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a) Euler discretization of Ito SDE without correction term

In [2]: # Euler-Maryuama Approximation for solution of SDE
# dZ_t = A Z_t dB_t
# in R^2 where B_t is a one-dimensional BM and A is an antisymmetric matrix
# Simulation of flow starting from several initial conditions

import numpy as np
# makes numpy routines and data types available as np.[name ouf routine or data type]

import matplotlib.pyplot as plt
# makes plotting command available as plt.[name of command]

k = 2
# number of copies
x0 = np.array([[1.,.7],

[0.,0.]])
# initial value at time t=0
A = np.array([[0.,-1.],[1.,0.]])
# drift matrix for Brownian motion
sigma = 1.
# volatility

tmax = 40.
# simulation from time 0 to tmax
stepslist = [10000,100000]
# number of steps that will be simulated

for steps in stepslist:
h = tmax/steps
# stepsize for each step of the corresponding Brownian motion
std = np.sqrt(h)
# standard deviation for the distribution of each step

noise = np.random.randn(steps)*std
# create a steps dimensional vector of normal random numbers with variance h

1



sde = np.ones((2,steps,k))
sde[:,0,:] = x0

for n in range(steps-1):
for i in range(k):

sde[:,n+1,i] = sde[:,n,i]+np.matmul(A,sde[:,n,i])*noise[n]

plt.figure(figsize=(7,7), dpi=500)
plt.plot(sde[0],sde[1],linewidth=.3)
plt.show()
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b) Discretization of Stratonovich SDE

In [4]: # Discretization for Stratonovich equation
# dZ_t = A Z_t dB_t
# in R^2 where B_t is a one-dimensional BM and A is an antisymmetric matrix
# Simulation of flow starting from several initial conditions
#
# The Euler type discretization of the Stratonovich SDE can be written as
# Z' = (I-(A/2)dB)^{-1}Z + (I-(A/2)dB)^{-1}(A/2)Z dB

import numpy as np
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# makes numpy routines and data types available as np.[name ouf routine or data type]

import matplotlib.pyplot as plt
# makes plotting command available as plt.[name of command]

from scipy import linalg

k = 2
# number of copies
x0 = np.array([[1.,.7],

[0.,0.]])
# initial value at time t=0
A = np.array([[0.,-1.],[1.,0.]])
# drift matrix for Brownian motion
I = np.array([[1.,0.],[0.,1.]])
# identity matrix
sigma = 1.
# volatility

tmax = 40.
# simulation from time 0 to tmax
stepslist = [100,1000,10000,100000]
# number of steps that will be simulated

for steps in stepslist:
h = tmax/steps
# stepsize for each step of the corresponding Brownian motion
std = np.sqrt(h)
# standard deviation for the distribution of each step

noise = np.random.randn(steps)*std
# create a steps dimensional vector of normal random numbers with variance h

sde = np.ones((2,steps,k))
sde[:,0,:] = x0

for n in range(steps-1):
for i in range(k):

B = linalg.inv(I-A*noise[n]/2.)
C = np.matmul(B,A)/2.
sde[:,n+1,i] = np.matmul(B,sde[:,n,i])+np.matmul(C,sde[:,n,i])*noise[n]

plt.figure(figsize=(7,7), dpi=500)
plt.plot(sde[0],sde[1],linewidth=.3)
plt.show()
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