of stochastic integrals w.r.t.local martingales can be

used to prove this rule in a simple way.

Theorem 14.21 (‘‘Associative Law”). Let X € S. Then
G (G.X) = (GG)X (14.4.1)

holds for any processes G = H_ and G = H_ with H and H cadlag and adapted.

Remark. The assertion extends with a similar proof to more general predictable inte-

grands.

Proof. We already know that (14.4.1)) holds for X € FV. Therefore, and by bilinearity
of the stochastic integral, we may assume X € Mj,.. By the Kunita-Watanabe char-
acterization it then suffices to “test” the identity with local martingales. For
N € My, Corollary and the associative law for F'V processes imply

[Go(GX),N] = G.JGX,N] = GdG.[X,N])
= (GG)JX,N] = [(GG).X,N].

University of Bonn 2015/2016



CHAPTER 14. STOCHASTIC CALCULUS FOR SEMIMARTINGALES WITH
522 JUMPS

Thus (14.4.1) holds by Corollary U

1to’s formula

We are now going to prove a change of variables formula for discontinuous semi-
martingales. To get an idea how the formula looks like we first briefly consider a
semimartingale X € S with a finite number of jumps in finite time. Suppose that
0 <T) <T, < ... are the jump times, and let 75 = 0. Then on each of the intervals
[Ty—1,Tk), X is continuous. Therefore, by a similar argument as in the proof of It6’s

formula for continuous paths (cf. [14, Thm.6.4]), we could expect that

F(X) = F(Xo) = > (F(Xu) - F(Xu, )
=Y ([ Peaxcey [ Pee ax)+ X (R0 - Fl,)
= /Ot F'(X, ) dX¢+ % /Ot F"(X, ) d[X]¢ + ; (F(X,) — F(X,2)) (14.4.2)

where X7 = X, — > ., AX, denotes the continuous part of X. However, this formula
does not carry over to the case when the jumps accumulate and the paths are not of finite
variation, since then the series may diverge and the continuous part X ¢ does not exist in

general. This problem can be overcome by rewriting (I14.4.2) in the equivalent form
t 1 t
F(Xi) = F(Xo) = / Fi(Xo) dXs + 5 / F'(X, ) dX] (144.3)
0 0
+ Y (F(X) - F(X.o) - FI(X.) AX,),

s<t

which carries over to general semimartingales.
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Theorem 14.22 (It6’s formula for semimartingales). Suppose that X; =
(XL, ..., X3) with semimartingales X*,..., X% € S. Then for every function F €
C%(RY),

F(X,) - F(Xo) =) / SQZ( ) dX? + Z / T ) d[X*, X7

= 0,4 ”* Ot]

+ > (F(X) = F(Xo) - gg(Xs)AXi) (14.4.4)

foranyt > 0, almost surely.

Remark. The existence of the quadratic variations [X‘]; implies the almost sure abso-
lute convergence of the series over s € (0, ¢] on the right hand side of (I14.4.4)). Indeed,

a Taylor expansion up to order two shows that

D IF(X,) = F(X,o) - gz(xs)Axg < G IAXP

s<t =1 s<t 1

< Ct : Z[Xz]t < 00,

i

where C; = Cy(w) is an almost surely finite random constant depending only on the

maximum of the norm of the second derivative of " on the convex hull of { X : s € [0, ¢]}.

It is possible to prove this general version of Itd’s formula by a Riemann sum approx-
imation, cf. [36]. Here, following [38]], we instead derive the “chain rule” once more

from the “product rule”:

Proof. To keep the argument transparent, we restrict ourselves to the case d = 1. The

generalization to higher dimensions is straightforward. We now proceed in three steps:

1. Asin the finite variation case (Theorem[I14.4), we first prove that the set .4 consisting
of all functions F' € C?*(R) satisfying (I4.4.3)) is an algebra, i.e.,

FFGeA = FGeA
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This is a consequence of the integration by parts formula

t

F(X)G(X) = FX)G(X0) = [ PX.)d6(X) + [ G(X.) aF(x)

+ [F(X), +ZAF (X), (14.4.5)
(0,4]

the associative law, which implies

/ F(X_)dG(X) = / F(X_)G’(X_)dXJr% / F(X_)G"(X_) d[X]°
+) F(X_) (AG(X) — G/(X_)AX),  (144.6)

the corresponding identity with F' and G interchanged, and the formula

F(X),G(X)° = [ / F/(X_) dX, / G'(X_) er (14.4.7)
- / PXOE(X) X)) = / (F'&)(X_) d[X]°

for the continuous part of the covariation. Both (I4.4.6) and (14.4.7) follow from
(14.4.4) and the corresponding identity for G. It is straightforward to verify that (I4.4.3]),
(14.4.6) and (I4.4.7) imply the change of variable formula (I4.4.3) for F'G, i.e., F'G €
A. Therefore, by induction, the formula holds for all polynomials F.

2. In the second step, we prove the formula for arbitrary ' € C? assuming X = M + A
with a bounded martingale M and a bounded process A € FV. In this case, X is
uniformly bounded by a finite constant C'. Therefore, there exists a sequence (p,,) of
polynomials such that p,, — F, p/, — F’ and p!! — F" uniformly on [—C, C]. For
t > 0, we obtain

F(X)) = F(Xo) = lirgo(pn(Xt)—pn(Xo))

n—

t 1 t Xs
— 3 /
_ T};n;@(/opnws)d)(ﬁ?/pn +Z/S/ 2) dz dy)

s<t

t 1 Xs Yy
o ’ // "
= /OF(XS_)dXS+§/OF +E /s_/s_F(z)dzdy

s<t
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w.r.t. convergence in probability. Here we have used an expression of the jump terms in

(I4.4.3) by a Taylor expansion. The convergence in probability holds since X = M+ A,

EH/Otp;( ) dM, — /F’ }

— / (v, - F)(X, >d[M]s} < sup g, — F/- B[],
0 [-C.C]

by 1t6’s isometry, and
X, 1
‘Z/ / — F")( dzdy‘ < §[sup Ipll — F"| ;AX
3. Finally, the change of variables formula for general semimartingales X = M + A
with M € M)y, and A € FV follows by localization. We can find an increasing se-
quence of stopping times (7},) such that sup T}, = oo a.s., M is a bounded martingale,

and the process AT»~ defined by

AtT”_ _ A, for t < T,

Ap, . for t > 1T,
is a bounded process in FV for any n. Itd’s formula then holds for X" := MT» + ATn~
for every n. Since X™ = X on [0,7},) and T,, ,/* c© a.s., this implies 1td’s formula for

X. 0

Note that the second term on the right hand side of Itd’s formula (14.4.4) is a continu-
ous finite variation process and the third term is a pure jump finite variation process.
Moreover, semimartingale decompositions of X¢, 1 < ¢ < d, yield corresponding
decompositions of the stochastic integrals on the right hand side of (I4.4.4). There-
fore, It6’s formula can be applied to derive an explicit semimartingale decomposition
of F(X}, ..., X{) for any C? function F'. This will now be carried out in concrete

examples.

Application to Lévy processes
We first apply Itd’s formula to a one-dimensional Lévy process

X, = :c+aBt+bt+/y Ny(dy) (14.4.8)
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with x,0,b € R, a Brownian motion (B;), and a compensated Poisson point process
N, = N, — tv with intensity measure v. We assume that [ (|y|> A y|) v(dy) < oo. The
only restriction to the general case is the assumed integrability of |y| at oo, which en-
sures in particular that (X}) is integrable. The process (X;) is a semimartingale w.r.t. the

filtration (]—"tB’N) generated by the Brownian motion and the Poisson point process.

We now apply It6’s formula to F/(X,) where F € C*(R). Setting C;, = [y N,(dy) we

first note that almost surely,

Xy = ’Bli+20[B,CLi+[Cl, = o*t+ > (AX,)

s<t

Therefore, by (14.4.9),
F(X;) — F(Xo)

_ /O F'(X_) dX + % /O F(X_) d[X]° + ; (F(X) - F(X_) - F'(X_)AX)
- /0 (oF")(X._) dB, + /0 F %UQF”)(XS) ds + / F'(X,-) y N(ds dy)
(0,¢] xR
+ / (F(X,- +y) — F(X,_) — F'(X,_)y) N(ds dy), (14.4.9)

(0,¢] xR

where N (ds dy) is the Poisson random measure on R, xR corresponding to the Poisson
point process, and N(ds dy) = N(ds dy) — ds v(dy). Here, we have used a rule for
evaluating a stochastic integral w.r.t. the process C; = [y N,(dy) which is intuitively
clear and can be verified by approximating the integrand by elementary processes. Note
also that in the second integral on the right hand side we could replace X;_ by X since

almost surely, A X, = 0 for almost all s.

To obtain a semimartingale decomposition from (I14.4.9), we note that the stochastic
integrals w.r.t. (B;) and w.r.t. (Nt) are local martingales. By splitting the last integral on
the right hand side of (I£.4.9) into an integral w.r.t. N (ds dy) (i.e., a local martingale)

and an integral w.r.t. the compensator ds v(dy), we have proven:
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Corollary 14.23 (Martingale problem for Lévy processes). For any F € C?*(R), the

process

MP = F(X) - F(Xo) - / (LF)(X,) ds,
@) = FEF)E)+0F@ + [ (Flty) - Fa) - Fe)) vidy),
is a local martingale vanishing at 0. For F € C(R), M) is a martingale, and
(LF)z) = lim 1E[F(Xt) _F(X)].

t10

Proof MU is a local martingale by the considerations above and since X, (w) =
( ) for almost all (s,w). For F' € CZ, LF is bounded since |F(z + y) — F(z) —

2)y| = O(ly| A |y|?). Hence M) is a martingale in this case, and

SB[F(X) - FO%)] = B[]

Hepxoa] = wnw

as t | 0 by right continuity of (LF')(Xj). O

The corollary shows that £ is the infinitesimal generator of the Lévy process. The
martingale problem can be used to extend results on the connection between Brownian
motion and the Laplace operator to general Lévy processes and their generators. For ex-
ample, exit distributions are related to boundary value problems (or rather complement
value problems as L is not a local operator), there is a potential theory for generators of

Lévy processes, the Feynman-Kac formula and its applications carry over, and so on.

Example (Fractional powers of the Laplacian). By Fourier transformation one veri-
fies that the generator of a symmetric «-stable process with characteristic exponent |p|®
is £ = —(—A)®/2. The behaviour of symmetric a-stable processes is therefore closely

linked to the potential theory of these well-studied pseudo-differential operators.

Exercise (Exit distributions for compound Poisson processes). Let (X;):>( be a com-

pound Poisson process with Xy = 0 and jump intensity measure v = N(m, 1), m > 0.
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i) Determine A € R such that exp(AX;) is a local martingale.
i1) Prove that for a < 0,
PT, < ] = blim P[T, < T, < exp(ma/2).
—00

Why is it not as easy as for Brownian motion to compute P[T,, < T;] exactly?

Burkholder’s inequality

As another application of Itd’s formula, we prove an important inequality for cadlag
local martingales that is used frequently to derive L? estimates for semimartingales. For

real-valued cadlag functions x = (x;);>¢ we set

xy = sup|wz for t > 0, and xy = |xol.
s<t

Theorem 14.24 (Burkholder’s inequality). Let p € [2, 00). Then the estimate
E[(Mzy[? < o B[MEY (14.4.10)

holds for any strict local martingale M € M, . such that My = 0, and for any stopping
time T : Q — [0, 00|, where

(p—1)/2
Yo o= <1+p%1) p/V2 < e/2p.

Remark. The estimate does not depend on the underlying filtered probability space,
the local martingale M, and the stopping time 7. However, the constant 7, goes to oo

as p — o0.

Notice that for p = 2, Equation (I4.4.10) holds with v, = 2 by Itd’s isometry and
Doob’s L? maximal inequality. Burkholder’s inequality can thus be used to generalize

arguments based on Itd’s isometry from an L? to an L? setting.
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Proof. 1) We first assume that 7' = oo and M is a bounded cadlag martingale. Then,

by the Martingale Convergence Theorem, M., = tlim M, exists almost surely. Since
—00

the function f(x) = |x[P is C? for p > 2 with ¢"(x) = p(p — 1)|z|P~2, 1td’s formula

implies
oo 1 o0

pp =[Sy [ oo dpo;
0 0

+ 3 (M) — $(M,-) — ¢/ (M, )AM,,), (14.4.11)
where the first term is a martingale since ¢’ o M is bounded, in the second term

¢"(M;) < plp— (ML),
and the summand in the third term can be estimated by

G(M,) — 6(M, ) — §(M)AM, < 3 sup(” o M)(AM,)?

< lp— DMLY HAM,P.

Hence by taking expectation values on both sides of (14.4.11)), we obtain for ¢ satisfying
1,1 _ 1.
lylo:

E(MLY) < ¢ B Ml
< ¢ 2D gl (s + Y am?)]
< P27 gy Bk

2
by Doob’s inequality, Holder’s inequality, and since [M]¢, + > (AM)? = [M].. The
inequality (I4.4.10) now follows by noting that ¢°p(p — 1) = ¢?~!p?.

2) For T' = oo and a strict local martingale M € M., there exists an increasing
sequence (7},) of stopping times such that M is a bounded martingale for each n.

Applying Burkholder’s inequality to M yields
B(Mf,)y) = E(MZ™Y] < ApE(MPRP] = op BME)
Burkholder’s inequality for M now follows as n — oo.

3) Finally, the inequality for an arbitrary stopping time 7' can be derived from that for
T = oo by considering the stopped process M. U
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For p > 4, the converse estimate in (I2.0.1)) can be derived in a similar way:

Exercise. Prove that for a given p € [4, c0), there exists a global constant ¢, € (1, c0)

such that the inequalities

¢, E[MEF] < BE(ML)] < ¢ B [[M]E7]

with M} = sup,_, | M| hold for any continuous local martingale (M} );c(0,c)-

The following concentration inequality for martingales is often more powerful than

Burkholder’s inequality:

Exercise. Let M be a continuous local martingale satisfying /M, = 0. Show that

2

Plsup My >z ; [M], < c} < exp(—x—>
s<t 2c

for any ¢, t, x € [0, 00).

14.5 Stochastic exponentials and change of measure

A change of the underlying probability measure by an exponential martingale can also
be carried out for jump processes. In this section, we first introduce exponentials of gen-
eral semimartingales. After considering absolutely continuous measure transformations
for Poisson point processes, we apply the results to Lévy processes, and we prove a gen-
eral change of measure result for possibly discontinuous semimartingales. Finally, we
provide a counterpart to Lévy’s characterization of Brownian motion for general Lévy

processes.

Exponentials of semimartingales

If X is a continuous semimartingale then by It6’s formula,

1
StX = exp (Xt - §[X]t>
is the unique solution of the exponential equation
dex = &¥dXx, & = 1
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In particular, £ is a local martingale if X is a local martingale. Moreover, if

7

ho(t,z) = T exp(ax — a’t/2) - (14.5.1)
denotes the Hermite polynomial of order n and X, = 0 then
H' = h,(X], X) (14.5.2)

solves the SDE
dH" = nH"'dX, H} =0,

for any n € N, cf. Section 6.4 in [[14]. In particular, H" is an iterated It integral:

t Sn 52
or = n'// / dX,,dX,, - dX,, .
0 0 0

The formula for the stochastic exponential can be generalized to the discontinuous case:

Theorem 14.25 (Doléans-Dade). Let X € S. Then the unique solution of the exponen-

tial equation

t
% = 1+/ Z,_dX,,  t>0, (14.5.3)
0
is given by
1
Z, = exp <Xt—§[X]§> I (1 +AX,) exp(~AX,). (14.5.4)
s€(0,t]

Remarks. 1) In the finite variation case, (14.5.4) can be written as
C 1 C
7, = exp (Xt - §[X]t) E];[ﬂq +AX,).

In general, however, neither X nor [[(1 + AX) exist.

2) The analogues to the stochastic polynomials A" in the discontinuous case do not

have an equally simply expression as in (I4.5.2)) . This is not too surprising: Also for
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continuous two-dimensional semimartingales (X}, Y;) there is no direct expression for
the iterated integral fo fy dX. dY, = fo (X, — Xo) dY; and for the Lévy area process

//dXdY //deX

in terms of X,Y and their covariations. If X is a one-dimensional discontinuous semi-
martingale then X and X _ are different processes that have both to be taken into account

when computing iterated integrals of X.

Proof of Theorem The proof is partially similar to the one given above for X &
FV, cf. Theorem [14.5] The key observation is that the product
P, = J] 1+AX,) exp(-AX,)
s€(0,t]
exists and defines a finite variation pure jump process. This follows from the estimate

2
s) s = . s = . t
E |log(1 + AX,) — AX,] < const.- E IAX,]* < const. [X]

0<s<t s<t
[AX|<1/2

which implies that

S, = > (log(1+AX,)—AX,), t>0,

s<t
|AX[<1/2

defines almost surely a finite variation pure jump process. Therefore, (F;) is also a finite

variation pure jump process.
(X ]f) satisfies

Moreover, the process Gy = exp (Xt -1
G = 1+ /G_ dX +> (AG - G- AX) (14.5.5)
by It6’s formula. For Z = G P we obtain
AZ = Z_ (eAX(l +AX)e X 1) — Z_AX,
and hence, by integration by parts and (14.5.3]),

Z—-1 = /P_dG+/G_dP+[G,P]

= /PG dX + Y (P_AG - P_G_AX + G_ AP+ AG AP)

- /Z_dX+Z(AZ—Z_AX) — /Z_dX.
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This proves that Z solves the SDE (14.5.3). Uniqueness of the solution follows from
a general uniqueness result for SDE with Lipschitz continuous coefficients, cf. Section

121 O

Example (Geometric Lévy processes). Consider a Lévy martingale X; = [y Nt(dy)
where (V;) is a Poisson point process on R with intensity measure v satisfying [(|y| A

ly|?) v(dy) < oo, and Ny = N, — tv. We derive an SDE for the semimartingale
Zy = exp(oX;+ ut), t>0,
where o and p are real constants. Since [X|¢ = 0, [t6’s formula yields

Zy—1 :J/Z dX+u/Z ds+ZZ,(e<’AX—1—o—AX> (14.5.6)

(0,4] (0,4] (0,4

=0 / Zo_y N(ds dy) + / Zs ds—l—/ ZS,(e"y —1- ay) N(ds dy).
(0,t] xR

(0,t] xR (0,¢]

If [ e*Y v(dy) < oo then (I4.3.6) leads to the semimartingale decomposition
dZ, = Z_dM?+aZ,_dt, Zy=1, (14.5.7)

where

M = / (é’y . 1) Ni(dy)

is a square-integrable martingale, and

o = u+/(e"y—1—0y) v(dy).

In particular, we see that although (Z;) again solves an SDE driven by the compensated

process (N,), this SDE can not be written as an SDE driven by the Lévy process (X,).

Change of measure for Poisson point processes

Let (N;)¢>0 be a Poisson point process on a o-finite measure space (.5, S, v) that is de-
fined and adapted on a filtered probability space (€2, A, Q, (F;)). Suppose that (w, t,y) —
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H,(y)(w) is a predictable process in Efo Q@ ®A®v). Our goal is to change the under-
lying measure () to a new measure P such that w.r.t. P, (IV;);>0 is a point process with

intensity of points in the infinitesimal time interval [¢, ¢ + dt] given by
(14 Hi(y)) dt v(dy).

Note that in general, this intensity may depend on w in a predictable way. Therefore,
under the new probability measure P, the process (/V;) is not necessarily a Poisson point

process. We define a local exponential martingale by
Z, = &' where L, = (H,N),. (14.5.8)

Lemma 14.26. Suppose that inf H > —1, and let G :=log (1 + H). Then fort > 0,
e = en([ G N - [ ()~ Gl dsuldy).
(0,t] xS (0,t] xS

Proof. The assumption inf H > —1 implies inf AL > —1. Since, moreover, [L|¢ = 0,

we obtain
gho= P T+ AL)e "
= exp (L + (log(1 + AL) — AL))
—  exp (G.Kf + /(G ~ H)ds y(dy)).

Here we have used that

S (log(1+AL) —AL) = / (log (1 + Ha(y)) — Hy(y)) N(ds dy)

holds, since |log(1 + H,(y)) — Hy(y)| < const. |H,(y)|? is integrable on finite time

intervals. [l

The exponential Z; = £ is a strictly positive local martingale w.r.t. (, and hence a

supermartingale. As usual, we fix ¢, € R, and we assume:
Assumption. (Z;);<, is a martingale w.r.t. (), i.e. Eg[Z;] = 1.

Then there is a probability measure P on F;, such that

dP

— = Z forany ¢ < tg.
107, t Yy ix>7o
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In the deterministic case H;(y)(w) = h(y), we can prove that w.r.t. P, (IV;) is a Poisson

point process with changed intensity measure

wdy) = (1+h(y)) v(dy):

Theorem 14.27 (Change of measure for Poisson point processes). Let (N, () be a
Poisson point process with intensity measure v, and let g := log (1+h) where h € L*(v)

satisfies inf h > —1. Suppose that the exponential

Z, = &' - exp (Nt(g)th / (g—h)du) (14.5.9)

is a martingale w.r.t. (), and assume that P < () on F; with relative density Z—g . = Z;
for any t > 0. Then the process (Ny, P) is a Poisson point process with intensity
measure

dp = (1+h)dv.

Proof. By the Lévy characterization for Poisson point processes (cf. the exercise below

Lemmall 1.1) it suffices to show that the process

M = e (N F (). W) = /@—Wﬂm

is a local martingale w.r.t. P for any elementary function f € L'(S,S,v). Further-
more, by Lemma0.8, /U] is a local martingale w.r.t. P if and only if MU!Z is a local
martingale w.r.t. Q. The local martingale property for (AM1Z, Q) can be verified by a

computation based on Itd’s formula. U

Remark (Extension to general measure transformations). The approach in Theo-
rem [[4.27] can be extended to the case where the function h(y) is replaced by a general
predictable process H;(y)(w). In that case, one verifies similarly that under a new mea-

sure P with local densities given by (I4.5.8]), the process

M = exp (i) + [ (L= )1+ i) )

is a local martingale for any elementary function f € £!(v). This property can be used

as a definition of a point process with predictable intensity (1 + Hy(y)) dt v(dy).
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Change of measure for Lévy processes

Since Lévy processes can be constructed from Poisson point processes, a change of
measure for Poisson point processes induces a corresponding transformation for Lévy

processes. Suppose that v is a o-finite measure on R? \ {0} such that
/(\y\ Alyl?) v(dy) < oo, and let
pldy) = (14 h(y)) v(dy).
Recall that if (/V;, () is a Poisson point process with intensity measure v, then
X, = /y Nt(dy), ]Vt = N, —ty,

is a Lévy martingale with Lévy measure v w.r.t. Q).

Corollary 14.28 (Girsanov transformation for Lévy processes). Suppose that h €
L2(v) satisfies inf h > —1 and suph < co. If P < Q on F; with relative density Z,
forany t > 0, where Z; is given by (14.3.9), then the process

Xt = /?/Nt (d'g), Nt = Nt—tu,

is a Lévy martingale with Lévy measure ju w.r.t. P, and

X, = X, + ¢ / y h(y) v(dy).

Notice that the effect of the measure transformation consists of both the addition of a
drift and a change of the intensity measure of the Lévy martingale. This is different to

the case of Brownian motion where only a drift is added.

Example (Change of measure for compound Poisson processes). Suppose that (X, ())

is a compound Poisson process with finite jump intensity measure v, and let

N= ) h(AX)

s<t
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with h as above. Then (X, P) is a compound Poisson process with jump intensity

measure di = (1 + h) dv provided

dp N(h) —t[hd
— = £ = e T+ nAX,)).
dQ i t 8§t< ( ))

Lévy’s characterization for Brownian motion has an extension to Lévy processes, too:

Theorem 14.29 (Lévy characterization of Lévy processes). Let a € R4 b € R,
and let v be a o-finite measure on R? \ {0} satisfying [(|y| A |y|*) v(dy) < oo. If
XL ..., X2 Q — R are cadlag stochastic processes such that

(i) Mf:= XF—V"t isalocal (F;) martingale for any k € {1,...,d},
(ii) [X*, XY¢ =a*t foranyk,l€{1,...,d}, and

(ii)) B| Y seq Is(AX,)
forany 0 < r < t and for any B € B(R?\ {0}),

r:| =v(B)-(t—r) almost surely

then X, = (X}, ..., Xtd) is a Lévy process with characteristic exponent
1 :
vlp) = gprap—ip-b+ /(1 — &PV 4+ ip-y) v(dy). (14.5.10)

For proving the theorem, we assume without proof that a local martingale is a semi-
martingale even if it is not strict, and that the stochastic integral of a bounded adapted

left-continuous integrand w.r.t. a local martingale is again a local martingale, cf. [36]].

Proof of Theorem We first remark that (iii) implies

[ZG F(AX)

sert

/ /G f(y) v(dy) ds‘}"T}, as. for 0<r <t
(14.5.11)

for any bounded left-continuous adapted process (&, and for any measurable function
f : R4\ {0} — C satisfying |f(y)| < const.- (|y| A |y|?). This can be verified
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by first considering elementary functions of type f(y) = > ¢ Ip,(y) and Gs(w) =
S Ai(w) I, 45,0 (s) with¢; € R, B; € B(RY\ {0}),0 <ty <ty < -+ < t,,and 4;

bounded and F;,-measurable.

Now fix p € R%, and consider the semimartingale

Zy = explip- Xi+t(p)) = explip- My+t(¢(p) +ip-b)).

Noting that [M*, M']¢ = [X* X!|¢ = a*'t by (ii), 1t6’s formula yields

t t
1
Z, = 1+/ Z_ ip-dM+/ Z_ (w(p)+¢p-b—§zpkplakl) dt (14.5.12)
0 0 k,l

+Sz (e"pM —1—ip- AX).
(0,4]

By (I4.5.11)) and since |e¥ —1—ip-y| < const. - (|y|A|y|?), the series on the right hand
side of can be decomposed into a martingale and the finite variation process

t
Ao = / /Zs (€™ —1—ip-y) v(dy) ds
0

Therefore, by (I4.3.12) and (I4.3.10), (Z;) is a martingale for any p € R¢. The assertion
now follows by Lemma [IT.11 [

An interesting consequence of Theorem is that a Brownian motion B and a Lévy
process without diffusion part w.r.t. the same filtration are always independent, because
[B%, X'] = 0 for any k, L.

Exercise (Independence of Brownian motion and Lévy processes). Suppose that
B, : Q2 — R?and X, : Q — R? are a Brownian motion and a Lévy process with
characteristic exponent ¢x (p) = —ip - b+ [(1 — ¥ + ip - y) v(dy) defined on the
same filtered probability space (2, A, P, (F;)). Assuming that [(|y|Ay|?) v(dy) < oo,

prove that (B;, X;) is a Lévy process on R%*? with characteristic exponent

1 /
v(pg) = §Iplid+wx(q), peRY geRY.

Hence conclude that B and X are independent.
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Change of measure for general semimartingales

We conclude this section with a general change of measure theorem for possibly dis-

continuous semimartingales:

Theorem 14.30 (P.A. Meyer). Suppose that the probability measures P and () are
equivalent on F; for any t > 0 with relative density % = Z;. If M is a local
T

martingale w.r.t. Q then M — [ - d[Z, M| is a local martingale w.r.t. P.

The theorem shows that w.r.t. P, (M) is again a semimartingale, and it yields an explicit
semimartingale decomposition for (M, P). For the proof we recall that (7;) is a local

martingale w.r.t. () and (1/7;) is a local martingale w.r.t. P.

Proof. The process ZM — [Z, M] is a local martingale w.r.t. (). Hence by Lemmy [0.8]
the process M — +[Z, M] is a local martingale w.r.t. P. It remains to show that [Z, M]
differs from [ % d[Z, M| by a local P-martingale. This is a consequence of the Itd

product rule: Indeed,

1 1 1 1
=\Z,M| = Z,M|_d—= — d|Z, M =, |Z, M||.
Jzo = [z g+ [ o dzoan s [.12.0m)
The first term on the right-hand side is a local ()-martingale, since 1/7 is a ()-martingale.

The remaining two terms add up to [ d[Z, M], because

1

1
[E,[Z,M]] = ZAEA[Z,M].

O

Remark. Note that the process [ % d[Z, M] is not predictable in general. For a pre-
dictable counterpart to Theorem [14.30 cf. e.g. [36]].

14.6 General predictable integrands

So far, we have considered stochastic integrals w.r.t. general semimartingales only for

integrands that are left limits of adapted cadlag processes. This is indeed sufficient
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for many applications. For some results including in particular convergence theorems
for stochastic integrals, martingale representation theorems and the existence of local
time, stochastic integrals with more general integrands are important. In this section,
we sketch the definition of stochastic integrals w.r.t. not necessarily continuous semi-
martingales for general predictable integrands. For details of the proofs, we refer to
Chapter IV in Protter’s book [36]].

Throughout this section, we fix a filtered probability space (2, A, P, (F;)). Recall that
the predictable o-algebra P on ) x (0,00) is generated by all sets A x (s,t| with
A € Fsand 0 < s < t, or, equivalently, by all left-continuous (F;) adapted processes
(w,t) — Gy(w). We denote by £ the vector space consisting of all elementary pre-

dictable processes G of the form

Gt(w) = Zi(w)l(ti7ti+1](t)

i=0
withn € N0 <ty <t <--- <1, and Z; : 2 — R bounded and F;,-measurable.
For G € &€ and a semimartingale X € S, the stochastic integral G, X defined by

1

t n—
(G.X>t = / GS dXS = Z ZZ (Xt¢+1/\t - Xti/\t)
0 -

1=
is again a semimartingale. Clearly, if A is a finite variation process then G4 A has finite
variation as well.

Now suppose that M € M?3(0,00) is a square-integrable martingale. Then G M €
M?2(0, 00), and the Itd isometry

o 2
G M| ey = E (/O GdM)]
— E[/OOGQd[M]} = / G? dPyy (14.6.1)
0 QxR
holds, where
Pag(dw dt) = P(dw) [M](w)(dt)

is the Doléans measure of the martingale M on €2 x R,. The It6 isometry has been

derived in a more general form in Corollary [14.20l but for elementary processes it can
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easily be verified directly (Excercise!).

In many textbooks, the angle bracket process (M) is used instead of [M] to define
stochastic integrals. The next remark shows that this is equivalent for predictable inte-

grands:

Remark ([M] vs. (M)). Let M € M3(0,00). If the angle-bracket process (M)
exists then the measures P and P coincide on predictable sets. Indeed, if
C =Ax(s,t]with A e Fyand 0 < s < t then
P (€)= E[M],—[M]s; Al = EE[[M], — [M]|F]; Al
= E[E[(M), — (M) |F]; Al = Poy(C).

Since the collection of these sets C' is an MN-stable generator for the predictable o-

algebra, the measures P and P,y coincide on P.

Example (Doléans measures of Lévy martingales). If M/, = X, — E[X,]| with a square

integrable Lévy process X; : {2 — R then
Pap = Pan = ¢'(0) P® Ao

where 1) is the characteristic exponent of X and A ) denotes Lebesgue measure on
R, . Hence the Doléans measure of a general Lévy martingale coincides with the one

for Brownian motion up to a multiplicative constant.

Definition of stochastic integrals w.r.t. semimartingales

We denote by H? the vector space of all semimartingales vanishing at 0 of the form X =
M + A with M € M?(0,00) and A € FV predictable with total variation vy )(A) =
J5° |dA,| € L*(P). In order to define a norm on the space 7, we assume without proof

the following result, cf. e.g. Chapter III in Protter [36]:

Fact. Any predictable local martingale with finite variation paths is almost surely

constant.

The result implies that the Doob-Meyer semimartingale decomposition

X = M+A (14.6.2)
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is unique if we assume that M is local martingale and A is a predictable finite variation

process vanishing at 0. Therefore, we obtain a well-defined norm on 2 by setting

[Mk+(£wmmf

Note that the M? norm is the restriction of the * norm to the subspace M?(0, 00) C
H2. As a consequence of (I4.6.1]), we obtain:

X3 = MR +[IVOAE = B

Corollary 14.31 (Ité isometry for semimartingales). Let X € H? with semimartin-

gale decomposition as above. Then

|G X2 = ||Gllx  forany G € E, where

0o 2
2 i 2
1G1P -H®mmw+Hﬂlﬂwmmwy

Hence the stochastic integral J : € — H? Jx(G) = GoX, has a unique isometric
extension to the closure & of € w.r.t. the norm || - ||x in the space of all predictable

processes in L*(Ppy).

Proof. The semimartingale decomposition X = M + A implies a corresponding de-
composition G, X = G,M + G,A for the stochastic integrals. One can verify that
for G € £ G,M is in M3(0,00) and G,A is a predictable finite variation process.
Therefore, and by (14.6.1)),

1GuX[fe = 1IGMIfe + V(G = (IG1Exin,y+ | [ 161144

2
L2(P)

O

The It6 isometry yields a definition of the stochastic integral G, X for G & & ForG =
H_ with H cadlag and adapted, this definition is consistent with the definition given
above since, by Corollary the 1t6 isometry also holds for the integrals defined
above, and the isometric extension is unique. The class &¥ of admissible integrands is

already quite large:
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Lemma 14.32. £ contains all predictable processes G with ||G||x < oo.

Proof. We only mention the main steps of the proof, cf. [36] for details:
1) The approximation of bounded left-continuous processes by elementary predictable
processes w.r.t. || - || x is straightforward by dominated convergence.
2) The approximability of bounded predictable processes by bounded left-continuous
processes W.r.t. || - || x can be shown via the Monotone Class Theorem.
3) For unbounded predictable G with ||G||x < oo, the processes G™ := G - Ijg<py,
n € N, are predictable and bounded with ||G" — G||x — 0.
O

Localization

Having defined G, X for X € H? and predictable integrands G with ||G||x < oo, the
next step is again a localization. This localization is slightly different than before, be-
cause there might be unbounded jumps at the localizing stopping times. To overcome
this difficulty, the process is stopped just before the stopping time 7, i.e., at 7'—. How-
ever, stopping at 7" destroys the martingale property if 7" is not a predictable stopping

time. Therefore, it is essential that we localize semimartingales instead of martingales!

For a semimartingale X and a stopping time 7" we define the stopped process X~ by

Xt for ¢ < T,
xX= = Xp_ for t>T >0,
0 for T'= 0.
The definition for 7" = 0 is of course rather arbitrary. It will not be relevant below, since

we are considering sequences (7,) of stopping times with 7}, T oo almost surely. We

state the following result from Chapter IV in [36] without proof.

Fact. If X is a semimartingale with X, = 0 then there exists an increasing se-
quence (7},) of stopping times with sup7,, = oo such that X7~ € H? for any
n € N.

Now we are ready to state the definition of stochastic integrals for general predictable
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integrands w.r.t. general semimartingales X . By setting G¢X = Go(X — X)) we may

assume Xo = 0.

Definition. Let X be a semimartingale with Xq = 0. A predictable process G is called
integrable w.r.t. X iff there exists an increasing sequence (T),) of stopping times such

that sup T,, = oo a.s., and for any n € N, X™~ € H? and ||G|| x1.- < <.

If G is integrable w.r.t. X then the stochastic integral GG, X is defined by

t t
(GX); = / G, dX, = / Gy dX I~ forany t €10,T,), n€N.
0 0

Of course, one has to verify that G,X is well-defined. This requires in particular a
locality property for the stochastic integrals that are used in the localization. We do not

carry out the details here, but refer once more to Chapter IV in [36].

Exercise (Sufficient conditions for integrability of predictable processes).

1) Prove that if G is predictable and locally bounded in the sense that G is bounded
for a sequence (7)) of stopping times with 7,, 1 oo, then G is integrable w.r.t. any

semimartingale X € S.

2) Suppose that X = M + A is a continuous semimartingale with M & M}:OC and
A € FV.. Prove that G is integrable w.r.t. X if G is predictable and

/G2 /|G||dA| < a.s. forany ¢t > 0.

Properties of the stochastic integral

Most of the properties of stochastic integrals can be extended easily to general pre-
dictable integrands by approximation with elementary processes and localization. The
proof of Property (2) below, however, is not trivial. We refer to Chapter IV in [36] for

detailed proofs of the following basic properties:

(1) The map (G, X) — G4X is bilinear.
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(2) A(G.X) = GAX almost surely.
(3) (GoX)T = (G Ijp1))e X = G X7
@) (G X)T~ = G XT-.

(5) Gu(G.X) = (GGR).X.

In all statements, X is a semimartingale, G is a process that is integrable w.r.t. X, T is a
stopping time, and Gisa process such that GG is also integrable w.r.t. X. We state the
formula for the covariation of stochastic integrals separately below, because its proof is

based on the Kunita-Watanabe inequality, which is of independent interest.

Exercise (Kunita-Watanabe inequality). Let X, Y € S, and let G, H be measurable
processes defined on 2 x (0, 00) (predictability is not required). Prove that for any

a € [0,00] and p, ¢ € [1, 00| with ]13 + % = 1, the following inequalities hold:

/OGIGHHI X, Y] < (/OaG2 d[X])l/2 (/OQHQ d[Y])l/z, (14.6.3)

E[/OG|G||H| |d[X,Y]|} < H(/OG2 d[X])l/z (/0H2 d[y])l/2 o

(14.6.4)
Hint: First consider elementary processes G, H.

Lr

Theorem 14.33 (Covariation of stochastic integrals). For any XY € S and any
predictable process G that is integrable w.r.t. X,

[ / G dX, Y] - / Gd[X,Y]  almost surely. (14.6.5)

Remark. If X and Y are local martingales, and the angle-bracket process (X, Y') exists,

then also
</GdX,Y> = /Gd(X, Y) almost surely.
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Proof of Theorem[[4.33] We only sketch the main steps briefly, cf. [36] for details.
Firstly, one verifies directly that (I4.6.3)) holds for X,Y € H? and G € £. Secondly,
for X, Y € H? and a predictable process G with ||G||x < oo there exists a sequence

(G™) of elementary predictable processes such that ||G" — G||x — 0, and
[/G”dX,Y] = /G"d[X,Y] forany n € N.
Asn — oo, [G"dX — [ G dX in H? by the Itd isometry for semimartingales, and

[ / G" dX, Y] N [ / G dX, Y] w.c.p.

by Corollary [I4.14l Moreover,

hence

/ GrdXY] — / GdX,Y] uwep.

by the Kunita-Watanabe inequality. Hence (14.6.3) holds for GG as well. Finally, by lo-
calization, the identity can be extended to general semimartingales X, Y and integrands
G that are integrable w.r.t. X. 0

An important motivation for the extension of stochastic integrals to general predictable

integrands is the validity of a Dominated Convergence Theorem:

Theorem 14.34 (Dominated Convergence Theorem for stochastic integrals). Sup-
pose that X is a semimartingale with decomposition X = M + A as above, and let G",

n € N, and G be predictable processes. If
G (w) — Giw) forany t >0, almost surely,

and if there exists a process H that is integrable w.r.t. X such that |G"| < H for any
n € N, then
G"X — GX u.c.p. as mn — oo.

If, in addition to the assumptions above, X is in H* and ||H||x < oo then even

|G X — G X||lgz2 —> O as n — 0o.
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Proof. We may assume G = 0, otherwise we consider G" — G instead of G". Now

suppose first that X is in #? and ||H||x < oc. Then

leti = B[+ ([ i6maa)] — o

as n — oo by the Dominated Convergence Theorem for Lebesgue integrals. Hence by
the It6 isometry,

G"X — 0 in H® asn— oo.

The general case can now be reduced to this case by localization, where H? convergence

is replaced by the weaker ucp-convergence. U

We finally remark that basic properties of stochastic integrals carry over to integrals
with respect to compensated Poisson point processes. We refer to the monographs by
D.Applebaum [3]] for basics, and to Jacod & Shiryaev [24] for a detailed study. We only
state the following extension of the associative law, which has already been used in the

last section:

Exercise (Integration w.r.t. stochastic integrals based on compensated PPP). Sup-
pose that H : 2 x R, x S — R is predictable and square-integrable w.r.t. P @ A\ ® v,
and G : Q2 x R, — R is a bounded predictable process. Show that if

X, - / H,(y) N(ds dy)
(0,¢e]xS

then .
/ G, dX, = / G.H,(y) N(ds dy).
0 (0,t] xS

Hint: Approximate G by elementary processes.

University of Bonn 2015/2016



Appendix A

Conditional expectations

A.1 Conditioning on discrete random variables

We first consider conditioning on the value of a random variable Y : 2 — S where S is

countable. In this case, we can define the conditional probability measure

B PIAN{Y = z}]
P[A|Y = Z] PY =4 Ae A,
and the conditional expectations
EX;Y =] 1
EX|Y = = — X QAP
[ ‘ z] P[Y — Z] ? E ‘C ( 7A7 )7

for any z € S with P[Y = z| > 0 in an elementary way. Note that for z € S with
PJY = z] = 0, the conditional probabilities are not defined.

Conditional expectations as random variables

It will turn out to be convenient to consider the conditional probabilities and expecta-
tions not as functions of the outcome z, but as functions of the random variable Y. In

this way, the conditional expectations become random variables:

548
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Definition (Conditional expectation given a discrete random variable). Ler X :
Q0 — R be a random variable such that E[X ] < oo, and let Y : Q — S be a dis-
crete random variable. The random variable E[X | Y| that is P-almost surely uniquely
defined by

BX|Y] = o¥) = 3 g() s
z€8
with
EX|Y=2 ifP[Y=2>0
9(z) =
arbitrary ifPlY =2 =0

is called (a version of the) conditional expectation of X given Y. For an event A € A,

the random variable

PIAY] = Eal|Y]

is called (a version of the) conditional probability of A given Y.

The conditional expectation E[X | Y] and the conditional probability P[A | Y] are again
random variables.They take the values E[X |Y = z] and P[A | Y = z|, respectively,
on the sets {Y = z},z € S with P[Y = z] > 0. On each of the null sets {Y =
z},z € S with P[Y = z] = 0, an arbitrary constant value is assigned to the conditional

expectation. Hence the definition is only almost surely unique.

Characteristic properties of conditional expectations

Let X : €2 — R be a non-negative or integrable random variable on a probability space
(Q, A, P). The following alternative characterisation of the conditional expectation of

X given Y can be verified in an elementary way:

Theorem A.1. A real random variable X > 0 (or X € L) on (0, A, P) is a version
of the conditional expectation E[X | Y] if and only if

() X =g(Y) forafunctiong:S — R, and
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(I) E[X-f(Y)] = E[X-f(Y)] for all non-negative or bounded functions f :
S — R, respectively.

A.2 General conditional expectations

If Y is a real-valued random variable on a probability space (€2, .4, P) with continuous
distribution function, then P[Y = 2] = 0 for any z € R. Therefore, conditional
probabilities given Y = z can not be defined in the same way as above. Alternatively,

one could try to define conditional probabilities given Y as limits:
PA|Y =2 = }Li{r(l]P[A|z—h§Y§z+h]. (A2.1)

In certain cases this is possible but in general, the existence of the limit is not guaran-

teed.

Instead, the characterization in Theorem [A. 1l is used to provide a definition of condi-
tional expectations given general random variables Y. The conditional probability of a
fixed event A given Y can then be defined almost surely as a special case of a conditional
expectation:

P[A|Y] = FE[l4]|Y]. (A.2.2)

Note, however, that in general, the exceptional set will depend on the event A !

The factorization lemma

We first prove an important measure theoretic statement.

Theorem A.2 (Factorization lemma). Suppose that (S, S) is a measurable space and

Y : Q — Sisamap. Then amap X : Q — R is measurable w.r.t. o(Y') if and only if

X=f(¥)=foY
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for a S-measurable function f : S — R.

X

Y

(©,0(Y)) — (5,5) — (R, B(R))

Proof. (1). If X = f oY for a measurable function f, then
X'B) = Y YfUB)) oY) holds for all B € B(R),
as f~1(B) € S. Therefore, X is o(Y )-measurable.

(2). Coversely, we have to show that o (Y )-measurability of X implies that X is a

measurable function of Y. This is done in several steps:

(a) If X = I, is an indicator function of an set A € o(Y), then A = Y (B)
with B € S, and thus

X(w) = Iyyplw) = IpY(w)) for all w € 2.

(b) For X =Y""  ¢;14, with 4; € o(Y') and ¢; € R we have correspondingly
X => clp(Y),
i=1

where wobei B; are sets in S such that A; = Y 1(B;).

(c) For an arbitrary non-negative, o (Y )-measurable map X : Q — R, there
exists a sequence of o(Y")-measurable elementary functions such that X,,
X. By (b), X, = f.(Y) with S-measurable functions f,,. Hence

X = swpX, = swpf(Y) = f(¥),

where f = sup f,, is again S-measurable.

(d) For a general o(Y)-measurable map X : Q2 — R, both X' and X~ are

measurable functions of Y, hence X is a measurable function of Y as well.
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O

The factorization lemma can be used to rephrase the characterizing properties (1) und

(II) of conditional expectations in Theorem[A.1]in the following way:
X is a version of E[X | Y] if and only if

(i) X ist o(Y)-messbar,

(ii) E[X; Al = E[X; Al fiiralle A€ o(Y).

The equivalence of (I) und (i) is a consequence of the factorization lemma, and the

equivalence of (II) and (ii) follows by monotone classes, since (ii) states that

E[X-Iz(Y) = E[X- IgY)] holds for all B € S.

Conditional expecations given o-algebras

A remarkable consequence of the characterization of conditional expectations by Con-
ditions (i) and (ii) is that the conditional expectation E[X | Y] depends on the random
variable Y only via the o-algebra o(Y') generated by Y ! If two random variables YV
and Z are functions of each other then o(Y) = o(Z), and hence the conditional expec-
tations F[X | Y] and E[X | Z] coincide (with probability 1). Therefore it is plausible
to define directly the conditional expectation given a o-Algebra. The o-algebra (e.g.
o(Y), or o(Y1,...,Y,)) then describes the available “information” on which we are

conditioning.

The characterization of conditional expectations by (i) and (ii) can be extended immedi-
ately to the case of general conditional expectations given a o-algebra or given arbitrary
random variables. To this end let X :  — R be a non-negative (or integrable) random

variable on a probability space (€2, .4, P).

Definition (Conditional expectation, general). (). Let F C A be a o-algebra. A
non-negative (or integrable) random variable X : @ — R is called a version of

the conditional expectation E[X | F| iff:
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(a) X is F-measurable, and

(b) E[X ; Al = E[X ; 4] forany A € F.
(2). For arbitrary random variables Y,Y1,Ys, ..., Y, on (Q, A, P) we define

EX|Y] = E[X|oY)],
EX|Y,...Y,] = EX|(1h,....Y,)] = EX|oY,....Y)

(3). Foran event A € A we define

P[A|F] = E[I4|F], andcorrespondingly P[A|Y] = FE[I4]Y].

Remark. By monotone classes it can be shown that Condition (b) is equivalent to:

(b) E[X -Z] = E[X -Z] for any non-negative (resp. bounded) F-measurable
Z Q=R

Theorem A.3 (Existence and uniqueness of conditional expectations). Let X > 0 or
X € LY, and let F C A be a o-algebra. Then:

(1). There exists a version of the conditional expectation E[X | F].

(2). Any two versions coincide P-almost surely.

Proof. Existence can be shown as a consequence of the Radon-Nikodym theorem. In
Theorem below, we give a different proof of existence that only uses elementary
methods.

For proving uniqueness let X and X be two versions of E[X | F]. Then both X and X

are J-measurable, and
E[X: A = E[X:A  foranyAeF.

Therefore, X = X P-almost surely. U
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Properties of conditional expectations

Starting form the definition, we now derive several basic properties of conditional ex-

pectations that are used frequently:

Theorem A.4. Let X,Y and X,, (n € N) be non-negative or integrable random vari-
ables on (2, A, P), and let F,G C A be o-algebras.

The following assertions hold:

(1).

(2).
(3).
(4).

(5).

(6).

(7).
(8).

Linearity: EDNX +pY | F] = AE[X | Fl+ p E[Y | F]  P-almost surely for
any A\, u € R.

Monotonicity: If X > 0 P-almost surely, then E[X | F] > 0 P-almost surely.
If X =Y P-almost surely then E[X | F] = E|[Y | F] P-almost surely.
Monotone Convergence: If (X,,) is increasing with X1 > 0, then

Elsup X,, | F] = supFE[X,|F] P-almost surely.
Tower Property: If G C F then

EEX|F]|G] = E[X]|g P-almost surely.

In particular,

EEX|Y,Z]|Y] = E[X|Y] P-almost surely.

Taking out what is known: Let Y be F-measurable such thatY - X € L' or > 0.
Then
ElY-X|F] = Y- -EX|F P-almost surely.

Independence: If X is independent of F then E[X | F| = E[X] P-almost surely.

Let (S,S) and (T, T) be measurable spaces. If Y : Q — S is F-measurable
and X : Q — T is independent of F, then for any product-measurable function
f:8xT —[0,00) we have

FElf(X,)Y)|Fllw) = E[f(X,Y(w))] fiir P-fast alle w.
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Proof. (1). Aus der Linearitit des Erwartungswertes folgt, dass A\E[X | F|+pE[Y | F]
eine Version der bedingten Erwartung E[AX + Y | F] ist.

(2). Sei X eine Version von E[X | F]. Aus X > 0 P-fast sicher folgt wegen {X <
0} € F:

E[X;:X<0 = EX;X<0 > 0,

und damit X > 0 P-fast sicher.
(3). Dies folgt unmittelbar aus (1) und (2).

(4). Ist X,, > 0 und monoton wachsend, dann ist sup F[X,, | F] eine nichtnegative
F-messbare Zufallsvariable (mit Werten in [0, cc]), und nach dem "‘klassischen

"> Satz von der monotonen Konvergenz gilt:
Elsup E[X,, | F]-Z] = sup E[E[X,, | F]- Z] = sup E[X,,- Z] = E[sup X,,- Z]

fur jede nichtnegative F-messbare Zufallsvariable Z. Also ist sup E[X,, | F] eine

Version der bedingten Erwartung von sup X,, gegeben F.

(5). Wir zeigen, dass jede Version von E[X |G| auch eine Version von E[E[X | F]|G]
ist, also die Eigenschaften (i) und (ii) aus der Definition der bedingten Erwartung
erfiillt:

(i) E[X |G] ist nach Definition G-messbar.
(ii) Fir A € G giltauch A € F, und somit E[E[X |G]; A] = E[X ; A] =
EIEX [ F]; Al

(6) und (7). Auf dhnliche Weise verifiziert man, dass die Zufallsvariablen, die auf der rechten
Seite der Gleichungen in (6) und (7) stehen, die definierenden Eigenschaften der
bedingten Erwartungen auf der linken Seite erfiillen (Ubung).

(8). Dies folgt aus (6) und (7) in drei Schritten:

(a) Gilt f(z,y) = g(z) - h(y) mit messbaren Funktionen g, h > 0, dann folgt
nach (6) und (7) P-fast sicher:
E[f(X,Y)|F] = Elg(X)-hY)[F] = hY)- Elg(X)|F]
= h(Y)- Elg(X)],
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und somit
E[f(X,Y)|F](w) = E[g(X)-h(Y(w))] = E[f(X,Y (w))] fiir P-fast alle w.

(b) Um die Behauptung fiir Indikatorfunktionen f(z,y) = Ig(z,y) von pro-

duktmessbaren Mengen B zu zeigen, betrachten wir das Mengensystem
D = {Be€S®T |Behauptung gilt fiir f = Ig}.

D ist ein Dynkinsystem, das nach (a) alle Produkte B = By x Bomit B; € S
und By € T enthilt. Also gilt auch

D > U({81XBQ|31€S,BQET}) = 8®T

(c) Fiir beliebige produktmessbare Funktionen f : S x T" — R, folgt die Be-

hauptung nun durch mafitheoretische Induktion.

O

Remark (Convergence theorems for conditional expectations). The Monotone Con-
vergence Theorem (Property (4)) implies versions of Fatou’s Lemma and of the Domi-
nated Convergence Theorem for conditional expectations. The proofs are similar to the

unconditioned case.

The last property in Theorem[A.4lis often very useful. For independent random variables
X and Y it implies

E[f(X,Y)|Y]w) = E[f(X,Y(w))]  fir P-fastalle w, (A.2.3)

We stress that independence of X and Y ist essential for (A.2.3) to hold true. The
application of (A.2.3) without independence is a common mistake in computations with

conditional expectations.

A.3 Conditional expectation as best />-approximation

In this section we show that the conditional expectation of a square integrable random
variable X given a o-algebra F can be characterized alternatively as the best approxi-

mation of X in the subspace of F-measurable, square integrable random variables, or,
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equivalently, as the orthogonal projection of X onto this subspace. Besides obvious
applications to non-linear predictions, this point of view is also the basis for a simple

existence proof of conditional expectations

Jensen’s inequality

Jensen’s inequality is valid for conditional expectations as well. Let (2, .4, P) be a
probability space, X € L!(Q, A, P) an integrable random variable, and 7 C A a o-
algebra.

Theorem A.5 (Jensen). If u : R — R is a convex function with u(X) € L' or u > 0,
then
EFu(X)|F] > wuw(E[X]|F]) P-almost surely.

Proof. Jede konvexe Funktion w lédsst sich als Supremum von abzéhlbar vielen affinen

Funktionen darstellen, d.h. es gibt a,,, b, € R mit

u(z) = sup (a,z+0by,) fir alle z € R.
neN

Zum Beweis betrachtet man die Stiitzgeraden an allen Stellen einer abzdhlbaren dichten
Teilmenge von R, siehe z.B. [Williams: Probability with martingales, 6.6]. Wegen der

Monotonie und Linearitét der bedingten Erwartung folgt
EuwX)|F] > FEla,X+b,|F] = a, E[X|F|]+b,
P-fast sicher fiir alle n € N, also auch

Eu(X)|F] > sup(a,-E[X|F]+0b,) P-fast sicher.

neN
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Corollary A.6 (LP-contractivity). The map X — FE[X | F| is a contraction on
LP(Q, A, P) foreveryp > 1, i.e.,

E|EX|FIF] < E|X|] forany X € L1(Q, A, P).

Proof. Nach der Jensenschen Ungleichung gilt:
|[EX | F]F < E[X|P|F] P-fast sicher.
Die Behauptung folgt durch Bilden des Erwartungswertes. L

The proof of the corollary shows in particular that for a random variable X € LP, the
conditional expectation E[X | F] is contained in £ as well. We now restrict ourselves

to the case p = 2.

Conditional expectation as best L?-prediction value

The space L*(Q2, A, P) = L*(Q2, A, P)/ ~ of equivalence classes of square integrable
random variables is a Hilbert space with inner product (X,Y);2 = E[XY]. If F C Ais
a sub-o-algebra then L?(2, F, P) is a closed subspace of L?(), A, P), because limits
of F-measurable random variables are F-measurable as well. For X € £%(Q, A, P),
each version of the conditional expectation E[X | F] is contained in the subspace
L2(Q, F, P) by Jensen’s inequality. Furthermore, the conditional expectation respects
equivalence classes, see Theorem [A.3l Therefore, X — FE[X | F] induces a lin-
ear map from the Hilbert space L?(2, A, P) of equivalence classes onto the subspace
L*(Q, F, P).

Theorem A.7 (Characterization of the conditional expectation as best L? approxi-
mation and as orthogonal projection). ForY € L%(Q, F, P) the following statements

are all equivalent:
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(1). Y is a version of the conditional expectation E[X | F|.

(2). Y is a “best approximation” of X in the subspace L*(Q), F, P), i.e.,
E[(X-Y)?] < E[(X-2)?  foranyZ c L*(Q,F,P).

(3). Y is a version of the orthogonal projection of X onto the subspace
L*(Q,F,P)C L*(Q,A,P), e,

E(X-Y)-Z] = 0  foranyZ € L*(Q, F, P).

/ LQ(QaAv P)

L*(Q, F, P)
Figure A.1: X — E[X | F| as orthogonal projection onto the subspace L*(Q2, F, P).

Proof. (1) <= (3): FurY € L*(Q, F, P) gilt:

Y ist eine Version von E[X | F]

ElY -1,] = E[X -1, firalleAe F

E[Y -Z) = E[X-Z] firalle Z € £L*(Q, F, P)
E[(X-Y)-Z] =0 firalle Z € £*(Q, F, P)

11l
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Hierbei zeigt man die zweite Aquivalenz mit den iiblichen Fortsetzungsverfahren

(mafBtheoretische Induktion).

(3) = (2): Sei Y eine Version der orthogonalen Projektion von X auf L?*(Q2, F, P).
Dann gilt fiir alle Z € £*(Q, F, P):

E[(X -2)") = E((X=Y)+(Y —2))
= BI(X ~ Y|+ E[(Y - 2)] + 2B[(X ~Y) (Y — 2)]
€L2(Q,F,P)
> E[(X -Y)?

Hierbei haben wir im letzten Schritt verwendet, dass Y —Z im Unterraum £3(Q), F, P)

enthalten, also orthogonal zu X — Y ist.

(2) = (3): Ist umgekehrt Y eine beste Approximation von X in £3(Q2, F, P) und Z €
L£2(Q, F, P), dann gilt

E[(X -Y)] < E[(X-Y +tZ)?
= E[(X -Y)’|+2tE[(X - Y)Z] + t*E[Z?]

fiiralle t € R, also E[(X —Y) - Z] = 0.
O

The equivalence of (2) and (3) is a well-known functional analytic statement: the best
approximation of a vector in a closed subspace of a Hilbert space is the orthogonal
projection of the vector onto this subspace. The geometric intuition behind this fact is
indicated in Figure [A1l

Theorem [A.7] is a justification for the interpretation of the conditional expectation as
a predicion value. For example, by the factorization lemma, F[X | Y] is the best L?-

prediction for X among all functions of type g(Y'), g : R — R measurable.

Existence of conditional expectations

By the characterization of the conditional expectation as the best L2-approximation,

the existence of conditional expectations of square integrable random variables is an
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immediate consequence of the existence of the best approximation of a vector in a closed
subspace of a Hilbert space. By monotone approximation, the existence of conditional

expectations of general non-negative random variables then follows easily.

Theorem A.8 (Existence of conditional expectations). For every random variable
X >0o0rX € LY, A, P), and every o-algebra F C A, there exists a version of the
conditional expectation E[X | F).

Proof.  (1). Wir betrachten zunichst den Fall X € £%(Q), A, P). Wie eben bemerkt, ist
der Raum L*(Q), F, P) ein abgeschlossener Unterraum des Hilbertraums L?(), A, P).
Seid = inf{||Z — X||z2 | Z € L*(Q, F, P)} der Abstand von X zu diesem Un-
terraum. Um zu zeigen, dass eine beste Approximation von X in L?(Q, F, P) ex-
istiert, wihlen wir eine Folge (X,,) aus diesem Unterraum mit || .X,, — X ||z — d.

Mithilfe der Parallelogramm-Identitét folgt fiir n, m € N:

X~ Xl = 0%~ )~ (X~ X
= 2|1 X, — X3 + 2 | X0 — X172 — (X, — X) + (X, — X) |32
X, + X ?
— 2 X = Xl 2 X X [T K x]
e o L2 e
<d?

und damit
limsup || X, — Xpl7: < 0.

n,Mm—00

Also ist die Minimalfolge (X,,) eine CauchyLfolge in dem vollstindigen Raum
L*(Q, F, P), d.h. es existiertein Y € L3(Q, F, P) mit

I Xn =Yz — 0.
Fir Y gilt
Y = X|lzz = || lim X, = Xz < liminf||X,—- Xz < d,
n—o0 n—oo

d.h. Y ist die gesuchte Bestapproximation, und damit eine Version der bedingten
Erwartung E[X | F].
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(2). Fiir eine beliebige nichtnegative Zufallsvariable X auf (2, A, P) existiert eine
monoton wachsende Folge (X,,) nichtnegativer quadratintegrierbarer Zufallsvari-
ablen mit X = sup X,,. Man verifiziert leicht, dass sup E[X,, | F| eine Version
von E[X | F]ist. !

(3). Entsprechend verifiziert man, dass fiir allgemeine X € £(Q, A, P) durch E[X|F] =
E[X™T|F]— E[X~ | F] eine Version der bedingten Erwartung gegeben ist.
U
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