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Part I.

Stochastic Processes
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1. Brownian Motion

This introduction to stochastic analysis starts with an introduction to Brownian motion. Brownian Motion is
a diffusion process, i.e. a continuous-time Markov process (Bt )t≥0 with continuous sample paths t 7→ Bt (ω).
In fact, it is the only nontrivial continuous-time process that is a Lévy process as well as a martingale and a
Gaussian process. A rigorous construction of this process has been carried out first by N. Wiener in 1923.
Already about 20 years earlier, related models had been introduced independently for financial markets by
L. Bachelier [1], and for the velocity of molecular motion by A. Einstein [4].
It has been a groundbreaking approach of K. Itô to construct general diffusion processes from Brownian
motion, cf. [. . . ]. In classical analysis, the solution of an ordinary differential equation x ′(t) = f (t, x(t)) is a
function, that can be approximated locally for t close to t0 by the linear function x(t0) + f (t0, x(t0)) · (t − t0).
Similarly, Itô showed, that a diffusion process behaves locally like a linear function of Brownian motion –
the connection being described rigorously by a stochastic differential equation (SDE).

The fundamental rôle played by Brownian motion in stochastic analysis is due to the central limit Theorem.
Similarly as the normal distribution arises as a universal scaling limit of standardized sums of independent,
identically distributed, square integrable random variables, Brownian motion shows up as a universal scaling
limit of Random Walks with square integrable increments.

1.1. From Random Walks to Brownian Motion

To motivate the definition of Brownian motion below, we first briefly discuss discrete-time stochastic
processes and possible continuous-time scaling limits on an informal level.

A standard approach to model stochastic dynamics in discrete time is to start from a sequence of random
variables η1, η2, . . . defined on a common probability space (Ω,A,P). The random variables ηn describe
the stochastic influences (noise) on the system. Often they are assumed to be independent and identically
distributed (i.i.d.). In this case the collection (ηn) is also called a white noise, whereas a colored noise is
given by dependent random variables. A stochastic process Xn,n = 0,1,2, . . . , taking values in Rd is then
defined recursively on (Ω,A,P) by

Xn+1 = Xn + Φn+1(Xn, ηn+1), n = 0,1,2, . . . . (1.1)

Here the Φn are measurable maps describing the random law of motion. If X0 and η1, η2, . . . are independent
random variables, then the process (Xn) is a Markov chain with respect to P.

Now let us assume that the random variables ηn are independent and identically distributed taking values
in R, or, more generally, Rd. The easiest type of a nontrivial stochastic dynamics as described above is the
Random Walk Sn =

n∑
i=1

ηi which satisfies

Sn+1 = Sn + ηn+1 for n = 0,1,2, . . . .

Since the noise random variables ηn are the increments of the RandomWalk (Sn), the law of motion (1.1) in
the general case can be rewritten as

Xn+1 − Xn = Φn+1(Xn,Sn+1 − Sn), n = 0,1,2, . . . . (1.2)

Eberle Introduction to Stochastic Analysis 3



1. Brownian Motion

This equation is a difference equation for (Xn) driven by the stochastic process (Sn).

Our aim is to carry out a similar construction as above for stochastic dynamics in continuous time. The
stochastic difference equation (1.2) will then eventually be replaced by a stochastic differential equation
(SDE). However, before even being able to think about how to write down and make sense of such an
equation, we have to identify a continuous-time stochastic process that takes over the rôle of the Random
Walk. For this purpose, we first determine possible scaling limits of Random Walks when the time steps
tend to 0. It will turn out that if the increments are square integrable and the size of the increments goes to
0 as the length of the time steps tends to 0, then by the Central Limit Theorem there is essentially only one
possible limit process in continuous time: Brownian motion.

Central Limit Theorem

Suppose that Yn,i : Ω→ Rd,1 ≤ i ≤ n < ∞, are identically distributed, square-integrable random variables
on a probability space (Ω,A,P) such that Yn,1, . . . ,Yn,n are independent for each n ∈ N. Then the rescaled
sums

1
√

n

n∑
i=1
(Yn,i − E[Yn,i])

converge in distribution to a multivariate normal distribution N(0,C) with covariance matrix

Ckl = Cov[Y (k)n,i ,Y
(l)
n,i].

To see, how the CLT determines the possible scaling limits of Random Walks, let us consider a one-
dimensional Random Walk

Sn =
n∑
i=1

ηi, n = 0,1,2, . . . ,

on a probability space (Ω,A,P) with independent increments ηi ∈ L2(Ω,A,P) normalized such that

E[ηi] = 0 and Var[ηi] = 1. (1.3)

Plotting many steps of the Random Walk seems to indicate that there is a limit process with continuous
sample paths after appropriate rescaling:
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1.1. From Random Walks to Brownian Motion

To see what appropriate means, we fix a positive integer m, and try to define a rescaled Random Walk
S(m)t (t = 0,1/m,2/m, . . .) with time steps of size 1/m by

S(m)
k/m

= cm · Sk (k = 0,1,2, . . .)

for some constants cm > 0. If t is a multiple of 1/m, then

Var[S(m)t ] = c2
m · Var[Smt ] = c2

m · m · t .

Hence in order to achieve convergence of S(m)t as m→∞, we should choose cm proportional to m−1/2. This
leads us to define a continuous time process (S(m)t )t≥0 by

S(m)t (ω) :=
1
√

m
Smt (ω) whenever t = k/m for some integer k,

and by linear interpolation for t ∈
(
k−1
m , km

]
.

1

1 2

√
m

m

S
(m)
t

t

Figure 1.1.: Rescaling of a Random Walk.

Clearly,
E[S(m)t ] = 0 for all t ≥ 0,

and
Var[S(m)t ] =

1
m

Var[Smt ] = t

whenever t is a multiple of 1/m. In particular, the expectation values and variances for a fixed time t do not
depend on m. Moreover, if we fix a partition 0 ≤ t0 < t1 < . . . < tn such that each ti is a multiple of 1/m,
then the increments

S(m)ti+1
− S(m)ti

=
1
√

m

(
Smti+1 − Smti

)
, i = 0,1,2, . . . ,n − 1, (1.4)

of the rescaled process (S(m)t )t≥0 are independent centered random variables with variances ti+1 − ti. If ti
is not a multiple of 1/m, then a corresponding statement holds approximately with an error that should be
negligible in the limit m→∞. Hence, if the rescaled Random Walks (S(m)t )t≥0 converge in distribution to a
limit process (Bt )t≥0, then (Bt )t≥0 should have independent increments Bti+1 −Bti over disjoint time intervals
with mean 0 and variances ti+1 − ti.

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 5



1. Brownian Motion

It remains to determine the precise distributions of the increments. Here the Central Limit Theorem applies.
In fact, we can observe that by (1.4) each increment

S(m)ti+1
− S(m)ti

=
1
√

m

mti+1∑
k=mti+1

ηk

of the rescaled process is a rescaled sum of m · (ti+1 − ti) i.i.d. random variables with mean 0 and variance 1.
Therefore, the CLT implies that the distributions of the increments converge weakly to a normal distribution:

S(m)ti+1
− S(m)ti

D
−→ N(0, ti+1 − ti).

Hence if a limit process (Bt ) exists, then it should have independent, normally distributed increments.

Our considerations motivate the following definition:

Definition 1.1 (Brownian Motion).

(i) Let a ∈ R. A continuous-time stochastic process Bt : Ω→ R, t ≥ 0, defined on a probability space
(Ω,A,P), is called a Brownian motion (starting in a) if and only if

a) B0(ω) = a for each ω ∈ Ω.

b) For any partition 0 ≤ t0 < t1 < . . . < tn, the increments Bti+1 − Bti are independent random
variables with distribution

Bti+1 − Bti ∼ N(0, ti+1 − ti).

c) P-almost every sample path t 7→ Bt (ω) is continuous.

(ii) AnRd-valued stochastic process Bt (ω) = (B
(1)
t (ω), . . . ,B

(d)
t (ω)) is called a multi-dimensional Brow-

nian motion if and only if the component processes
(B(1)t ), . . . , (B

(d)
t ) are independent one-dimensional Brownian motions.

Thus the increments of a d-dimensional Brownian motion are independent over disjoint time intervals and
have a multivariate normal distribution:

Bt − Bs ∼ N(0, (t − s) · Id) for any 0 ≤ s ≤ t .

Remark. (i) Continuity: Continuity of the sample paths has to be assumed separately: If (Bt )t≥0 is a
one-dimensional Brownian motion, then the modified process (B̃t )t≥0 defined by B̃0 = B0 and

B̃t = Bt · I{Bt ∈R\Q} for t > 0

has almost surely discontinuous paths. On the other hand, it satisfies (a) and (b) since the distributions
of (B̃t1, . . . , B̃tn ) and (Bt1, . . . ,Btn ) coincide for all n ∈ N and t1, . . . , tn ≥ 0.

(ii) Spatial Homogeneity: If (Bt )t≥0 is a Brownian motion starting at 0, then the translated process
(a + Bt )t≥0 is a Brownian motion starting at a.

(iii) Existence: There are several constructions and existence proofs for Brownian motion. In Section
1.3 below we will discuss in detail the Wiener-Lévy construction of Brownian motion as a random
superposition of infinitely many deterministic paths. This explicit construction is also very useful
for numerical approximations. A more general (but less constructive) existence proof is based on
Kolmogorov’s extension Theorem, cf. e.g. [Klenke].

6 University of Bonn



1.1. From Random Walks to Brownian Motion

(iv) Functional Central Limit Theorem: The construction of Brownian motion as a scaling limit of
Random Walks sketched above can also be made rigorous. Donsker’s invariance principle is a
functional version of the central limit Theorem which states that the rescaled Random Walks (S(m)t )

converge in distribution to a Brownian motion. As in the classical CLT the limit is universal, i.e., it
does not depend on the distribution of the increments ηi provided (1.3) holds, cf. Section ??.

Brownian motion as a Lévy process.

The definition of Brownian motion shows in particular that Brownian motion is a Lévy process, i.e., it has
stationary independent increments (over disjoint time intervals). In fact, the analogues of Lévy processes in
discrete time are Random Walks, and it is rather obvious, that all scaling limits of Random Walks should
be Lévy processes. Brownian motion is the only Lévy process Lt in continuous time with paths such that
E[L1] = 0 and Var[L1] = 1. The normal distribution of the increments follows under these assumptions
by an extension of the CLT, cf. e.g. [Breiman: Probability]. A simple example of a Lévy process with
non-continuous paths is the Poisson process. Other examples are α-stable processes which arise as scaling
limits of RandomWalks when the increments are not square-integrable. Stochastic analysis based on general
Lévy processes has attracted a lot of interest recently.

Let us now consider consider a Brownian motion (Bt )t≥0 starting at a fixed point a ∈ Rd, defined on a
probability space (Ω,A,P). The information on the process up to time t is encoded in the σ-algebra

F B
t = σ(Bs | 0 ≤ s ≤ t)

generated by the process. The independence of the increments over disjoint intervals immediately implies:

Lemma 1.2. For any 0 ≤ s ≤ t, the increment Bt − Bs is independent of F B
s .

Proof. For any partition 0 = t0 ≤ t1 ≤ . . . ≤ tn = s of the interval [0, s], the increment Bt−Bs is independent
of the σ-algebra

σ(Bt1 − Bt0,Bt2 − Bt1, . . . ,Btn − Btn−1)

generated by the increments up to time s. Since

Btk = Bt0 +

k∑
i=1
(Bti − Bti−1)

and Bt0 is constant, this σ-algebra coincides with σ(Bt0,Bt1, . . . ,Btn ). Hence Bt − Bs is independent of all
finite subcollections of (Bu | 0 ≤ u ≤ s) and therefore independent of F B

s . �

Brownian motion as a Markov process.

As a process with stationary increments, Brownian motion is in particular a time-homogeneous Markov
process. In fact, we have:

Theorem 1.3 (Markov property). A Brownian motion (Bt )t≥0 in Rd is a time-homogeneous Markov
process with transition densities

pt (x, y) = (2πt)−d/2 · exp
(
−
|x − y |2

2t

)
, t > 0, x, y ∈ Rd,

i.e., for any Borel set A ⊆ Rd and 0 ≤ s < t,

P[Bt ∈ a | F B
s ] =

ˆ

A

pt−s(Bs, y) dy P-almost surely.

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 7



1. Brownian Motion

Proof. For 0 ≤ s < t we have Bt = Bs + (Bt − Bs) where Bs is F B
s -measurable, and Bt − Bs is independent

of F B
s by Lemma 1.2. Hence

P[Bt ∈ A | F B
s ](ω) = P[Bs(ω) + Bt − Bs ∈ A] = N(Bs(ω), (t − s) · Id)[A]

=

ˆ

A

(2π(t − s))−d/2 · exp
(
−
|y − Bs(ω)|

2

2(t − s)

)
dy P-almost surely. �

Remark (Heat equation as backward equation and forward equation). The transition function of Brow-
nian motion is the heat kernel in Rd, i.e., it is the fundamental solution of the heat equation

∂u
∂t

=
1
2
∆u.

More precisely, pt (x, y) solves the initial value problem

∂

∂t
pt (x, y) =

1
2
∆xpt (x, y) for any t > 0, x, y ∈ Rd,

(1.5)

lim
t↘0

ˆ
pt (x, y) f (y) dy = f (x) for any f ∈ Cb(R

d), x ∈ Rd,

where ∆x =
d∑
i=1

∂2

∂x2
i

denotes the action of the Laplace operator on the x-variable. The equation (1.5) can

be viewed as a version of Kolmogorov’s backward equation for Brownian motion as a time-homogeneous
Markov process, which states that for each t > 0, y ∈ Rd and f ∈ Cb(R

d), the function

v(s, x) =

ˆ
pt−s(x, y) f (y) dy

solves the terminal value problem

∂v

∂s
(s, x) = −

1
2
∆xv(s, x) for s ∈ [0, t), lim

s↗t
v(s, x) = f (x). (1.6)

Note that by theMarkov property, v(s, x) = (pt−s f )(x) is a version of the conditional expectationE[ f (Bt )|Bs =

x]. Therefore, the backward equation describes the dependence of the expectation value on starting point
and time.

By symmetry, pt (x, y) also solves the initial value problem

∂

∂t
pt (x, y) =

1
2
∆ypt (x, y) for any t > 0, and x, y ∈ Rd,

(1.7)

lim
t↘0

ˆ
g(x)pt (x, y) dx = g(y) for any g ∈ Cb(R

d), y ∈ Rd.

The equation (1.7) is a version of Kolmogorov’s forward equation, stating that for g ∈ Cb(R
d), the function

u(t, y) =
´
g(x)pt (x, y) dx solves

∂u
∂t
(t, y) =

1
2
∆yu(t, y) for t > 0, lim

t↘0
u(t, y) = g(y). (1.8)

The forward equation describes the forward time evolution of the transition densities pt (x, y) for a given
starting point x.

The Markov property enables us to compute the marginal distributions of Brownian motion:

8 University of Bonn



1.1. From Random Walks to Brownian Motion

Corollary 1.4 (Finite dimensional marginals). Suppose that (Bt )t≥0 is a Brownian motion starting at
x0 ∈ R

d defined on a probability space (Ω,A,P). Then for any n ∈ N and 0 = t0 < t1 < t2 < . . . < tn, the
joint distribution of Bt1,Bt2, . . . ,Btn is absolutely continuous with density

fBt1 ,...,Btn
(x1, . . . , xn) = pt1(x0, x1)pt2−t1(x1, x2)pt3−t2(x2, x3) · · · ptn−tn−1(xn−1, xn)

=

n∏
i=1
(2π(ti − ti−1))

−d/2 · exp

(
−

1
2

n∑
i=1

|xi − xi−1 |
2

ti − ti−1

)
. (1.9)

Proof. By the Markov property and induction on n, we obtain

P[Bt1 ∈ A1, . . . ,Btn ∈ An]

= E[P[Btn ∈ An | F
B
tn−1
] ; Bt1 ∈ A1, . . . ,Btn−1 ∈ An−1]

= E[ptn−tn−1(Btn−1, An) ; Bt1 ∈ A1, . . . ,Btn−1 ∈ An−1]

=

ˆ

A1

· · ·

ˆ

An−1

pt1(x0, x1)pt2−t1(x1, x2) · · ·

·ptn−1−tn−2(xn−2, xn−1)ptn−tn−1(xn−1, An) dxn−1 · · · dx1

=

ˆ

A1

· · ·

ˆ

An

(
n∏
i=1

pti−ti−1(xn−1, xn)

)
dxn · · · dx1

for all n ≥ 0 and A1, . . . , An ∈ B(R
d). �

Remark (Brownian motion as a Gaussian process). The corollary shows in particular that Brownian mo-
tion is a Gaussian process, i.e., all the marginal distributions in (1.9) are multivariate normal distributions.
We will come back to this important aspect in the next section.

Wiener Measure

The distribution of Brownian motion could be considered as a probability measure on the product space
(Rd)[0,∞) consisting of all maps x : [0,∞) → Rd. A disadvantage of this approach is that the product space
is far too large for our purposes: It contains extremely irregular paths x(t), although at least almost every
path of Brownian motion is continuous by definition. Actually, since [0,∞) is uncountable, the subset of all
continuous paths is not even measurable w.r.t. the product σ-algebra on (Rd)[0,∞).

Instead of the product space, we will directly consider the distribution of Brownian motion on the continuous
path space C([0,∞),Rd). For this purpose, we fix a Brownian motion (Bt )t≥0 starting at x0 ∈ R

d on
a probability space (Ω,A,P), and we assume that every sample path t 7→ Bt (ω) is continuous. This
assumption can always be fulfilled by modifying a given Brownian motion on a set of measure zero. The full
process (Bt )t≥0 can then be interpreted as a single path-space valued random variable (or a “random path”).

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 9



1. Brownian Motion

ω Ω

x0

Rd

B(ω

Figure 1: B : Ω → C([0,∞),Rd), B(ω) = (Bt(ω))t≥0.

We endow the space of continuous paths x : [0,∞) → Rd with the σ-algebra

B = σ(Xt | t ≥ 0)

generated by the coordinate maps

Xt : C([0,∞),Rd) → Rd, Xt (x) = xt, t ≥ 0.

Note that we also have
B = σ(Xt | t ∈ D)

for any dense subset D of [0,∞), because Xt = lim
s→t

Xs for each t ∈ [0,∞) by continuity. Furthermore, it can

be shown that B is the Borel σ-algebra on C([0,∞),Rd) endowed with the topology of uniform convergence
on finite intervals.

Theorem 1.5 (Distribution of Brownian motion on path space). The map B : Ω → C([0,∞),Rd) is
measurable w.r.t. the σ-algebras A/B. The distribution P ◦ B−1 of B is the unique probability measure
µx0 on (C([0,∞),Rd),B) with marginals

µx0

[
{x ∈ C([0,∞),Rd) : xt1 ∈ A1, . . . , xtn ∈ An}

]
(1.10)

=

n∏
i=1
(2π(ti − ti−1))

−d/2
ˆ

A1

· · ·

ˆ

An

exp

(
−

1
2

n∑
i=1

|xi − xi−1 |
2

ti − ti−1

)
dxn · · · dx1

for any n ∈ N, 0 < t1 < . . . < tn, and A1, . . . , An ∈ B(R
d).

Definition 1.6. The probability measure µx0 on the path space C([0,∞),Rd) determined by (1.10) is called
Wiener measure (with start in x0).

Remark (Uniqueness in distribution). The Theorem asserts that the path space distribution of a Brownian
motion starting at a given point x0 is the corresponding Wiener measure. In particular, it is uniquely
determined by the marginal distributions in (1.9).

10 University of Bonn



1.2. Brownian Motion as a Gaussian Process

Proof (Proof of Theorem 1.5). For n ∈ N,0 < t1 < . . . < tn, and A1, . . . , An ∈ B(R
d), we have

B−1({Xt1 ∈ A1, . . . ,Xtn ∈ An}) = {ω : Xt1(B(ω)) ∈ A1, . . . ,Xtn (B(ω)) ∈ An}

= {Bt1 ∈ A1, . . . ,Btn ∈ An} ∈ A.

Since the cylinder sets of type {Xt1 ∈ A1, . . . ,Xtn ∈ An} generate the σ-algebra B, the map B is A/B-
measurable. Moreover, by corollary 1.4, the probabilities

P[B ∈ {Xt1 ∈ A1, . . . ,Xtn ∈ An}] = P[Bt1 ∈ A1, . . . ,Btn ∈ An],

are given by the right hand side of (1.10). Finally, the measure µx0 is uniquely determined by (1.10), since
the system of cylinder sets as above is stable under intersections and generates the σ-algebra B. �

Definition 1.7 (Canonical model for Brownian motion.). By (1.10), the coordinate process

Xt (x) = xt, t ≥ 0,

on C([0,∞),Rd) is a Brownian motion starting at x0 w.r.t. Wiener measure µx0 . We refer to the stochastic
process (C([0,∞),Rd),B, µx0, (Xt )t≥0) as the canonical model for Brownian motion starting at x0.

1.2. Brownian Motion as a Gaussian Process

We have already verified that Brownian motion is a Gaussian process, i.e., the finite dimensional marginals
are multivariate normal distributions. We will now exploit this fact more thoroughly.

Multivariate normals

Let us first recall some basics on normal random vectors:

Definition 1.8. Suppose that m ∈ Rn is a vector and C ∈ Rn×n is a symmetric non-negative definite
matrix. A random variable Y : Ω→ Rn defined on a probability space (Ω,A,P) has a multivariate normal
distribution N(m,C) with mean m and covariance matrix C if and only if its characteristic function is given
by

E[eip ·Y ] = eip ·m−
1
2 p ·Cp for any p ∈ Rn. (1.11)

IfC is non-degenerate, then a multivariate normal random variableY is absolutely continuous with density

fY (x) = (2π det C)−1/2 exp
(
−

1
2
(x − m) · C−1(x − m)

)
.

A degenerate normal distribution with vanishing covariance matrix is a Dirac measure:

N(m,0) = δm.

Differentiating (1.11) w.r.t. p shows that for a random variable Y ∼ N(m,C), the mean vector is m and Ci, j

is the covariance of the components Yi and Yj . Moreover, the following important facts hold:

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 11



1. Brownian Motion

Theorem 1.9 (Properties of normal random vectors).

(i) A random variable Y : Ω → Rn has a multivariate normal distribution if and only if any linear
combination

p · Y =

n∑
i=1

piYi, p ∈ Rn,

of the components Yi has a one dimensional normal distribution.

(ii) Any affine function of a normally distributed random vector Y is again normally distributed:

Y ∼ N(m,C) =⇒ AY + b ∼ N(Am + b, ACA>)

for any d ∈ N, A ∈ Rd×n and b ∈ Rd.

(iii) If Y = (Y1, . . . ,Yn) has a multivariate normal distribution, and the components Y1, . . . ,Yn are uncor-
related random variables, then Y1, . . . ,Yn are independent.

Proof. (i) follows easily from the definition.

(ii) For Y ∼ N(m,C), A ∈ Rd×n and b ∈ Rd we have

E[eip ·(AY+b)] = eip ·bE[ei(A
>p)·Y ]

= eip ·bei(A
>p)·m− 1

2 (A
>p)·CA>p

= eip ·(Am+b)−
1
2 p ·ACA> for any p ∈ Rd,

i.e., AY + b ∼ N(Am + b, ACA>).

(iii) If Y1, . . . ,Yn are uncorrelated, then the covariance matrix Ci, j = Cov[Yi,Yj] is a diagonal matrix.
Hence the characteristic function

E[eip ·Y ] = eip ·m−
1
2 p ·Cp =

n∏
k=1

eimk pk−
1
2Ck ,k p

2
k

is a product of characteristic functions of one-dimensional normal distributions. Since a probability
measure on Rn is uniquely determined by its characteristic function, it follows that the adjoint
distribution of Y1, . . . ,Yn is a product measure, i.e. Y1, . . . ,Yn are independent. �

If Y has a multivariate normal distribution N(m,C) then for any p,q ∈ Rn, the random variables p · Y and
q · Y are normally distributed with means p · m and q · m, and covariance

Cov[p · Y,q · Y ] =

n∑
i, j=1

piCi, jqj = p · Cq.

In particular, let {e1, . . . , en} ⊆ Rn be an orthonormal basis consisting of eigenvectors of the covariance
matrix C. Then the components ei · Y of Y in this basis are uncorrelated and therefore independent, jointly
normally distributed random variables with variances given by the corresponding eigenvectors λi:

Cov[ei · Y, ej · Y ] = λiδi, j, 1 ≤ i, j ≤ n. (1.12)

Correspondingly, the contour lines of the density of a non-degenerate multivariate normal distribution
N(m,C) are ellipsoids with center at m and principal axes of length

√
λi given by the eigenvalues ei of the

covariance matrix C.
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1.2. Brownian Motion as a Gaussian Process

Figure 1.2.: Level lines of the density of a normal random vector Y ∼ N
((

1
2

)
,

(
1 1
−1 1

))
.

Conversely, we can generate a random vector Y with distribution N(m,C) from i.i.d. standard normal
random variables Z1, . . . , Zn by setting

Y = m +
n∑
i=1

√
λiZiei . (1.13)

More generally, we have:

Corollary 1.10 (Generating normal random vectors). Suppose that C = UΛU> with a matrix U ∈
Rn×d, d ∈ N, and a diagonal matrix Λ = diag(λ1, . . . , λd) ∈ R

d×d with nonnegative entries λi. If
Z = (Z1, . . . , Zd) is a random vector with i.i.d. standard normal random components Z1, . . . , Zd then

Y = UΛ1/2Z + m

has distribution N(m,C).

Proof. Since Z ∼ N(0, Id), the second assertion of Theorem 1.9 implies

Y ∼ N(m,UΛU>). �

Choosing for U the matrix (e1, . . . , en) consisting of the orthonormal eigenvectors
e1, . . . , en of C, we obtain (1.13) as a special case of the corollary. For computational purposes it is often
more convenient to use the Cholesky decomposition

C = LL>

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 13



1. Brownian Motion

of the covariance matrix as a product of a lower triangular matrix L and the upper triangular transpose L>:
Algorithmus 1: Simulation of multivariate normal random variables
Input : m ∈ Rn,C ∈ Rn×n symmetric and non-negative definite
Output
:

Sample y ∼ N(m,C)

1 Compute Cholesky decomposition C = LL>. ;
2 Generate independent samples z1, . . . , zn ∼ N(0,1) (e.g. by the Box-Muller method);
3 y ← Lz + m;
4 return y;

Gaussian processes

Let I be an arbitrary index set, e.g. I = N, I = [0,∞) or I = Rn.

Definition 1.11. A collection (Yt )t∈I of random variables Yt : Ω → Rd defined on a probability space
(Ω,A,P) is called a Gaussian process if and only if the joint distribution of any finite subcollection
Yt1, . . . ,Ytn with n ∈ N and t1, . . . , tn ∈ I is a multivariate normal distribution.

The distribution of a Gaussian process (Yt )t∈I on the path space RI or C(I,R) endowed with the σ-algebra
generated by the maps x 7→ xt , t ∈ I, is uniquely determined by the multinormal distributions of finite
subcollections Yt1, . . . ,Ytn as above, and hence by the expectation values

m(t) = E[Yt ], t ∈ I,

and the covariances
c(s, t) = Cov[Ys,Yt ], s, t ∈ I .

A Gaussian process is called centered, if m(t) = 0 for any t ∈ I.

Example (AR(1) process). The autoregressive process (Yn)n=0,1,2,... defined recursively byY0 ∼ N(0, v0),

Yn = αYn−1 + εηn for n ∈ N,

with parameters v0 > 0, α, ε ∈ R, ηn i.i.d. ∼ N(0,1), is a centered Gaussian process. The covariance
function is given by

c(n,n + k) = v0 + ε
2n for any n, k ≥ 0 if α = 1,

and

c(n,n + k) = αk ·

(
α2nv0 + (1 − α2n) ·

ε2

1 − α2

)
for n, k ≥ 0 otherwise.

This is easily verified by induction. We now consider some special cases:

α = 0: In this case Yn = εηn. Hence (Yn) is a white noise, i.e., a sequence of independent normal
random variables, and

Cov[Yn,Ym] = ε2 · δn,m for any n,m ≥ 1.

α = 1: Here Yn = Y0 + ε
n∑
i=1

ηi , i.e., the process (Yn) is a Gaussian Random Walk, and

Cov[Yn,Ym] = v0 + ε
2 ·min(n,m) for any n,m ≥ 0.

We will see a corresponding expression for the covariances of Brownian motion.
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1.2. Brownian Motion as a Gaussian Process

α < 1: For α < 1, the covariances Cov[Yn,Yn+k] decay exponentially fast as k → ∞. If v0 =
ε2

1−α2 ,
then the covariance function is translation invariant:

c(n,n + k) =
ε2αk

1 − α2 for any n, k ≥ 0.

Therefore, in this case the process (Yn) is stationary, i.e., (Yn+k)n≥0 ∼ (Yn)n≥0 for all k ≥ 0.

Brownian motion is our first example of a nontrivial Gaussian process in continuous time. In fact, we have:

Theorem 1.12 (Gaussian characterization of Brownian motion). A real-valued stochastic process
(Bt )t∈[0,∞) with continuous sample paths t 7→ Bt (ω) and B0 = 0 is a Brownian motion if and only if
(Bt ) is a centered Gaussian process with covariances

Cov[Bs,Bt ] = min(s, t) for any s, t ≥ 0. (1.14)

Proof. For a Brownian motion (Bt ) and 0 = t0 < t1 < . . . < tn, the increments Bti − Bti−1 , 1 ≤ i ≤ n, are
independent random variables with distribution N(0, ti − ti−1). Hence,

(Bt1 − Bt0, . . . ,Btn − Btn−1) ∼

n⊗
i=1

N(0, ti − ti−1),

which is a multinormal distribution. Since Bt0 = B0 = 0, we see that

©­­«
Bt1
...

Btn

ª®®¬ =

©­­­­­­­­­«

1 0 0 . . . 0 0
1 1 0 . . . 0 0

. . .
. . .

1 1 1 . . . 1 0
1 1 1 . . . 1 1

ª®®®®®®®®®¬
©­­«

Bt1 − Bt0
...

Btn − Btn−1

ª®®¬
also has a multivariate normal distribution, i.e., (Bt ) is a Gaussian process. Moreover, since Bt = Bt − B0,
we have E[Bt ] = 0 and

Cov[Bs,Bt ] = Cov[Bs,Bs] + Cov[Bs,Bt − Bs] = Var[Bs] = s

for any 0 ≤ s ≤ t, i.e., (1.14) holds.

Conversely, if (Bt ) is a centered Gaussian process satisfying (1.14), then for any 0 = t0 < t1 < . . . < tn, the
vector (Bt1 − Bt0, . . . ,Btn − Btn−1) has a multivariate normal distribution with

E[Bti − Bti−1] = E[Bti ] − E[Bti−1] = 0, and

Cov[Bti − Bti−1,Btj − Btj−1] = min(ti, tj) −min(ti, tj−1)

−min(ti−1, tj) +min(ti−1, tj−1)

= (ti − ti−1) · δi, j for any i, j = 1, . . . ,n.

Hence by Theorem 1.9 (3), the increments Bti − Bti−1,1 ≤ i ≤ n, are independent with distribution N(0, ti −
ti−1), i.e., (Bt ) is a Brownian motion. �
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1. Brownian Motion

Symmetries of Brownian motion

A first important consequence of the Gaussian characterization of Brownian motion are several symmetry
properties of Wiener measure:

Theorem 1.13 (Invariance properties of Wiener measure). Let (Bt )t≥0 be a Brownian motion starting
at 0 defined on a probability space (Ω,A,P). Then the following processes are again Brownian motions:

(i) (−Bt )t≥0 (Reflection invariance)

(ii) (Bt+h − Bh)t≥0 for any h ≥ 0 (Stationarity)

(iii) (a−1/2Bat )t≥0 for any a > 0 (Scale invariance)

(iv) The time inversion (B̃t )t≥0 defined by

B̃0 = 0, B̃t = t · B1/t for t > 0.

Proof. The proofs of (1), (2) and (3) are left as an exercise to the reader. To show (4), we first note that for
each n ∈ N and 0 ≤ t1 < . . . < tn, the vector (B̃t1, . . . , B̃tn ) has a multivariate normal distribution since it is
a linear transformation of (B1/t1, . . . ,B1/tn ), (B0,B1/t2, . . . ,B1/tn ) respectively. Moreover,

E[B̃t ] = 0 for any t ≥ 0,
Cov[B̃s, B̃t ] = st · Cov[B1/s,B1/t ]

= st ·min(
1
s
,
1
t
) = min(t, s) for any s, t > 0, and

Cov[B̃0, B̃t ] = 0 for any t ≥ 0.

Hence (B̃t )t≥0 is a centered Gaussian process with the covariance function of Brownian motion. By Theorem
1.12, it only remains to show that P-almost every sample path t 7→ B̃t (ω) is continuous. This is obviously
true for t > 0. Furthermore, since the finite dimensional marginals of the processes (B̃t )t≥0 and (Bt )t≥0
are multivariate normal distributions with the same means and covariances, the distributions of (B̃t )t≥0 and
(Bt )t≥0 on the product space R(0,∞) endowed with the product σ-algebra generated by the cylinder sets agree.
To prove continuity at 0 we note that the setx : (0,∞) → R

������� lim
t↘0
t∈Q

xt = 0


is measurable w.r.t. the product σ-algebra on R(0,∞). Therefore,

P

limt↘0
t∈Q

B̃t = 0

 = P

limt↘0
t∈Q

Bt = 0

 = 1.

Since B̃t is almost surely continuous for t > 0, we can conclude that outside a set of measure zero,

sup
s∈(0,t)

|B̃s | = sup
s∈(0,t)∩Q

|B̃s | −→ 0 as t ↘ 0,

i.e., t 7→ B̃t is almost surely continuous at 0 as well. �
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1.2. Brownian Motion as a Gaussian Process

Remark (Long time asymptotics versus local regularity, LLN). The time inversion invariance of Wiener
measure enables us to translate results on the long time asymptotics of Brownian motion (t ↗∞) into local
regularity results for Brownian paths (t ↘ 0) and vice versa. For example, the continuity of the process (B̃t )

at 0 is equivalent to the law of large numbers:

P
[
lim
t→∞

1
t

Bt = 0
]
= P

[
lim
s↘0

sB1/s = 0
]
= 1.

At first glance, this looks like a simple proof of the LLN. However, the argument is based on the existence
of a continuous Brownian motion, and the existence proof requires similar arguments as a direct proof of the
law of large numbers.

Wiener measure as a Gaussian measure, path integral heuristics

Wiener measure (with start at 0) is the unique probability measure µ on the continuous path space
C([0,∞),Rd) such that the coordinate process

Xt : C([0,∞),Rd) → Rd, Xt (x) = xt,

is a Brownian motion starting at 0. By Theorem 1.12, Wiener measure is a centered Gaussian measure
on the infinite dimensional space C([0,∞),Rd), i.e., for any n ∈ N and t1, . . . , tn ∈ R+, (Xt1, . . . ,Xtn ) is
normally distributed with mean 0. We now "derive" a heuristic representation of Wiener measure that is not
mathematically rigorous but nevertheless useful:
Fix a constant T > 0. Then for 0 = t0 < t1 < . . . < tn ≤ T , the distribution of (Xt1, . . . ,Xtn ) w.r.t. Wiener
measure is

µt1,...,tn (dxt1, . . . , dxtn ) =
1

Z(t1, . . . , tn)
exp

(
−

1
2

n∑
i=1

|xti − xti−1 |
2

ti − ti−1

)
n∏
i=1

dxti , (1.15)

where Z(t1, . . . , tn) is an appropriate finite normalization constant, and x0 := 0. Now choose a sequence
(τk)k∈N of partitions 0 = t(k)0 < t(k)1 < . . . < t(k)

n(k)
= T of the interval [0,T] such that the mesh size

max
i
|t(k)
i+1 − t(k)i | tends to zero. Taking informally the limit in (1.15), we obtain the heuristic asymptotic

representation

µ(dx) =
1

Z∞
exp ©­«−1

2

T̂

0

����dx
dt

����2 dtª®¬ δ0(dx0)
∏

t∈(0,T ]

dxt (1.16)

for Wiener measure on continuous paths x : [0,T] → Rd with a "normalizing constant" Z∞. Trying to make
the informal expression (1.16) rigorous fails for several reasons:

• The normalizing constant Z∞ = lim
k→∞

Z(t(k)1 , . . . , t(k)
n(k)
) is infinite.

• The integral
T́

0

����dx
dt

����2 dt is also infinite for µ-almost every path x, since typical paths of Brownian

motion are nowhere differentiable, cf. below.

• The product measure
∏

t∈(0,T ]
dxt can be defined on cylinder sets but an extension to the σ-algebra

generated by the coordinate maps on C([0,∞),Rd) does not exist.

Hence there are several infinities involved in the informal expression (1.16). These infinities magically
balance each other such that the measure µ is well defined in contrast to all of the factors on the right hand
side.
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1. Brownian Motion

In physics, R. Feynman introduced correspondingly integrals w.r.t. "Lebesgue measure on path space", cf.
e.g. the famous Feynman Lecture notes [...], or Glimm and Jaffe [ ... ].

Although not mathematically rigorous, the heuristic expression (1.15) can be a very useful guide for intuition.
Note for example that (1.15) takes the form

µ(dx) ∝ exp(−‖x‖2H/2) λ(dx), (1.17)

where ‖x‖H = (x, x)1/2H is the norm induced by the inner product

(x, y)H =

T̂

0

dx
dt

dy
dt

dt (1.18)

of functions x, y : [0,T] → Rd vanishing at 0, and λ is a corresponding "infinite-dimensional Lebesgue
measure" (which does not exist!). The vector space

H = {x : [0,T] → Rd : x(0) = 0, x is absolutely continuous with
dx
dt
∈ L2}

is a Hilbert space w.r.t. the inner product (1.18). Therefore, (1.17) suggests to consider Wiener measure as a
standard normal distribution on H. It turns out that this idea can be made rigorous although not as easily as
one might think at first glance. The difficulty is that a standard normal distribution on an infinite-dimensional
Hilbert space does not exist on the space itself but only on a larger space. In particular, we will see in the
next sections that Wiener measure µ can indeed be realized on the continuous path space C([0,T],Rd), but
µ-almost every path is not contained in H!

Remark (Infinite-dimensional standard normal distributions). The fact that a standard normal distribu-
tion on an infinite dimensional separable Hilbert space H can not be realized on the space H itself can be
easily seen by contradiction: Suppose that µ is a standard normal distribution on H, and en,n ∈ N, are
infinitely many orthonormal vectors in H. Then by rotational symmetry, the balls

Bn =

{
x ∈ H : ‖x − en‖H <

1
2

}
, n ∈ N,

should all have the same measure. On the other hand, the balls are disjoint. Hence by σ-additivity,

∞∑
n=1

µ[Bn] = µ
[⋃

Bn

]
≤ µ[H] = 1,

and therefore µ[Bn] = 0 for all n ∈ N. A scaling argument now implies

µ[{x ∈ H : ‖x − h‖ ≤ ‖h‖/2}] = 0 for all h ∈ H,

and hence µ ≡ 0.

1.3. The Wiener-Lévy Construction

In this section we discuss how to construct Brownian motion as a random superposition of deterministic
paths. The idea already goes back to N. Wiener, who constructed Brownian motion as a random Fourier
series. The approach described here is slightly different and due to P. Lévy: The idea is to approximate the
paths of Brownian motion on a finite time interval by their piecewise linear interpolations w.r.t. the sequence
of dyadic partitions. This corresponds to a development of the Brownian paths w.r.t. Schauder functions
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1.3. The Wiener-Lévy Construction

("wavelets") which turns out to be very useful for many applications including numerical simulations.

Our aim is to construct a one-dimensional Brownian motion Bt starting at 0 for t ∈ [0,1]. By stationarity
and independence of the increments, a Brownian motion defined for all t ∈ [0,∞) can then easily be obtained
from infinitely many independent copies of Brownian motion on [0,1]. We are hence looking for a random
variable

B = (Bt )t∈[0,1] : Ω −→ C([0,1])

defined on a probability space (Ω,A,P) such that the distribution P ◦ B−1 is Wiener measure µ on the
continuous path space C([0,1]).

A first attempt

Recall that µ0 should be a kind of standard normal distribution w.r.t. the inner product

(x, y)H =

1ˆ

0

dx
dt

dy
dt

dt (1.19)

on functions x, y : [0,1] → R. Therefore, we could try to define

Bt (ω) :=
∞∑
i=1

Zi(ω)ei(t) for t ∈ [0,1] and ω ∈ Ω, (1.20)

where (Zi)i∈N is a sequence of independent standard normal random variables, and (ei)i∈N is an orthonormal
basis in the Hilbert space

H = {x : [0,1] → R | x(0) = 0, x is absolutely continuous with (x, x)H < ∞}. (1.21)

However, the resulting series approximation does not converge in H:

Theorem 1.14. Suppose (ei)i∈N is a sequence of orthonormal vectors in a Hilbert space H and (Zi)i∈N

is a sequence of i.i.d. random variables with P[Zi , 0] > 0. Then the series
∞∑
i=1

Zi(ω)ei diverges with

probability 1 w.r.t. the norm on H.

Proof. By orthonormality and by the law of large numbers,




 n∑
i=1

Zi(ω)ei






2

H

=

n∑
i=1

Zi(ω)
2 −→ ∞

P-almost surely as n→∞. �

The Theorem again reflects the fact that a standard normal distribution on an infinite-dimensional Hilbert
space can not be realized on the space itself.

To obtain a positive result, we will replace the norm

‖x‖H =
©­«

1ˆ

0

����dx
dt

����2 dtª®¬
1
2
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1. Brownian Motion

on H by the supremum norm

‖x‖sup = sup
t∈[0,1]

|xt |,

and correspondingly the Hilbert space H by the Banach space C([0,1]). Note that the supremum norm is
weaker than the H-norm. In fact, for x ∈ H and t ∈ [0,1], the Cauchy-Schwarz inequality implies

|xt |2 =

������
tˆ

0

x ′s ds

������
2

≤ t ·

tˆ

0

|x ′s |
2 ds ≤ ‖x‖2H,

and therefore

‖x‖sup ≤ ‖x‖H for any x ∈ H.

There are two choices for an orthonormal basis of the Hilbert space H that are of particular interest: The
first is the Fourier basis given by

e0(t) = t, en(t) =

√
2

πn
sin(πnt) for n ≥ 1.

With respect to this basis, the series in (1.20) is a Fourier series with random coefficients. Wiener’s original
construction of Brownian motion is based on a random Fourier series. A second convenient choice is the
basis of Schauder functions ("wavelets") that has been used by P. Lévy to construct Brownian motion. Below,
we will discuss Lévy’s construction in detail. In particular, we will prove that for the Schauder functions, the
series in (1.20) converges almost surely w.r.t. the supremum norm towards a continuous (but not absolutely
continuous) random path (Bt )t∈[0,1]. It is then not difficult to conclude that (Bt )t∈[0,1] is indeed a Brownian
motion.

The Wiener-Lévy representation of Brownian motion

Before carrying out Lévy’s construction of Brownian motion, we introduce the Schauder functions, and we
show how to expand a given Brownian motion w.r.t. this basis of function space. Suppose we would like to
approximate the paths t 7→ Bt (ω) of a Brownian motion by their piecewise linear approximations adapted to
the sequence of dyadic partitions of the interval [0,1].

1

1

Anobvious advantage of this approximation over a Fourier expansion is that the values of the approximating
functions at the dyadic points remain fixed once the approximating partition is fine enough. The piecewise
linear approximations of a continuous function on [0,1] correspond to a series expansion w.r.t. the base
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1.3. The Wiener-Lévy Construction

functions

e(t) = t , and
en,k(t) = 2−n/2e0,0(2nt − k), n = 0,1,2, . . . , k = 0,1,2, . . . ,2n − 1, , where

e0,0(t) = min(t,1 − t)+ =


t for t ∈ [0,1/2]
1 − t for t ∈ (1/2,1]
0 for t ∈ R \ [0,1]

.

1

1

e(t)

1

−(1+n/2)

k · 2−n (k + 1)2−n

en,k(t)

0.5

1

e0,0(t)

The functions en,k (n ≥ 0,0 ≤ k < 2n) are called Schauder functions. It is rather obvious that piecewise
linear approximation w.r.t. the dyadic partitions corresponds to the expansion of a function x ∈ C([0,1])
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with x(0) = 0 in the basis given by e(t) and the Schauder functions. The normalization constants in defining
the functions en,k have been chosen in such a way that the en,k are orthonormal w.r.t. the H-inner product
introduced above.

Definition 1.15. A sequence (ei)i∈N of vectors in an infinite-dimensional Hilbert space H is called an
orthonormal basis (or complete orthonormal system) of H if and only if

(i) Orthonormality: (ei, ej) = δi j for any i, j ∈ N, and

(ii) Completeness: Any h ∈ H can be expressed as

h =

∞∑
i=1
(h, ei)Hei .

Remark (Equivalent characterizations of orthonormal bases). Let ei, i ∈ N, be orthonormal vectors in a
Hilbert space H. Then the following conditions are equivalent:

(i) (ei)i∈N is an orthonormal basis of H.

(ii) The linear span

span{ei | i ∈ N} =

{
k∑
i=1

ciei

����� k ∈ N, c1, . . . , ck ∈ R

}
is a dense subset of H.

(iii) There is no element x ∈ H, x , 0, such that (x, ei)H = 0 for every i ∈ N.

(iv) For any element x ∈ H, Parseval’s relation

‖x‖2H =

∞∑
i=1
(x, ei)2H (1.22)

holds.

(v) For any x, y ∈ H,

(x, y)H =

∞∑
i=1
(x, ei)H (y, ei)H . (1.23)

For the proofs we refer to any book on functional analysis, cf. e.g. [Reed and Simon: Methods of modern
mathematical physics, Vol. I].

Lemma 1.16. The Schauder functions e and en,k (n ≥ 0,0 ≤ k < 2n) form an orthonormal basis in the
Hilbert space H defined by (1.21).

Proof. By definition of the inner product on H, the linear map d/dt which maps an absolutely continuous
function x ∈ H to its derivative x ′ ∈ L2(0,1) is an isometry from H onto L2(0,1), i.e.,

(x, y)H = (x ′, y′)L2(0,1) for any x, y ∈ H.

The derivatives of the Schauder functions are the Haar functions

e′(t) ≡ 1,
e′n,k(t) = 2n/2(I[k ·2−n ,(k+1/2)·2−n)(t) − I[(k+1/2)·2−n ,(k+1)·2−n)(t)) for a.e. t.
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1

1

e′(t)

1

2−n/2

−2−n/2

k · 2−n

(k + 1)2−n

e′n,k(t)

It is easy to see that these functions form an orthonormal basis in L2(0,1). In fact, orthonormality w.r.t.
the L2 inner product can be verified directly. Moreover, the linear span of the functions e′ and e′

n,k
for

n = 0,1, . . . ,m and k = 0,1, . . . ,2n − 1 consists of all step functions that are constant on each dyadic interval
[ j · 2−(m+1), ( j + 1) · 2−(m+1)). An arbitrary function in L2(0,1) can be approximated by dyadic step functions
w.r.t. the L2 norm. This follows for example directly from the L2 martingale convergence Theorem, cf.
... below. Hence the linear span of e′ and the Haar functions e′

n,k
is dense in L2(0,1), and therefore these

functions form an orthonormal basis of the Hilbert space L2(0,1). Since x 7→ x ′ is an isometry from H onto
L2(0,1), we can conclude that e and the Schauder functions en,k form an orthonormal basis of H. �

The expansion of a function x : [0,1] → R in the basis of Schauder functions can now be made explicit.
The coefficients of a function x ∈ H in the expansion are

(x, e)H =

1ˆ

0

x ′e′ dt =

1ˆ

0

x ′ dt = x(1) − x(0) = x(1)

(x, en,k)H =

1ˆ

0

x ′e′n,k dt = 2n/2
1ˆ

0

x ′(t)e′0,0(2
nt − k) dt

= 2n/2
[
(x((k +

1
2
) · 2−n) − x(k · 2−n)) − (x((k + 1) · 2−n) − x((k +

1
2
) · 2−n))

]
.
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Theorem 1.17. Let x ∈ C([0,1]). Then the expansion

x(t) = x(1)e(t) −
∞∑
n=0

2n−1∑
k=0

2n/2∆n,k x · en,k(t),

∆n,k x =
[
(x((k + 1) · 2−n) − x((k +

1
2
) · 2−n)) − (x((k +

1
2
) · 2−n) − x(k · 2−n))

]
holds w.r.t. uniform convergence on [0,1]. For x ∈ H the series also converges w.r.t. the stronger H-norm.

Proof. It can be easily verified that by definition of the Schauder functions, for each m ∈ N the partial sum

x(m)(t) := x(1)e(t) −
m∑
n=0

2n−1∑
k=0

2n/2∆n,k x · en,k(t) (1.24)

is the polygonal interpolation of x(t) w.r.t. the (m + 1)-th dyadic partition of the interval [0,1]. Since the
function x is uniformly continuous on [0,1], the polygonal interpolations converge uniformly to x. This
proves the first statement. Moreover, for x ∈ H, the series is the expansion of x in the orthonormal basis of
H given by the Schauder functions, and therefore it also converges w.r.t. the H-norm. �

Applying the expansion to the paths of a Brownian motions, we obtain:

Corollary 1.18 (Wiener-Lévy representation). For a Brownian motion (Bt )t∈[0,1] the series representa-
tion

Bt (ω) = Z(ω)e(t) +
∞∑
n=0

2n−1∑
k=0

Zn,k(ω)en,k(t), t ∈ [0,1], (1.25)

holds w.r.t. uniform convergence on [0,1] for P-almost every ω ∈ Ω, where

Z := B1, and Zn,k := −2n/2∆n,kB (n ≥ 0,0 ≤ k ≤ 2n − 1)

are independent random variables with standard normal distribution.

Proof. It only remains to verify that the coefficients Z and Zn,k are independent with standard normal
distribution. A vector given by finitelymany of these random variables has amultivariate normal distribution,
since it is a linear transformation of increments of the Brownian motion Bt . Hence it suffices to show that
the random variables are uncorrelated with variance 1. This is left as an exercise to the reader. �

Lévy’s construction of Brownian motion

The series representation (1.25) can be used to construct Brownianmotion starting from independent standard
normal random variables. The resulting construction does not only prove existence of Brownian motion but
it is also very useful for numerical implementations:

Theorem 1.19 (P. Lévy 1948). Let Z and Zn,k (n ≥ 0,0 ≤ k ≤ 2n − 1) be independent standard normally
distributed random variables on a probability space (Ω,A,P). Then the series in (1.25) converges uniformly
on [0,1] with probability 1. The limit process (Bt )t∈[0,1] is a Brownian motion.
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The convergence proof relies on a combination of the Borel-Cantelli Lemma and the Weierstrass criterion
for uniform convergence of series of functions. Moreover, we will need the following result to identify the
limit process as a Brownian motion:

Lemma 1.20 (Parseval relation for Schauder functions). For any s, t ∈ [0,1],

e(t)e(s) +
∞∑
n=0

2n−1∑
k=0

en,k(t)en,k(s) = min(t, s).

Proof. Note that for g ∈ H and s ∈ [0,1], we have

g(s) = g(s) − g(0) =

1ˆ

0

g′ · I(0,s) = (g, h(s))H,

where h(s)(t) :=
t́

0
I(0,s) = min(s, t). Hence the Parseval relation (1.22) applied to the functions h(s) and

h(t) yields

e(t)e(s) +
∑
n,k

en,k(t)en,k(s)

= (e, h(t))(e, h(s)) +
∑
n,k

(en,k, h(t))(en,k, h(s))

= (h(t), h(s)) =

1ˆ

0

I(0,t)I(0,s) = min(t, s). �

Proof (Proof of Theorem 1.19). We proceed in 4 steps:

(i) Uniform convergence for P-a.e. ω: By the Weierstrass criterion, a series of functions converges
uniformly if the sum of the supremum norms of the summands is finite. To apply the criterion, we
note that for any fixed t ∈ [0,1] and n ∈ N, only one of the functions en,k, k = 0,1, . . . ,2n − 1, does
not vanish at t. Moreover, |en,k(t)| ≤ 2−n/2. Hence

sup
t∈[0,1]

�����2n−1∑
k=0

Zn,k(ω)en,k(t)

����� ≤ 2−n/2 · Mn(ω), (1.26)

where
Mn := max

0≤k<2n
|Zn,k |.

We now apply the Borel-Cantelli Lemma to show that with probability 1, Mn grows at most linearly.
Let Z denote a standard normal random variable. Then we have

P[Mn > n] ≤ 2n · P[|Z | > n] ≤
2n

n
· E[|Z | ; |Z | > n]

=
2 · 2n

n ·
√

2π

∞̂

n

xe−x
2/2 dx =

√
2
π

2n

n
· e−n

2/2

for any n ∈ N. Since the sequence on the right hand side is summable, Mn ≤ n holds eventually
with probability one. Therefore, the sequence on the right hand side of (1.26) is also summable for
P-almost every ω. Hence, by (1.26) and the Weierstrass criterion, the partial sums

B(m)t (ω) = Z(ω)e(t) +
m∑
n=0

2n−1∑
k=0

Zn,k(ω)en,k(t), m ∈ N,
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converge almost surely uniformly on [0,1]. Let

Bt = lim
m→∞

B(m)t

denote the almost surely defined limit.

(ii) L2 convergence for fixed t: We now want to prove that the limit process (Bt ) is a Brownian motion,
i.e., a continuous Gaussian process with E[Bt ] = 0 and Cov[Bt,Bs] = min(t, s) for any t, s ∈ [0,1].
To compute the covariances we first show that for a given t ∈ [0,1] the series approximation B(m)t

of Bt converges also in L2. Let l,m ∈ N with l < m. Since the Zn,k are independent (and hence
uncorrelated) with variance 1, we have

E[(B(m)t − B(l)t )
2] = E


(

m∑
n=l+1

2n−1∑
k=0

Zn,ken,k(t)

)2 =
m∑

n=l+1

∑
k

en,k(t)2.

The right hand side converges to 0 as l,m → ∞ since
∑
n,k

en,k(t)2 < ∞ by Lemma 1.20. Hence

B(m)t ,m ∈ N, is a Cauchy sequence in L2(Ω,A,P). Since Bt = lim
m→∞

B(m)t almost surely, we obtain

B(m)t

m→∞
−→ Bt in L2(Ω,A,P).

(iii) Expectations and Covariances: By the L2 convergence we obtain for any s, t ∈ [0,1]:

E[Bt ] = lim
m→∞

E[B(m)t ] = 0, and

Cov[Bt,Bs] = E[BtBs] = lim
m→∞

E[B(m)t B(m)s ]

= e(t)e(s) + lim
m→∞

m∑
n=0

2n−1∑
k=0

en,k(t)en,k(s).

Here we have used again that the random variables Z and Zn,k are independent with variance 1. By
Parseval’s relation (Lemma 1.20), we conclude

Cov[Bt,Bs] = min(t, s).

Since the process (Bt )t∈[0,1] has the right expectations and covariances, and, by construction, almost
surely continuous paths, it only remains to show that (Bt ) is a Gaussian process in oder to complete
the proof:

(iv) (Bt )t∈[0,1] is a Gaussian process: We have to show that (Bt1, . . . ,Btl ) has a multivariate normal
distribution for any 0 ≤ t1 < . . . < tl ≤ 1. By Theorem 1.9, it suffices to verify that any linear
combination of the components is normally distributed. This holds by the next Lemma since

l∑
j=1

pjBtj = lim
m→∞

l∑
j=1

pjB
(m)
tj

P-a.s.

is an almost sure limit of normally distributed random variables for any
p1, . . . , pl ∈ R.

Combining Steps 3,4 and the continuity of sample paths, we conclude that (Bt )t∈[0,1] is indeed a Brownian
motion. �
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Lemma 1.21. Suppose that (Xn)n∈N is a sequence of normally distributed random variables defined on a
joint probability space (Ω,A,P), and Xn converges almost surely to a random variable X . Then X is also
normally distributed.

Proof. Suppose Xn ∼ N(mn, σ
2
n) with mn ∈ R and σn ∈ (0,∞). By the Dominated Convergence Theorem,

E[eipX] = lim
n→∞

E[eipXn ] = lim
n→∞

eipmne−
1
2σ

2
np

2
.

The limit on the right hand side only exists for all p, if either σn → ∞, or the sequences σn and mn both
converge to finite limits σ ∈ [0,∞) and m ∈ R. In the first case, the limit would equal 0 for p , 0 and 1 for
p = 0. This is a contradiction, since characteristic functions are always continuous. Hence the second case
occurs, and, therefore

E[eipX] = eipm−
1
2σ

2p2
for any p ∈ R,

i.e., X ∼ N(m, σ2). �

So far, we have constructed Brownian motion only for t ∈ [0,1]. Brownian motion on any finite time
interval can easily be obtained from this process by rescaling. Brownian motion defined for all t ∈ R+ can
be obtained by joining infinitely many Brownian motions on time intervals of length 1:

B(1)

B(2)

B(3)

1 2 3

Theorem 1.22. Suppose that B(1)t ,B(2)t , . . . are independent Brownian motions starting at 0 defined for
t ∈ [0,1]. Then the process

Bt := B( bt c+1)
t−bt c

+

bt c∑
i=1

B(i)1 , t ≥ 0,

is a Brownian motion defined for t ∈ [0,∞).

The proof is left as an exercise.
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1.4. The Brownian Sample Paths

In this section we study some properties of Brownian sample paths in dimension one. We show that a typical
Brownian path is nowhere differentiable, and Hölder-continuous with parameter α if and only if α < 1/2.
Furthermore, the set Λa = {t ≥ 0 : Bt = a} of all passage times of a given point a ∈ R is a fractal. We will
show that almost surely, Λa has Lebesgue measure zero but any point in Λa is an accumulation point of Λa.
We consider a one-dimensional Brownian motion (Bt )t≥0 with B0 = 0 defined on a probability space
(Ω,A,P). Then:

Typical Brownian sample paths are nowhere differentiable

For any t ≥ 0 and h > 0, the difference quotient Bt+h−Bt

h is normally distributed with mean 0 and standard
deviation

σ[(Bt+h − Bt )/h] = σ[Bt+h − Bt ]/h = 1/
√

h.

This suggests that the derivative
d
dt

Bt = lim
h↘0

Bt+h − Bt

h
does not exist. Indeed, we have the following stronger statement.

Theorem 1.23 (Paley, Wiener, Zygmund 1933). Almost surely, the Brownian sample path t 7→ Bt is
nowhere differentiable, and

lim sup
s↘t

����Bs − Bt

s − t

���� = ∞ for any t ≥ 0.

Note that, since there are uncountably many t ≥ 0, the statement is stronger than claiming only the almost
sure non-differentiability for any given t ≥ 0.

Proof. It suffices to show that the set

N =
{
ω ∈ Ω

���� ∃ t ∈ [0,T], k, L ∈ N ∀ s ∈ (t, t +
1
k
) : |Bs(ω) − Bt (ω)| ≤ L |s − t |

}
is a null set for any T ∈ N. Hence fix T ∈ N, and consider ω ∈ N . Then there exist k, L ∈ N and t ∈ [0,T]
such that

|Bs(ω) − Bt (ω)| ≤ L · |s − t | holds for s ∈ (t, t +
1
k
). (1.27)

To make use of the independence of the increments over disjoint intervals, we note that for any n > 4k, we
can find an i ∈ {1,2, . . . ,nT} such that the intervals ( in ,

i+1
n ), (

i+1
n ,

i+2
n ), and (

i+2
n ,

i+3
n ) are all contained in

(t, t + 1
k ):

i−1
n

i
n

i+1
n

i+2
n

i+3
n

t t+ 1
k

1/k > 4/n
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Hence by (1.27), the bound���B j+1
n
(ω) − B j

n
(ω)

��� ≤ ���B j+1
n
(ω) − Bt (ω)

��� + ���Bt (ω) − B j
n
(ω)

���
≤ L · (

j + 1
n
− t) + L · (

j
n
− t) ≤

8L
n

holds for j = i, i + 1, i + 2. Thus we have shown that N is contained in the set

Ñ :=
⋃

k ,L∈N

⋂
n>4k

nT⋃
i=1

{���B j+1
n
− B j

n

��� ≤ 8L
n

for j = i, i + 1, i + 2
}
.

We now prove P[Ñ] = 0. By independence and stationarity of the increments we have

P
[{���B j+1

n
− B j

n

��� ≤ 8L
n

for j = i, i + 1, i + 2
}]

= P
[���B 1

n

��� ≤ 8L
n

]3
= P

[
|B1 | ≤

8L
√

n

]3
(1.28)

≤

(
1
√

2π
16L
√

n

)3
=

163

√
2π

3 ·
L3

n3/2

for any i and n. Here we have used that the standard normal density is bounded from above by 1/
√

2π. By
(1.28) we obtain

P

[ ⋂
n>4k

nT⋃
i=1

{���B j+1
n
− B j

n

��� ≤ 8L
n

for j = i, i + 1, i + 2
}]

≤
163

√
2π

3 · inf
n>4k

nT L3/n3/2 = 0.

Hence, P[Ñ] = 0, and therefore N is a null set. �

Hölder continuity

The statement of Theorem 1.23 says that a typical Brownian path is not Lipschitz continuous on any non-
empty open interval. On the other hand, the Wiener-Lévy construction shows that the sample paths are
continuous. We can almost close the gap between these two statements by arguing in both cases slightly
more carefully:

Theorem 1.24. The following statements hold almost surely:

(i) For any α > 1/2,

lim sup
s↘t

|Bs − Bt |

|s − t |α
= ∞ for all t ≥ 0.

(ii) For any α < 1/2,

sup
s,t∈[0,T ]

s,t

|Bs − Bt |

|s − t |α
< ∞ for all T > 0.
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Hence a typical Brownian path is nowhere Hölder continuous with parameter α > 1/2, but it is Hölder
continuous with parameter α < 1/2 on any finite interval. The critical case α = 1/2 is more delicate, and
will be briefly discussed below.

Proof (Proof of Theorem 1.24). The first statement can be shown by a similar argument as in the proof of
Theorem 1.23. The details are left to the reader.

To prove the second statement for T = 1, we use the Wiener-Lévy representation

Bt = Z · t +
∞∑
n=0

2n−1∑
k=0

Zn,ken,k(t) for any t ∈ [0,1]

with independent standard normal random variables Z, Zn,k . For t, s ∈ [0,1] we obtain

|Bt − Bs | ≤ |Z | · |t − s | +
∑
n

Mn

∑
k

|en,k(t) − en,k(s)|,

where Mn := max
k
|Zn,k | as in the proof of Theorem 1.19. We have shown above that by the Borel-Cantelli

Lemma, Mn ≤ n eventually with probability one, and hence

Mn(ω) ≤ C(ω) · n

for some almost surely finite constant C(ω). Moreover, note that for each s, t and n, at most two summands in∑
k |en,k(t) − en,k(s)| do not vanish. Since |en,k(t)| ≤ 1

2 · 2
−n/2 and |e′

n,k
(t)| ≤ 2n/2, we obtain the estimates

|en,k(t) − en,k(s)| ≤ 2−n/2, and (1.29)
|en,k(t) − en,k(s)| ≤ 2n/2 · |t − s |. (1.30)

For given s, t ∈ [0,1], we now choose N ∈ N such that

2−N ≤ |t − s | < 21−N . (1.31)

By applying (1.29) for n > N and (1.30) for n ≤ N , we obtain

|Bt − Bs | ≤ |Z | · |t − s | + 2C ·

(
N∑
n=1

n2n/2 · |t − s | +
∞∑

n=N+1
n2−n/2

)
.

By (1.31) the sums on the right hand side can both be bounded by a constant multiple of |t − s |α for any
α < 1/2. This proves that (Bt )t∈[0,1] is almost surely Hölder-continuous of order α. �

Law of the iterated logarithm

Khintchine’s version of the law of the iterated logarithm is a much more precise statement on the local
regularity of a typical Brownian path at a fixed time s ≥ 0. It implies in particular that almost every
Brownian path is not Hölder continuous with parameter α = 1/2. We state the result without proof:

Theorem 1.25 (Khintchine 1924). For s ≥ 0, the following statements hold almost surely:

lim sup
t↘0

Bs+t − Bs√
2t log log(1/t)

= +1, and lim inf
t↘0

Bs+t − Bs√
2t log log(1/t)

= −1.

For the proof cf. e.g. Breiman, Probability, Section 12.9.
By a time inversion, the Theorem translates into a statement on the global asymptotics of Brownian paths:
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Corollary 1.26. The following statements hold almost surely:

lim sup
t→∞

Bt√
2t log log t

= +1, and lim inf
t→∞

Bt√
2t log log t

= −1.

Proof. This follows by applying the Theorem above to the Brownian motion B̂t = t · B1/t . For example,
substituting h = 1/t, we have

lim sup
t→∞

Bt√
2t log log(t)

= lim sup
h↘0

h · B1/h√
2h log log 1/h

= +1

almost surely. �

The corollary is a continuous time analogue of Kolmogorov’s law of the iterated logarithm for Random
Walks stating that for Sn =

n∑
i=1

ηi, ηi i.i.d. with E[ηi] = 0 and Var[ηi] = 1, one has

lim sup
n→∞

Sn√
2n log log n

= +1 and lim inf
n→∞

Sn√
2n log log n

= −1

almost surely. In fact, one way to prove Kolmogorov’s LIL is to embed the Random Walk into a Brownian
motion, cf. e.g. Rogers and Williams, Vol. I, Ch. 7 or Section 3.3

Passage times

We now study the set of passage times to a given level a for a one-dimensional Brownian motion (Bt )t≥0.
This set has interesting properties – in particular it is a random fractal. Fix a ∈ R, and let

Λa(ω) = {t ≥ 0 : Bt (ω) = a} ⊆ [0,∞).

Assuming that every path is continuous, the random set Λa(ω) is closed for every ω. Moreover, scale
invariance of Brownian motion implies a statistical self similarity property for the sets of passage times:
Since the rescaled process (c−1/2Bct )t≥0 has the same distribution as (Bt )t≥0 for any c > 0, we can conclude
that the set valued random variable c · Λa/

√
c has the same distribution as Λa. In particular, Λ0 is a fractal

in the sense that

Λ0 ∼ c · Λ0 for any c > 0.
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Figure 1: Brownian motion with corresponding level set Λ0.

Figure 1.3.: Brownian motion with corresponding level set Λ0.

Moreover, by Fubini’s Theorem one easily verifies that Λa has almost surely Lebesgue measure zero. In
fact, continuity of t 7→ Bt (ω) for any ω implies that (t,ω) 7→ Bt (ω) is product measurable (Exercise). Hence
{(t,ω) : Bt (ω) = a} is contained in the product σ-algebra, and

E[λ(Λa)] = E

∞̂

0

I{a}(Bt ) dt
 =

∞̂

0

P[Bt = a] dt = 0.

Theorem 1.27 (Unbounded oscillations, recurrence).

P
[
sup
t≥0

Bt = +∞

]
= P

[
inf
t≥0

Bt = −∞

]
= 1.

In particular, for any a ∈ R, the random set Λa is almost surely unbounded, i.e. Brownian motion is
recurrent.

Proof. By scale invariance,

sup
t≥0

Bt ∼ c−1/2 sup
t≥0

Bct = c−1/2 sup
t≥0

Bt for any c > 0.

Hence,

P
[
sup
t≥0

Bt ≥ a
]
= P

[
sup
t≥0

Bt ≥ a ·
√

c
]

for any c > 0, and therefore sup Bt ∈ {0,∞} almost surely. The first part of the assertion now follows since
sup Bt is almost surely strictly positive. By reflection symmetry, we also obtain inf Bt = −∞with probability
one. �

The last Theorem makes a statement on the global structure of the set Λa. By invariance w.r.t. time
inversion this again translates into a local regularity result:
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Theorem 1.28 (Fine structure of Λa). The set Λa is almost surely a perfect set, i.e., any t ∈ Λa is an
accumulation point of Λa.

Proof. We prove the statement for a = 0, the general case being left as an exercise. We proceed in three
steps:

. Step 1: 0 is almost surely an accumulation point of Λ0: This holds by time-reversal. Setting B̂t = t · B1/t ,
we see that 0 is an accumulation point of Λ0 if and only of for any n ∈ N there exists t > n such that
B̂t = 0, i.e., if and only if the zero set of B̂t is unbounded. By Theorem 1.27, this holds almost surely.

. Step 2: For any s ≥ 0, Ts := min(Λa ∩ [s,∞)) = min{t ≥ s : Bt = a} is almost surely an accumulation
point of Λa: For the proof we need the strong Markov property of Brownian motion which will be
proved in the next section. By Theorem 1.27, the random variable Ts is almost surely finite. Hence,
by continuity, BTs = a almost surely. The strong Markov property says that the process

B̃t := BTs+t − BTs , t ≥ 0,

is again a Brownian motion starting at 0. Therefore, almost surely, 0 is an accumulation point of the
zero set of B̃t by Step 1. The claim follows since almost surely

{t ≥ 0 : B̃t = 0} = {t ≥ 0 : BTs+t = BTs } = {t ≥ Ts : Bt = a} ⊆ Λa .

. Step 3: To complete the proof note that we have shown that the following properties hold with probability
one:

(i) Λa is closed.

(ii) min(Λa ∩ [s,∞)) is an accumulation point of Λa for any s ∈ Q+.

Since Q+ is a dense subset of R+, (1) and (2) imply that any t ∈ Λa is an accumulation point of Λa.
In fact, for any s ∈ [0, t] ∩ Q, there exists an accumulation point of Λa in (s, t] by (2), and hence t is
itself an accumulation point. �

Remark. It can be shown that the set Λa has Hausdorff dimension 1/2.

1.5. Strong Markov property and reflection principle

In this section we prove a strong Markov property for Brownian motion. Before, we give another motivation
for our interest in an extension of the Markov property to random times.

Maximum of Brownian motion

Suppose that (Bt )t≥0 is a one-dimensional continuous Brownian motion starting at 0 defined on a probability
space (Ω,A,P). We would like to compute the distribution of the maximal value

Ms = max
t∈[0,s]

Bt

attained before a given time s ∈ R+. The idea is to proceed similarly as for RandomWalks, and to reflect the
Brownian path after the first passage time

Ta = min{t ≥ 0 : Bt = a}
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to a given level a > 0:

a

Ta

Bt

B̂t

It seems plausible (e.g. by the heuristic path integral representation of Wiener measure, or by a Random
Walk approximation) that the reflected process (B̂t )t≥0 defined by

B̂t :=

{
Bt for t ≤ Ta

a − (Bt − a) for t > Ta

is again a Brownian motion. At the end of this section, we will prove this reflection principle rigorously by
the strong Markov property. Assuming the reflection principle is true, we can compute the distribution of
Ms in the following way:

P[Ms ≥ a] = P[Ms ≥ a,Bs ≤ a] + P[Ms ≥ a,Bs > a]

= P[B̂s ≥ a] + P[Bs > a]

= 2 · P[Bs ≥ a]

= P[|Bs | ≥ a].

Thus Ms has the same distribution as |Bs |.
Furthermore, since Ms ≥ a if and only if M̂s = max{B̂t : t ∈ [0, s]} ≥ a, we obtain the stronger statement

P[Ms ≥ a,Bs ≤ c] = P[M̂s ≥ a, B̂s ≥ 2a − c] = P[B̂s ≥ 2a − c]

=
1
√

2πs

∞̂

2a−c

exp(−x2/2s) dx

for any a ≥ 0 and c ≤ a. As a consequence, we have:

Theorem 1.29 (Maxima of Brownian paths).

(i) For any s ≥ 0, the distribution of Ms is absolutely continuous with density

fMs (x) =
2
√

2πs
exp(−x2/2s) · I(0,∞)(x).
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(ii) The joint distribution of Ms and Bs is absolutely continuous with density

fMs ,Bs (x, y) = 2
2x − y
√

2πs3
exp

(
−
(2x − y)2

2s

)
I(0,∞)(x)I(−∞,x)(y).

Proof. (1) holds since Ms ∼ |Bs |. For the proof of (2) we assume w.l.o.g. s = 1. The general case can be
reduced to this case by the scale invariance of Brownian motion (Exercise). For a ≥ 0 and c ≤ a let

G(a, c) := P[M1 ≥ a,B1 ≤ c].

By the reflection principle,

G(a, c) = P[B1 ≥ 2a − c] = 1 − Φ(2a − c),

where Φ denotes the standard normal distribution function. Since lim
a→∞

G(a, c) = 0 and lim
c→−∞

G(a, c) = 0,
we obtain

P[M1 ≥ a,B1 ≤ c] = G(a, c) = −

∞̂

x=a

cˆ

y=−∞

∂2G
∂x∂y

(x, y) dydx

=

∞̂

x=a

cˆ

y=−∞

2 ·
2x − y
√

2π
· exp

(
−
(2x − y)2

2

)
dydx.

This implies the claim for s = 1, since M1 ≥ 0 and B1 ≤ M1 by definition of M1. �

The Theorem enables us to compute the distributions of the first passage times Ta. In fact, for a > 0 and
s ∈ [0,∞) we obtain

P[Ta ≤ s] = P[Ms ≥ a] = 2 · P[Bs ≥ a] = 2 · P[B1 ≥ a/
√

s]

=

√
2
π

∞̂

a/
√
s

e−x
2/2 dx. (1.32)

Corollary 1.30 (Distribution of Ta). For any a ∈ R \ {0}, the distribution of Ta is absolutely continuous
with density

fTa (s) =
|a|
√

2πs3
· e−a

2/2s .

Proof. For a > 0, we obtain

fTa (s) = F ′Ta (s) =
a

√
2πs3

e−a
2/2s

by (1.32). For a < 0 the assertion holds since Ta ∼ T−a by reflection symmetry of Brownian motion. �

Next, we prove a strong Markov property for Brownian motion. Below we will then complete the proof
of the reflection principle and the statements above by applying the strong Markov property to the passage
time Ta.
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1. Brownian Motion

Strong Markov property for Brownian motion

Suppose again that (Bt )t≥0 is a d-dimensional continuous Brownian motion starting at 0 on a probability
space (Ω,A,P), and let

F B
t = σ(Bs : 0 ≤ s ≤ t), t ≥ 0,

denote the σ-algebras generated by the process up to time t.

Definition 1.31. A random variable T : Ω→ [0,∞] is called an (F B
t )-stopping time if and only if

{T ≤ t} ∈ F B
t for any t ≥ 0.

Example. Clearly, for any a ∈ R, the first passage time

Ta = min{t ≥ 0 : Bt = a}

to a level a is an (F B
t )-stopping time.

The σ-algebra F B
T describing the information about the process up to a stopping time T is defined by

F B
T = {A ∈ A : A ∩ {T ≤ t} ∈ F B

t for any t ≥ 0}.

Note that for (F B
t ) stopping times S and T with S ≤ T we have F B

S ⊆ F
B
T , since for t ≥ 0

A ∩ {S ≤ t} ∈ F B
t =⇒ A ∩ {T ≤ t} = A ∩ {S ≤ t} ∩ {T ≤ t} ∈ F B

t .

For any constant s ∈ R+, the process (Bs+t − Bs)t≥0 is a Brownian motion independent of F B
s .

A corresponding statement holds for stopping times:

Theorem 1.32 (Strong Markov property). Suppose that T is an almost surely finite (F B
t ) stopping time.

Then the process (B̃t )t≥0 defined by

B̃t = BT+t − BT if T < ∞, 0 otherwise,

is a Brownian motion independent of F B
T .

Proof. We first assume that T takes values only in C ∪ {∞} where C is a countable subset of [0,∞). Then
for A ∈ F B

T and s ∈ C, we have A ∩ {T = s} ∈ F B
s and B̃t = Bt+s − Bs on A ∩ {T = s}. By the Markov

property, (Bt+s − Bs)t≥0 is a Brownian motion independent of F B
s . Hence for any measurable subset Γ of

C([0,∞],Rd), we have

P[{(B̃t )t≥0 ∈ Γ} ∩ A] =
∑
s∈C

P[{(Bt+s − Bs)t≥0 ∈ Γ} ∩ A ∩ {T = s}]

=
∑
s∈C

µ0[Γ] · P[A ∩ {T = s}] = µ0[Γ] · P[A]

where µ0 denotes the distribution of Brownian motion starting at 0. This proves the assertion for discrete
stopping times.

For an arbitrary (F B
t ) stopping time T that is almost surely finite and n ∈ N, we set Tn =

1
n dnTe, i.e.,

Tn =
k
n

on
{

k − 1
n

< T ≤
k
n

}
for any k ∈ N.
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1.5. Strong Markov property and reflection principle

Since the event {Tn = k/n} is F B
k/n

-measurable for any k ∈ N,Tn is a discrete (F B
t ) stopping time. Therefore,

(BTn+t − BTn )t≥0 is a Brownian motion that is independent of F B
Tn
, and hence of the smaller σ-algebra F B

T .
As n→∞, Tn → T , and thus, by continuity,

B̃t = BT+t − BT = lim
n→∞
(BTn+t − BTn ).

Now it is easy to verify that (B̃t )t≥0 is again a Brownian motion that is independent of F B
T . �

A rigorous reflection principle

We now apply the strong Markov property to prove a reflection principle for Brownian motion. Consider a
one-dimensional continuous Brownian motion (Bt )t≥0 starting at 0. For a ∈ R let

Ta = min{t ≥ 0 : Bt = a} (first passage time),
BTa
t = Bmin{t ,Ta } (process stopped at Ta), and
B̃t = BTa+t − BTa (process after Ta).

Theorem 1.33 (Reflection principle). The joint distributions of the following random variables with val-
ues in R+ × C([0,∞)) × C([0,∞)) agree:

(Ta, (B
Ta
t )t≥0, (B̃t )t≥0) ∼ (Ta, (B

Ta
t )t≥0, (−B̃t )t≥0)

Proof. By the strong Markov property, the process B̃ is a Brownian motion starting at 0 independent of FTa ,
and hence of Ta and BTa = (BTa

t )t≥0. Therefore,

P ◦ (Ta,BTa , B̃)−1 = P ◦ (Ta,BTa )−1 ⊗ µ0 = P ◦ (Ta,BTa ,−B̃)−1. �

a

Ta

Bt

B̂t

As a consequence of the theorem, we can complete the argument given at the beginning of this section: The
"shadow path" B̂t of a Brownian path Bt with reflection when reaching the level a is given by

B̂t =

{
BTa
t for t ≤ Ta

a − B̃t−Ta for t > Ta

,

whereas

Bt =

{
BTa
t for t ≤ Ta

a + B̃t−Ta for t > Ta

.
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By the Theorem 1.33, (B̂t )t≥0 has the same distribution as (Bt )t≥0. Therefore, and since max
t∈[0,s]

Bt ≥ a if and

only if max
t∈[0,s]

B̂t ≥ a, we obtain for a ≥ c:

P
[

max
t∈[0,s]

Bt ≥ a,Bs ≤ c
]
= P

[
max
t∈[0,s]

B̂t ≥ a, B̂s ≥ 2a − c
]

= P
[
B̂s ≥ 2a − c

]
=

1
√

2πs

∞̂

2a−c

e−x
2/2s dx.
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Part II.

Introduction to Stochastic Analysis

Eberle Introduction to Stochastic Analysis 39





2. Martingales in discrete time

Classical analysis starts with studying convergence of sequences of real numbers. Similarly, stochastic
analysis relies on basic statements about sequences of real-valued random variables. Any such sequence
can be decomposed uniquely into a martingale, i.e., a real.valued stochastic process that is “constant on
average”, and a predictable part. Therefore, estimates and convergence theorems for martingales are crucial
in stochastic analysis.

2.1. Definitions and examples

We fix a probability space (Ω,A,P). Moreover, we assume that we are given an increasing sequence
Fn (n = 0,1,2, . . .) of sub-σ-algebras of A. Intuitively, we often think of Fn as describing the information
available to us at time n. Formally, we define:

Definition 2.1 (Filtration, adapted process). (i) A filtration on (Ω,A) is an increasing sequence

F0 ⊆ F1 ⊆ F2 ⊆ . . .

of σ-algebras Fn ⊆ A.

(ii) A stochastic process (Xn)n≥0 is adapted to a filtration (Fn)n≥0 iff each Xn is Fn-measurable.

Example. (i) The canonical filtration (F X
n ) generated by a stochastic process (Xn) is given by

F X
n = σ(X0,X1, . . . ,Xn).

If the filtration is not specified explicitly, we will usually consider the canonical filtration.

(ii) Alternatively, filtrations containing additional information are of interest, for example the filtration

Fn = σ(Z,X0,X1, . . . ,Xn)

generated by the process (Xn) and an additional random variable Z , or the filtration

Fn = σ(X0,Y0,X1,Y1, . . . ,Xn,Yn)

generated by the process (Xn) and a further process (Yn).

Clearly, the process (Xn) is adapted to any of these filtrations. In general, (Xn) is adapted to a filtration (Fn)
if and only if F X

n ⊆ Fn for any n ≥ 0.

Martingales and supermartingales

We can now formalize the notion of a real-valued stochastic process that is constant (respectively decreasing
or increasing) on average:
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Definition 2.2 (Martingale, supermartingale, submartingale). (i) A sequence of real-valued ran-
dom variables Mn : Ω → R (n = 0,1, . . .) on the probability space (Ω,A,P) is called a martingale
w.r.t. the filtration (Fn) if and only if

a) (Mn) is adapted w.r.t. (Fn),

b) Mn is integrable for any n ≥ 0, and

c) E[Mn | Fn−1] = Mn−1 for any n ∈ N.

(ii) Similarly, (Mn) is called a supermartingale (resp. a submartingale) w.r.t. (Fn) if and only if (a)
holds, the positive part M+n (resp. the negative part M−n ) is integrable for every n ≥ 0, and (c) holds
with “=” replaced by “≤”, “≥” respectively.

Condition (c) in the martingale definition can equivalently be written as

(c’) E[Mn+1 − Mn | Fn] = 0 for all n ∈ Z+,

and, correspondingly, with “=” replaced by “≤” or “≥” for super- or submartingales.

Intuitively, a martingale is a “fair” game, i.e., Mn−1 is the best prediction (w.r.t. the mean square error) for
the next value Mn given the information up to time n − 1. A supermartingale is “decreasing on average”,
a submartingale is “increasing on average”, and a martingale is both “decreasing” and “increasing”, i.e.,
“constant on average”. In particular, by induction on n, a martingale satisfies

E[Mn] = E[M0] for any n ≥ 0.

Similarly, for a supermartingale, the expectation values E[Mn] are decreasing. More generally, we have:

Lemma 2.3. If (Mn) is a martingale (respectively a supermartingale) w.r.t. a filtration (Fn) then

E[Mn+k | Fn]
(≤)
= Mn P-almost surely for any n, k ≥ 0.

Proof. By induction on k: The assertion holds for k = 0, since Mn is Fn-measurable. Moreover, the
assertion for k − 1 implies

E[Mn+k | Fn] = E
[
E[Mn+k | Fn+k−1]

�� Fn]
= E[Mn+k−1 | Fn] = Mn P-a.s.

by the tower property for conditional expectations. �

Remark (Supermartingale Convergence Theorem). A key fact in analysis is that any lower bounded
decreasing sequence of real numbers converges to its infimum. The counterpart of this result in stochastic
analysis is the Supermartingale Convergence Theorem: Any lower bounded supermartingale converges
almost surely, cf. Theorem 4.5 below.

Some fundamental examples

a) Sums of independent random variables

A Random Walk

Sn =
n∑
i=1

ηi, n = 0,1,2, . . . ,
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with independent increments ηi ∈ L1(Ω,A,P) is a martingale w.r.t. to the filtration

Fn = σ(η1, . . . , ηn) = σ(S0,S1, . . . ,Sn)

if and only if the increments ηi are centered random variables. In fact, for any n ∈ N,

E[Sn − Sn−1 | Fn−1] = E[ηn | Fn−1] = E[ηn]

by independence of the increments. Correspondingly, (Sn) is an (Fn) supermartingale if and only if E[ηi] ≤ 0
for any i ∈ N.

b) Products of independent non-negative random variables

A stochastic process

Mn =

n∏
i=1

Yi, n = 0,1,2, . . . ,

with independent non-negative factors Yi ∈ L1(Ω,A,P) is a martingale respectively a supermartingale w.r.t.
the filtration

Fn = σ(Y1, . . . ,Yn)

if and only if E[Yi] = 1 for any i ∈ N, or E[Yi] ≤ 1 for any i ∈ N respectively. In fact, as Mn is Fn-measurable
and Yn+1 is independent of Fn, we have

E[Mn+1 | Fn] = E[Mn · Yn+1 | Fn] = Mn · E[Yn+1] for any n ≥ 0.

Martingales and supermartingales of this type occur naturally in stochastic growth models.

Example (Exponential martingales). Consider a Random Walk Sn =
∑n

i=1 ηi with i.i.d. increments
ηi , and let

Z(λ) = E[exp(ληi)] (λ ∈ R),

denote the moment generating function of the increments. Then for any λ ∈ R with Z(λ) < ∞, the
process

Mλ
n := eλSn/Z(λ)n =

n∏
i=1

(
eληi /Z(λ)

)
is a martingale. This martingale can be used to prove exponential bounds for Random Walks, cf. e.g.
Chernov’s theorem [“Einführung in die Wahrscheinlichkeitstheorie”, Theorem 8.3].

Example (CRR model of stock market). In the Cox-Ross-Rubinstein binomial model of mathematical
finance, the price of an asset is changing during each period either by a factor 1 + a or by a factor 1 + b
with a, b ∈ (−1,∞) such that a < b. We can model the price evolution in a fixed number N of periods
by a stochastic process

Sn = S0 ·

n∏
i=1

Xi, n = 0,1,2, . . . ,N,

defined on Ω = {1 + a,1 + b}N , where the initial price S0 is a given constant, and Xi(ω) = ωi . Taking
into account a constant interest rate r > 0, the discounted stock price after n periods is

S̃n = Sn/(1 + r)n = S0 ·

n∏
i=1

Xi

1 + r
.

A probability measure P onΩ is called amartingale measure if the discounted stock price is a martingale
w.r.t. P and the filtration Fn = σ(X1, . . . ,Xn). Martingale measures are important for option pricing
under no arbitrage assumptions, cf. Section 2.3 below. For 1 ≤ n ≤ N ,

E[S̃n | Fn−1] = E
[

S̃n−1 ·
Xn

1 + r

���� Fn−1

]
= S̃n−1 ·

E[Xn | Fn−1]

1 + r
.
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Hence (S̃n) is an (Fn) martingale w.r.t. P if and only if

E[Xn | Fn−1] = 1 + r for any 1 ≤ n ≤ N . (2.1)

On the other hand, since in the CRR model Xn only takes the values 1 + a and 1 + b, we have

E[Xn | Fn−1] = (1 + a) · P[Xn = 1 + a | Fn−1] + (1 + b) · P[Xn = 1 + b | Fn−1]

= 1 + a + (b − a) · P[Xn = 1 + b | Fn−1].

Therefore, by (2.1), (S̃n) is a martingale if and only if

P[Xn = 1 + b | Fn−1] =
r − a
b − a

for any n = 1, . . . ,N,

i.e., if and only if the growth factors X1, . . . ,XN are independent with

P[Xn = 1 + b] =
r − a
b − a

and P[Xn = 1 + a] =
b − r
b − a

. (2.2)

Hence for r < [a, b], a martingale measure does not exist, and for r ∈ [a, b], the product measure P on
Ω satisfying (2.2) is the unique martingale measure. Intuitively this is plausible: If r < a or r > b
respectively, then the stock price is always growing more or less than the discount factor (1 + r)n, so the
discounted stock price can not be a martingale. If, on the other hand, a < r < b, then (S̃n) is a martingale
provided the growth factors are independent with

P[Xn = 1 + b]
P[Xn = 1 + a]

=
(1 + r) − (1 + a)
(1 + b) − (1 + r)

.

We remark, however, that uniqueness of the martingale measure only follows from (2.1) since we have
assumed that each Xn takes only two possible values (binomial model). In a corresponding trinomial
model there are infinitely many martingale measures!

c) Successive prediction values

Let F be an integrable random variable, and let (Fn) be a filtration on a probability space (Ω,A,P). Then
the process

Mn := E[F | Fn], n = 0,1,2, . . . ,

of successive prediction values for F based on the information up to time n is a martingale. Indeed, by the
tower property for conditional expectations, we have

E[Mn | Fn−1] = E
[
E[F | Fn]

�� Fn−1
]
= E

[
F

�� Fn−1
]
= Mn−1

almost surely for any n ∈ N.

Remark (Representing martingales as successive prediction values). The class of martingales that have
a representation as successive prediction values almost contains general martingales. In fact, for an arbitrary
(Fn) martingale (Mn) and any finite integer m ≥ 0, the representation

Mn = E[Mm | Fn]

holds for any n = 0,1, . . . ,m. Moreover, the L1 Martingale Convergence Theorem implies that under a
uniform integrability assumption, the limit M∞ = lim

m→∞
Mm exists in L1, and the representation

Mn = E[M∞ | Fn]

holds for any n ≥ 0, see Section 4.3 below .

d) Functions of martingales

By Jensen’s inequality for conditional expectations, convex functions of martingales are submartingales, and
concave functions of martingales are supermartingales:
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Theorem 2.4 (Convex functions of martingales). Suppose that (Mn)n≥0 is an (Fn) martingale, and u :
R→ R is a convex function that is bounded from below. Then (u(Mn)) is an (Fn) submartingale.

Proof. Clearly, u(Mn) is again adapted, and, since u is lower bounded, u(Mn)
− is integrable for any n.

Jensen’s inequality for conditional expectations now implies

E[u(Mn+1) | Fn] ≥ u
(
E[Mn+1 | Fn]

)
= u(Mn)

almost surely for any n ≥ 0. �

Example. If (Mn) is a martingale then (|Mn |
p) is a submartingale for any p ≥ 1.

e) Functions of Markov chains

Let p(x, dy) be a transition kernel on a measurable space (S,B).

Definition 2.5 (Markov chain, superharmonic function). (i) A discrete time stochastic process
(Xn)n≥0 with state space (S,B) defined on the probability space (Ω,A,P) is called a (time-
homogeneous) Markov chain with transition kernel p w.r.t. the filtration (Fn), if and only if

a) (Xn) is (Fn) adapted, and

b) P[Xn+1 ∈ B | Fn] = p(Xn,B) P-almost surely for any B ∈ B and n ≥ 0.

(ii) A measurable function h : S → R is called superharmonic (resp. subharmonic) w.r.t. p if and only
if the integrals

(ph)(x) :=
ˆ

p(x, dy)h(y), x ∈ S,

exist, and
(ph)(x) ≤ h(x) (respectively (ph)(x) ≥ h(x))

holds for any x ∈ S.
The function h is called harmonic iff it is both super- and subharmonic, i.e., iff

(ph)(x) = h(x) for any x ∈ S.

By the tower property for conditional expectations, any (Fn) Markov chain is also a Markov chain w.r.t.
the canonical filtration generated by the process.

Example (Classical RandomWalk on Zd). The standard Random Walk (Xn)n≥0 on Zd is a Markov
chain w.r.t. the filtration F X

n = σ(X0, . . . ,Xn) with transition probabilities p(x, x + e) = 1/2d for any
unit vector e ∈ Zd . The coordinate processes (X i

n)n≥0, i = 1, . . . , d, are Markov chains w.r.t. the same
filtration with transition probabilities

p(x, x + 1) = p(x, x − 1) =
1

2d
, p(x, x) =

2d − 2
2d

.

A function h : Zd → R is superharmonic w.r.t. p if and only if

∆Zd h(x) =
d∑
i=1

(
h(x + ei) − 2h(x) + h(x − ei)

)
= 2d ((ph)(x) − h(x)) ≤ 0 for all x ∈ Zd .

A function h : Z → R is harmonic w.r.t. p if and only if h(x) = ax + b with a, b ∈ R, and h is
superharmonic if and only if it is concave.
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It is easy to verify that (super-)harmonic functions of Markov chains are (super-)martingales:

Theorem 2.6 (Superharmonic functions of Markov chains are supermartingales). Suppose that (Xn)

is an (Fn)Markov chain. Then the real-valued process

Mn := h(Xn) (n = 0,1,2, . . .)

is a martingale (resp. a supermartingale) w.r.t. (Fn) for every harmonic (resp. superharmonic) function
h : S → R such that h(Xn) (resp. h(Xn)

+) is integrable for all n.

Proof. Clearly, (Mn) is again (Fn) adapted. Moreover,

E[Mn+1 | Fn] = E[h(Xn+1) | Fn] = (ph)(Xn) P-a.s.

The assertion now follows immediately from the definitions. �

Below, we will show how to construct more general martingales from Markov chains, cf. Theorem 2.10.
At first, however, we consider a simple example that demonstrates the usefulness of martingale methods in
analyzing Markov chains:

Example (Wright model for evolution). In the Wright model for a population of N individuals with
a finite number of possible types, each individual in generation n + 1 inherits a type from a randomly
chosen predecessor in the n th generation. The number Xn of individuals of a given type in generation n
is a Markov chain with state space S = {0,1, . . . ,N} and transition kernel

p(k,•) = Bin(N, k/N).

Moreover, as the average of this binomial distribution is k, the function h(x) = x is harmonic, and the
expected number of individuals in generation n + 1 given X0, . . . ,Xn is

E[Xn+1 | X0, . . . ,Xn] = Xn.

Hence, the process (Xn) is a bounded martingale. The Martingale Convergence Theorem now implies
that the limit X∞ = lim Xn exists almost surely, cf. Section 4.2 below. Since Xn takes discrete values,
we can conclude that Xn = X∞ eventually with probability one. In particular, X∞ is almost surely an
absorbing state. Hence

P
[
Xn = 0 or Xn = N eventually

]
= 1. (2.3)

In order to compute the probabilities of the events “Xn = 0 eventually” and “Xn = N eventually” we can
apply the Optional Stopping Theorem for martingales, cf. Section 2.3 below. Let

T := min{n ≥ 0 : Xn = 0 or Xn = N}, min ∅ := ∞,

denote the first hitting time of the absorbing states. If the initial number X0 of individuals of the given
type is k, then by the Optional Stopping Theorem,

E[XT ] = E[X0] = k .

Hence by (2.3) we obtain

P
[
Xn = N eventually

]
= P[XT = N] =

1
N

E[XT ] =
k
N
, and

P
[
Xn = 0 eventually

]
= 1 −

k
N
=

N − k
N

.

Hence eventually all individuals have the same type, and a given type occurs eventually with probability
determined by its initial relative frequency in the population.
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2.2. Doob Decomposition and Martingale Problem

We will show now that any adapted sequence of real-valued random variables can be decomposed into
a martingale and a predictable process. In particular, the variance process of a martingale (Mn) is the
predictable part in the corresponding Doob decomposition of the process (M2

n). The Doob decomposition
for functions of Markov chains implies the martingale problem characterization of Markov chains.

Doob Decomposition

Let (Ω,A,P) be a probability space and (Fn)n≥0 a filtration on (Ω,A).

Definition 2.7 (Predictable process). A stochastic process (An)n∈Z+ is called predictable w.r.t. (Fn) if and
only if A0 is constant and An is measurable w.r.t. Fn−1 for any n ∈ N.

Intuitively, the value An(ω) of a predictable process can be predicted by the information available at time
n − 1.

Theorem 2.8 (Doob decomposition). Every (Fn) adapted sequence of integrable random variables Yn
(n ≥ 0) has a unique decomposition (up to modification on null sets)

Yn = Mn + An (2.4)

into an (Fn)martingale (Mn) and a predictable process (An) such that A0 = 0. Explicitly, the decomposition
is given by

An =

n∑
k=1

E[Yk − Yk−1 | Fk−1], and Mn = Yn − An. (2.5)

Remark. (i) The increments E[Yk −Yk−1 | Fk−1] of the process (An) are the predicted increments of (Yn)
given the previous information.

(ii) The process (Yn) is a supermartingale (resp. a submartingale) if and only if the predictable part (An)

is decreasing (resp. increasing).

Proof (of Theorem 2.8). Uniqueness: For every decomposition as in (2.4) we have

Yk − Yk−1 = Mk − Mk−1 + Ak − Ak−1 for all k ∈ N.

If (Mn) is a martingale and (An) is predictable then

E[Yk − Yk−1 | Fk−1] = E[Ak − Ak−1 | Fk−1] = Ak − Ak−1 P-a.s.

This implies that (2.5) holds almost surely if A0 = 0.

Existence: Conversely, if (An) and (Mn) are defined by (2.5) then (An) is predictable with A0 = 0 and (Mn)

is a martingale, since
E[Mk − Mk−1 | Fk−1] = 0 P-a.s. for any k ∈ N. �

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 47



2. Martingales in discrete time

Conditional Variance Process

Consider a martingale (Mn) such that Mn is square integrable for any n ≥ 0. Then, by Jensen’s inequality,
(M2

n) is a submartingale and can again be decomposed into a martingale (M̃n) and a predictable process
〈M〉n such that 〈M〉0 = 0:

M2
n = M̃n + 〈M〉n for any n ≥ 0.

The increments of the predictable process are given by

〈M〉k − 〈M〉k−1 = E[M2
k − M2

k−1 | Fk−1]

= E
[
(Mk − Mk−1)

2 �� Fk−1
]
+ 2E

[
Mk−1(Mk − Mk−1)

�� Fk−1
]

= Var
[
Mk − Mk−1

�� Fk−1
]

for all k ∈ N.

Here we have used in the last step that E[Mk − Mk−1 | Fk−1] vanishes since (Mn) is a martingale.

Definition 2.9 (Conditional variance process). The predictable process

〈M〉n :=
n∑

k=1
Var [Mk − Mk−1 | Fk−1] , n ≥ 0,

is called the conditional variance process of the square integrable martingale (Mn).

Example (RandomWalks). If Mn =
∑n

i=1 ηi is a sum of independent centered random variables ηi and
Fn = σ(η1, . . . , ηn) then the conditional variance process is given by 〈M〉n =

∑n
i=1 Var[ηi].

The conditional variance process is crucial for generalizations of classical limit theorems such as the Law
of Large Numbers or the Central Limit Theorem from sums of independent random variables to martingales.
A direct consequence of the fact that M2

n − 〈M〉n is a martingale is that

E[M2
n] = E[M2

0 ] + E[〈M〉n] for any n ≥ 0.

This can often be used to derive L2-estimates for martingales.

Example (Discretizations of stochastic differential equations). Consider an ordinary differential equa-
tion

dXt

dt
= b(Xt ), t ≥ 0, (2.6)

where b : Rd → Rd is a given vector field. In order to take into account unpredictable effects on a
system, one is frequently interested in studying random perturbations of the dynamics (2.6) of type

dXt = b(Xt ) dt + “noise” (2.7)

with a random noise term. The solution (Xt )t≥0 of such a stochastic differential equation (SDE) is a
stochastic process in continuous time defined on a probability space (Ω,A,P) where also the random
variables describing the noise effects are defined. The vector field b is called the (deterministic) “drift”.
We will make sense of general SDE later, but we can already consider time discretizations.

For simplicity let us assume d = 1. Let b, σ : R → R be continuous functions, and let (ηi)i∈N be a
sequence of i.i.d. random variables ηi ∈ L2(Ω,A,P) describing the noise effects. We assume

E[ηi] = 0 and Var[ηi] = 1 for any i ∈ N.

Here, the values 0 and 1 are just a convenient normalization, but it is an important assumption that
the random variables are independent with finite variances. Given an initial value x0 ∈ R and a fine
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discretization step size h > 0, we now define a stochastic process (X (h)n ) in discrete time by X (h)0 = x0,
and

X (h)
k+1 − X (h)

k
= b(X (h)

k
) · h + σ(X (h)

k
)
√

h ηk+1, for k = 0,1,2, . . . (2.8)

One should think of X (h)
k

as an approximation for the value of the process (Xt ) at time t = k · h. The
system of equations in (2.8) can be rewritten as

X (h)n = x0 +

n−1∑
k=0

b(X (h)
k
) · h +

n−1∑
k=0

σ(X (h)
k
) ·
√

h · ηk+1. (2.9)

To understand the scaling factors h and
√

h we note first that if σ ≡ 0 then (2.8) respectively (2.9) is
the Euler discretization of the ordinary differential equation (2.6). Furthermore, if b ≡ 0 and σ ≡ 1,
then the diffusive scaling by a factor

√
h in the second term ensures that the continuous time process

X (h)
bt/hc

, t ∈ [0,∞), converges in distribution as h ↘ 0. Indeed, the functional central limit theorem
(Donsker’s invariance principle) states that the limit process in this case is a Brownian motion (Bt )t∈[0,∞).
In general, (2.9) is an Euler discretization of a stochastic differential equation of type

dXt = b(Xt ) dt + σ(Xt ) dBt

where (Bt )t≥0 is a Brownian motion. Let Fn = σ(η1, . . . , ηn) denote the filtration generated by the
random variables ηi . The following exercise summarizes basic properties of the process X (h) in the case
of normally distributed increments.

Exercise. Suppose that the random variables ηi are standard normally distributed.

(i) Prove that the process X (h) is a time-homogeneous (Fn)Markov chain with transition kernel

p(x, • ) = N(x + b(x)h, σ(x)2h)[ • ].

(ii) Show that the Doob decomposition X (h) = M (h) + A(h) is given by

A(h)n =

n−1∑
k=0

b(X (h)
k
) · h, M (h)n = x0 +

n−1∑
k=0

σ(X (h)
k
)
√

h ηk+1, (2.10)

and the conditional variance process of the martingale part is

〈M (h)〉n =

n−1∑
k=0

σ(X (h)
k
)2 · h. (2.11)

(iii) Conclude that

E[(M (h)n − x0)
2] =

n−1∑
k=0

E[σ(X (h)
k
)2] · h. (2.12)

Remark (Quadratic variation). The quadratic variation of a square integrable martingale (Mn)n∈Z+ is the
process [M]n defined by

[M]n =
n∑

k=1
(Mk − Mk−1)

2, n ≥ 0.

It is easy to verify that M2
n − [M]n is again a martingale. However, [M]n is not predictable. For continuous

martingales in continuous time, the quadratic variation and the conditional variance process coincide. In
discrete time or for discontinuous martingales they are usually different.
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Martingale problem

For a Markov chain (Xn) we obtain a Doob decomposition

f (Xn) = M [ f ]n + A[ f ]n (2.13)

for every function f on the state space such that f (Xn) is integrable for each n. Computation of the predictable
part leads to the following general result:

Theorem 2.10 (Martingale problem for time-homogeneuous Markov chains). Let p be a stochastic
kernel on a measurable space (S,B). Then for an (Fn) adapted stochastic process (Xn)n≥0 with state
space (S,B) the following statements are equivalent:

(i) (Xn) is a time homogeneous (Fn)Markov chain with transition kernel p.

(ii) (Xn) is a solution of the martingale problem for the operator L = p − I, i.e., for every function
f : S → R such that f (Xn) is integrable for each n (or, equivalently, for every bounded function
f : S → R), there is a decomposition

f (Xn) = M [ f ]n +

n−1∑
k=0
(L f )(Xk), n ≥ 0,

with an (Fn) martingale (M [ f ]n ).

In particular, we see once more that if f (Xn) is integrable and f is harmonic (L f = 0) then f (Xn) is
a martingale, and if f is superharmonic (L f ≤ 0), then f (Xn) is a supermartingale. The theorem hence
extends Theorem 2.6 above.

Proof. The implication “(i)⇒(ii)” is just the Doob decomposition for f (Xn). In fact, by Theorem 2.8, the
predictable part is given by

A[ f ]n =

n−1∑
k=0

E[ f (Xk+1) − f (Xk) | Fk]

=

n−1∑
k=0
(p f (Xk) − f (Xk)) =

n−1∑
k=0
(L f )(Xk),

and M [ f ]n = f (Xn) − A[ f ]n is a martingale.
To prove the converse implication “(ii)⇒(i)” suppose that M [ f ]n is a martingale for every bounded function
f : S → R. Then almost surely,

0 = E[M [ f ]
n+1 − M [ f ]n | Fn]

= E[ f (Xn+1) − f (Xn) | Fn] − ((p f )(Xn) − f (Xn))

= E[ f (Xn+1) | Fn] − (p f )(Xn)

for every bounded function f . Hence (Xn) is an (Fn)Markov chain with transition kernel p. �

Example (One dimensional Markov chains). Suppose that under Px , the process (Xn) is a time ho-
mogeneous Markov chain with state space S = R or S = Z, initial state X0 = x, and transition kernel p.
Assuming Xn ∈ L

2(Ω,A,P) for each n, we define the “drift” and the “fluctuations” of the process by

b(x) = Ex[X1 − X0],

a(x) = Varx[X1 − X0].
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We now compute the Doob decomposition of (Xn). Choosing f (x) = x we have

(p f − f )(x) =

ˆ
y p(x, dy) − x = Ex[X1 − X0] = b(x).

Hence by Theorem 2.10,

Xn = Mn +

n−1∑
k=0

b(Xk) (2.14)

with an (Fn) martingale (Mn). To obtain detailed information on Mn, we compute the variance process.
By (2.14) and the Markov property, we obtain

〈M〉n =
n−1∑
k=0

Var[Mk+1 − Mk | Fk] =

n−1∑
k=0

Var[Xk+1 − Xk | Fk] =

n−1∑
k=0

a(Xk).

Therefore

M2
n = M̃n +

n−1∑
k=0

a(Xk) (2.15)

with another (Fn) martingale (M̃n). The functions a(x) and b(x) can now be used in connection with
fundamental results for martingales as e.g. the maximal inequality (see Section 2.4 below) in order to
derive bounds for Markov chains in an efficient way.

2.3. Gambling strategies and stopping times

Throughout this section, we fix a filtration (Fn)n≥0 on a probability space (Ω,A,P).

Martingale transforms

Suppose that (Mn)n∈Z+ is a martingale w.r.t. the filtration (Fn), and (Cn)n∈N is a predictable sequence of
real-valued random variables. For example, we may think of Cn as the stake in the n-th round of a fair game,
and of the martingale increment Mn −Mn−1 as the net gain (resp. loss) per unit stake. In this case, the capital
In of a player with gambling strategy (Cn) after n rounds is given recursively by

In = In−1 + Cn · (Mn − Mn−1) i.e.,

In = I0 +

n∑
k=1

Ck · (Mk − Mk−1).

Definition 2.11 (Martingale transform). The stochastic process C•M defined by

(C•M)n :=
n∑

k=1
Ck · (Mk − Mk−1) for any n ≥ 0,

is called the martingale transform of the martingale (Mn)n≥0 w.r.t. the predictable sequence (Cn)n≥1.

We will see later that the process C•M is a time-discrete version of the stochastic integral
´

Cs dMs of
a predictable continuous-time process C w.r.t. a continuous-time martingale M . To be precise, (C•M)n
coincides with the Itô integral

´ n
0 Cdt e dMbt c of the left continuous jump process t 7→ Cdt e w.r.t. the right

continuous martingale t 7→ Mbt c .
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Example (Martingale strategy). One origin of the word “martingale” is the name of a well-known
gambling strategy: In a standard coin-tossing game, the stake is doubled each time a loss occurs, and the
player stops the game after the first time he wins. If the net gain in n rounds with unit stake is given by a
standard Random Walk, i.e.,

Mn = η1 + . . . + ηn, ηi i.i.d. with P[ηi = 1] = P[ηi = −1] = 1/2,

then the stake in the n-th round is

Cn = 2n−1 if η1 = . . . = ηn−1 = −1, and Cn = 0 otherwise.

Clearly, with probability one, the game terminates in finite time, and at that time the player has always
won one unit, i.e.,

P[(C•M)n = 1 eventually] = 1.

−1

−2

−3

−4

−5

−6

−7

1

2

n

(C•M)n

At first glance this looks like a safe winning strategy, but of course this would only be the case, if the
player had unlimited capital and time available.

Theorem 2.12 (You can’t beat the system!). (i) If (Mn)n≥0 is an (Fn) martingale, and (Cn)n≥1 is
predictable with Cn · (Mn − Mn−1) ∈ L

1(Ω,A,P) for any n ≥ 1, then C•M is again an (Fn)
martingale.

(ii) If (Mn) is an (Fn) supermartingale and (Cn)n≥1 is non-negative and predictable with Cn · (Mn −

Mn−1) ∈ L
1 for any n, then C•M is again a supermartingale.
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Proof. For n ≥ 1 we have

E[(C•M)n − (C•M)n−1 | Fn−1] = E[Cn · (Mn − Mn−1) | Fn−1]

= Cn · E[Mn − Mn−1 | Fn−1] = 0 P-a.s.

This proves the first part of the claim. The proof of the second part is similar. �

The theorem shows that a fair game (a martingale) can not be transformed by choice of a clever gambling
strategy into an unfair (or “superfair”) game. In models of financial markets this fact is crucial to exclude
the existence of arbitrage possibilities (riskless profit).

Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain

E[(C•M)n] = E[(C•M)0] = 0 for all n ≥ 0

by the martingale property, although

lim
n→∞
(C•M)n = 1 P-almost surely.

This is a classical example showing that the assertion of the dominated convergence theorem may not
hold if the assumptions are violated.

Remark. The integrability assumption in Theorem 2.12 is always satisfied if the random variables Cn are
bounded, or if both Cn and Mn are square-integrable for any n.

Example (Financial market model with one risky asset). Suppose that during each time interval (n−
1,n), an investor is holding Φn units of an asset with price Sn per unit at time n. We assume that (Sn)
is an adapted and (Φn) is a predictable stochastic process w.r.t. a filtration (Fn). If the investor always
puts his remaining capital onto a bank account with guaranteed interest rate r (“riskless asset”) then the
change of his capital Vn during the time interval (n − 1,n) is given by

Vn = Vn−1 + Φn · (Sn − Sn−1) + (Vn−1 − Φn · Sn−1) · r . (2.16)

Considering the discounted quantity Ṽn = Vn/(1 + r)n, we obtain the equivalent recursion

Ṽn = Ṽn−1 + Φn · (S̃n − S̃n−1) for any n ≥ 1. (2.17)

In fact, (2.16) holds if and only if

Vn − (1 + r)Vn−1 = Φn · (Sn − (1 + r)Sn−1),

which is equivalent to (2.17). Therefore, the discounted capital at time n is given by

Ṽn = V0 + (Φ•S̃)n.

By Theorem 2.12, we can conclude that if the discounted price process (S̃n) is an (Fn)martingale w.r.t. a
given probability measure, then (Ṽn) is a martingale as well. A probability measure P with this property
is called a martingale measure. If P is a martingale measure, then, assuming that V0 is constant, we
obtain in particular

EP[Ṽn] = V0,

or, equivalently,
E[Vn] = (1 + r)nV0 for any n ≥ 0. (2.18)

This fact, together with the existence of a martingale measure, can now be used for option pricing under
a no-arbitrage assumption. To this end we assume that the payoff of an option at time N is given by
an (FN )-measurable random variable F. For example, the payoff of a European call option with strike
price K based on the asset with price process (Sn) is SN − K if the price Sn at maturity exceeds K , and 0
otherwise, i.e.,

F = (SN − K)+.
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Suppose further that the option can be replicated by a hedging strategy (Φn), i.e., there exists an
F0-measurable random variable V0 and a predictable sequence of random variables (Φn)1≤n≤N such that

F = VN

is the value at time N of a portfolio with initial value V0 w.r.t. the trading strategy (Φn). Then, assuming
the non-existence of arbitrage possibilities, the option price at time 0 has to be V0, since otherwise one
could construct an arbitrage strategy by selling the option and investing money in the stock market with
strategy (Φn), or conversely. Therefore, if a martingale measure exists, then the no-arbitrage price of the
option at time 0 can be computed by (2.18) where the expectation is taken w.r.t. the martingale measure.

The following exercise shows how this works out in the Cox-Ross-Rubinstein binomial model:

Exercise (No-Arbitrage Pricing in the CRR model). Consider the CRR binomial model, i.e., Ω =
{1 + a,1 + b}N with −1 < a < r < b < ∞, Xi(ω1, . . . ,ωN ) = ωi , Fn = σ(X1, . . . ,Xn), and

Sn = S0 ·

n∏
i=1

Xi, n = 0,1, . . . ,N,

where S0 is a constant.

(i) Completeness of the CRR model: Prove that for any function F : Ω→ R there exists a constantV0
and a predictable sequence (Φn)1≤n≤N such that F = VN where (Vn)1≤n≤N is defined by (2.16),
or, equivalently,

F
(1 + r)N

= ṼN = V0 + (Φ•S̃)N .

Hence in the CRR model, any FN -measurable function F can be replicated by a predictable
trading strategy. Market models with this property are called complete.

Hint: Prove inductively that for n = N,N − 1, . . . ,0, F̃ = F/(1 + r)N can be represented as

F̃ = Ṽn +

N∑
i=n+1

Φi · (S̃i − S̃i−1)

with an Fn-measurable function Ṽn and a predictable sequence (Φi)n+1≤i≤N .

(ii) Option pricing: Derive a general formula for the no-arbitrage price of an option with payoff
function F : Ω → R in the CRR model. Compute the no-arbitrage price for a European call
option with maturity N and strike K explicitly.

Stopped Martingales

One possible strategy for controlling a fair game is to terminate the game at a time depending on the previous
development. Recall that a random variable T : Ω → {0,1,2, . . .} ∪ {∞} is called a stopping time w.r.t.
the filtration (Fn) if and only if the event {T = n} is contained in Fn for any n ≥ 0, or equivalently, iff
{T ≤ n} ∈ Fn for any n ≥ 0.

Example (Hitting times). (i) The first hitting time

TB = min{n ≥ 0 : Xn ∈ B} (where min ∅ := ∞)

and the first passage or return time

SB = min{n ≥ 1 : Xn ∈ B}

to a measurable subset B of the state space by an (Fn) adapted stochastic process (Xn) are (Fn)
stopping times. For example, for n ≥ 0,

{TB = n} = {X1 ∈ BC, . . . ,Xn−1 ∈ BC,Xn ∈ B} ∈ Fn.

If one decides to sell an asset as soon as the price Sn exceeds a given level λ > 0 then the selling
time equals T(λ,∞) and is hence a stopping time.
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(ii) On the other hand, the last visit time

LB := sup{n ≥ 0 : Xn ∈ B} (where sup ∅ := 0)

is not a stopping time in general. Intuitively, to decide whether LB = n, information on the future
development of the process is required.

We now consider an (Fn)-adapted stochastic process (Mn)n≥0, and an (Fn)-stopping time T on the
probability space (Ω,A,P). The process stopped at time T is defined as (MT∧n)n≥0 where

MT∧n(ω) = MT (ω)∧n(ω) =

{
Mn(ω) for n ≤ T(ω),
MT (ω)(ω) for n ≥ T(ω).

For example, the process stopped at a hitting time TB gets stuck at the first time it enters the set B.

Theorem 2.13 (Optional Stopping Theorem,Version 1). If (Mn)n≥0 is a martingale (resp. a supermartin-
gale) w.r.t. (Fn), and T is an (Fn)-stopping time, then the stopped process (MT∧n)n≥0 is again an (Fn)-
martingale (resp. supermartingale). In particular, we have

E[MT∧n]
(≤)
= E[M0] for any n ≥ 0.

Proof. Consider the following strategy:

Cn = I{T ≥n} = 1 − I{T ≤n−1},

i.e., we put a unit stake in each round before time T and quit playing at time T . Since T is a stopping time,
the sequence (Cn) is predictable. Moreover, for any n ≥ 0,

MT∧n − M0 = (C•M)n . (2.19)

In fact, for the increments of the stopped process we have

MT∧n − MT∧(n−1) =

{
Mn − Mn−1 if T ≥ n
0 if T ≤ n − 1

}
= Cn · (Mn − Mn−1),

and (2.19) follows by summing over n. Since the sequence (Cn) is predictable, bounded and non-negative,
the process C•M is a martingale, supermartingale respectively, provided the same holds for M . �

Remark (IMPORTANT). (i) In general, it is not true under the assumptions in Theorem 2.13 that

E[MT ] = E[M0], E[MT ] ≤ E[M0], respectively. (2.20)

Suppose for example that (Mn) is the classical Random Walk starting at 0 and T = T{1} is the first
hitting time of the point 1. Then, by recurrence of the RandomWalk, T < ∞ and MT = 1 hold almost
surely although M0 = 0.

(ii) If, on the other hand, T is a bounded stopping time, then there exists n ∈ N such that T(ω) ≤ n for
any ω. In this case, the optional stopping theorem implies

E[MT ] = E[MT∧n]
(≤)
= E[M0].

More general sufficient conditions for (2.20) are given in Theorems 2.14, 2.15 and 2.16 below.
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Example (Classical ruin problem). Let a, b, x ∈ Z with a < x < b. We consider the classical Random
Walk

Xn = x +
n∑
i=1

ηi, ηi i.i.d. with P[ηi = ±1] =
1
2
,

with initial value X0 = x. We now show how to apply the Optional Stopping Theorem to compute the
distributions of the exit time

T(ω) = min{n ≥ 0 : Xn(ω) < (a, b)},

and the exit point XT . These distributions can also be computed by more traditional methods (first step
analysis, reflection principle), but martingales yield an elegant and general approach.

(i) Ruin probability r(x) = P[XT = a].
The process (Xn) is a martingale w.r.t. the filtration Fn = σ(η1, . . . , ηn), and T < ∞ almost surely
holds by elementary arguments. As the stopped process XT∧n is bounded (a ≤ XT∧n ≤ b), we
obtain

x = E[X0] = E[XT∧n]
n→∞
→ E[XT ] = a · r(x) + b · (1 − r(x))

by the Optional Stopping Theorem and the Dominated Convergence Theorem. Hence

r(x) =
b − x
a − x

. (2.21)

(ii) Mean exit time from (a, b).
To compute the expectation E[T], we apply the Optional Stopping Theorem to the (Fn)martingale

Mn := X2
n − n.

By monotone and dominated convergence, we obtain

x2 = E[M0] = E[MT∧n] = E[X2
T∧n] − E[T ∧ n]

n→∞
−→ E[X2

T ] − E[T].

Therefore, by (2.21),

E[T] = E[X2
T ] − x2 = a2 · r(x) + b2 · (1 − r(x)) − x2

= (b − x) · (x − a). (2.22)

(iii) Mean passage time of b.
The first passage time Tb = min{n ≥ 0 : Xn = b} is greater or equal than the exit time from the
interval (a, b) for any a < x. Thus by (2.22), we have

E[Tb] ≥ lim
a→−∞

(b − x) · (x − a) = ∞,

i.e., Tb is not integrable! These and some other related passage times are important examples of
random variables with a heavy-tailed distribution and infinite first moment.

(iv) Distribution of passage times.
We now compute the distribution of the first passage time Tb explicitly in the case x = 0 and
b = 1. Hence let T = T1. As shown above, the process

Mλ
n := eλXn/(cosh λ)n, n ≥ 0,

is a martingale for each λ ∈ R. Now suppose λ > 0. By the Optional Stopping Theorem,

1 = E[Mλ
0 ] = E[Mλ

T∧n
] = E[eλXT∧n/(cosh λ)T∧n] (2.23)

for any n ∈ N. As n → ∞, the integrands on the right hand side converge to eλ(cosh λ)−T ·
I{T<∞}. Moreover, they are uniformly bounded by eλ, since XT∧n ≤ 1 for any n. Hence by the
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Dominated Convergence Theorem, the expectation on the right hand side of (2.23) converges to
E[eλ/(cosh λ)T ; T < ∞], and we obtain the identity

E[(cosh λ)−T ; T < ∞] = e−λ for any λ > 0. (2.24)

Taking the limit as λ ↘ 0, we see that P[T < ∞] = 1. Taking this into account, and substituting
s = 1/cosh λ in (2.24), we can now compute the generating function of T explicitly:

E[sT ] = e−λ = (1 −
√

1 − s2)/s for any s ∈ (0,1). (2.25)

Developing both sides into a power series finally yields
∞∑
n=0

sn · P[T = n] =
∞∑

m=1
(−1)m+1

(
1/2
m

)
s2m−1.

Therefore, the distribution of the first passage time of 1 is given by

P[T = 2m − 1] = (−1)m+1
(
1/2
m

)
= (−1)m+1 ·

1
2
·

(
−

1
2

)
· · ·

(
1
2
− m + 1

)
/m!

and P[T = 2m] = 0 for any m ∈ N.

Optional Stopping Theorems

Stopping times occurring in applications are typically not bounded. Therefore, we need more general
conditions guaranteeing that (2.20) holds nevertheless. A first general criterion is obtained by applying the
Dominated Convergence Theorem:

Theorem 2.14 (Optional Stopping Theorem, Version 2). Suppose that (Mn) is a martingale w.r.t. (Fn),
T is an (Fn)-stopping time with P[T < ∞] = 1, and there exists a random variable Y ∈ L1(Ω,A,P) such
that

|MT∧n | ≤ Y P-almost surely for any n ∈ N.

Then
E[MT ] = E[M0].

Proof. Since P[T < ∞] = 1, we have

MT = lim
n→∞

MT∧n P-almost surely.

By Theorem 2.13, E[M0] = E[MT∧n], and by the Dominated Convergence Theorem, E[MT∧n] −→ E[MT ]

as n→∞. �

Remark (Weakening the assumptions). Instead of the existence of an integrable random variable Y dom-
inating the random variables MT∧n, n ∈ N, it is enough to assume that these random variables are uniformly
integrable, i.e.,

sup
n∈N

E
[
|MT∧n | ; |MT∧n | ≥ c

]
→ 0 as c→∞.

A corresponding generalization of the Dominated Convergence Theorem is proven in Section 4.3 below.

For non-negative supermartingales, we can apply Fatou’s Lemma instead of the Dominated Convergence
Theorem to pass to the limit as n → ∞ in the Stopping Theorem. The advantage is that no integrability
assumption is required. Of course, the price to pay is that we only obtain an inequality:
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Theorem 2.15 (Optional Stopping Theorem, Version 3). If (Mn) is a non-negative supermartingalew.r.t.
(Fn), then

E[M0] ≥ E[MT ; T < ∞]

holds for any (Fn) stopping time T .

Proof. Since MT = lim
n→∞

MT∧n on {T < ∞}, and MT ≥ 0, Theorem 2.13 combined with Fatou’s Lemma
implies

E[M0] ≥ lim inf
n→∞

E[MT∧n] ≥ E
[
lim inf
n→∞

MT∧n

]
≥ E[MT ; T < ∞]. �

Example (Dirichlet problem for Markov chains). Suppose that w.r.t. the probability measure Px , the
process (Xn) is a time-homogeneous Markov chain with measurable state space (S,B) and transition
kernel p such that P[X0 = x] = 1. Let D ∈ B be a measurable subset of the state space, and f : DC → R
a measurable function (the given “boundary values”), and let

T = min{n ≥ 0 : Xn ∈ DC}

denote the first exit time of the Markov chain from D. By conditioning on the first step of the Markov
chain, one can show that if f is non-negative or bounded, then the function

h(x) = Ex[ f (XT ) ; T < ∞] (x ∈ S)

is a solution of the Dirichlet problem

(ph)(x) = h(x) for x ∈ D,

h(x) = f (x) for x ∈ DC,

see e.g. [3]. By considering the martingale h(XT∧n) for a function h that is harmonic on D, we obtain a
converse statement:

D

DC

Exercise (Uniqueness of the Dirichlet problem). Suppose that Px[T < ∞] = 1 for all x ∈ S.

(i) Prove that for any bounded solution h of the Dirichlet problem and for any x ∈ S, h(XT∧n) is a
martingale w.r.t. Px .
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(ii) Conclude that if f is bounded, then

h(x) = Ex[ f (XT )] (2.26)

is the unique bounded solution of the Dirichlet problem.

(iii) Similarly, show that for any non-negative f , the function h defined by (2.26) is the minimal
non-negative solution of the Dirichlet problem.

We finally state a version of the Optional Stopping Theorem that applies in particular to martingales with
bounded increments:

Corollary 2.16 (Optional Stopping for martingales with bounded increments). Suppose that (Mn) is
an (Fn) martingale, and there exists a finite constant K ∈ (0,∞) such that

E[|Mn+1 − Mn | | Fn] ≤ K P-almost surely for any n ≥ 0. (2.27)

Then for every (Fn) stopping time T with E[T] < ∞, we have

E[MT ] = E[M0].

Proof. For any n ≥ 0,

|MT∧n | ≤ |M0 | +

∞∑
i=0
|Mi+1 − Mi | · I{T>i } .

Let Y denote the expression on the right hand side. We will show that Y is an integrable random variable
– this implies the assertion by Theorem 2.14. To verify integrability of Y note that the event {T > i} is
contained in Fi for any i ≥ 0 since T is a stopping time. Therefore and by (2.27),

E[|Mi+1 − Mi | ; T > i] = E[E[|Mi+1 − Mi | | Fi] ; T > i] ≤ k · P[T > i].

Summing over i, we obtain

E[Y ] ≤ E[|M0 |] + k ·
∞∑
i=0

P[T > i] = E[|M0 |] + k · E[T] < ∞

by the assumptions. �

Exercise (Integrability of stopping times). Prove that the expectation E[T] of a stopping time T is
finite if there exist constants ε > 0 and k ∈ N such that

P[T ≤ n + k | Fn] ≥ ε P-a.s. for any n ∈ N.

Wald’s identity for random sums

We finally apply the Optional Stopping Theorem to sums of independent random variables with a random
number T of summands. The point is that we do not assume that T is independent of the summands but only
that it is a stopping time w.r.t. the filtration generated by the summands.

Let Sn = η1 + . . . + ηn with i.i.d. random variables ηi ∈ L1(Ω,A,P). Denoting by m the expectations of the
increments ηi, the process

Mn = Sn − n · m

is a martingale w.r.t. Fn = σ(η1, . . . , ηn). By applying Corollary 2.16 to this martingale, we obtain:
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Theorem 2.17 (Wald’s identity). Suppose that T is an (Fn) stopping time with E[T] < ∞. Then

E[ST ] = m · E[T].

Proof. For any n ≥ 0, we have

E[|Mn+1 − Mn | | Fn] = E[|ηn+1 − m| |Fn] = E[|ηn+1 − m|]

by the independence of the ηi. As the ηi are identically distributed and integrable, the right hand side is a
finite constant. Hence Corollary 2.16 applies, and we obtain

0 = E[M0] = E[MT ] = E[ST ] − m · E[T]. �

2.4. Maximal inequalities

For a standard Random Walk Sn = η1 + . . . + ηn, ηi i.i.d. with P[ηi = ±1] = 1/2, the reflection principle
implies the identity

P[max(S0,S1, . . . ,Sn) ≥ c] = P[Sn ≥ c] + P[Sn < c; max(S0,S1, . . . ,Sn) ≥ c]

= P[|Sn | > c] + P[Sn > c].

In combination with the Markov-Čebyšev inequality this can be used to control the running maximum of the
Random Walk in terms of the moments of the last value Sn.

Maximal inequalities are corresponding estimates for max(M0,M1, . . . ,Mn) or sup Mk when (Mn) is a sub-
or supermartingale respectively. These estimates are an important tool in stochastic analysis. They are a
consequence of the Optional Stopping Theorem.

Doob’s inequality

We first prove the basic version of maximal inequalities for sub- and supermartingales.

Theorem 2.18 (Doob).

(i) Suppose that (Mn)n≥0 is a non-negative supermartingale. Then

P
[
sup
k≥0

Mk ≥ c
]
≤

1
c
· E[M0] for any c > 0.

(ii) Suppose that (Mn)n≥0 is a non-negative submartingale. Then

P
[

max
0≤k≤n

Mk ≥ c
]
≤

1
c
· E

[
Mn ; max

0≤k≤n
Mk ≥ c

]
≤

1
c
· E[Mn] for any c > 0.
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Proof. (i) For c > 0 we consider the stopping time

Tc = min{k ≥ 0 : Mk ≥ c}, min ∅ = ∞.

Note that Tc < ∞ whenever sup Mk > c. Hence by the version of the Optional Stopping Theorem for
non-negative supermartingales, we obtain

P[sup Mk > c] ≤ P[Tc < ∞] ≤
1
c

E[MTc ; Tc < ∞] ≤
1
c

E[M0].

Here we have used in the second and third step that (Mn) is non-negative. Replacing c by c − ε and
letting ε tend to zero we can conclude

P[sup Mk ≥ c] = lim
ε↘0

P[sup Mk > c − ε] ≤ lim inf
ε↘0

1
c − ε

E[M0] =
1
c

E[M0].

(ii) For a non-negative submartingale, we obtain

P
[

max
0≤k≤n

Mk ≥ c
]
= P[Tc ≤ n] ≤

1
c

E[MTc ; Tc ≤ n]

=
1
c

n∑
k=0

E[Mk ; Tc = k] ≤
1
c

n∑
k=0

E[Mn ; Tc = k]

=
1
c
· E[Mn ; Tc ≤ n].

Here we have used in the second last step that E[Mk ; Tc = k] ≤ E[Mn ; Tc = k] since (Mn) is a
submartingale and {Tc = k} is in Fk . �

As a first consequence of Doob’s maximal inequality for submartingales we obtain extensions of the
classical Markov- Čebyšev inequalities:

Corollary 2.19. (i) Suppose that (Mn)n≥0 is an arbitrary submartingale (not necessarily non-
negative!). Then

P
[
max
k≤n

Mk ≥ c
]
≤

1
c

E
[
M+n ; max

k≤n
Mk ≥ c

]
for any c > 0, and

P
[
max
k≤n

Mk ≥ c
]
≤ e−λcE

[
eλMn ; max

k≤n
Mk ≥ c

]
for any λ, c > 0.

(ii) If (Mn) is a martingale then, moreover, the estimates

P
[
max
k≤n
|Mk | ≥ c

]
≤

1
cp

E
[
|Mn |

p ; max
k≤n
|Mk | ≥ c

]
hold for any c > 0 and p ∈ [1,∞).

Proof. The corollary follows by applying the maximal inequality to the non-negative submartingales
M+n ,exp(λMn), |Mn |

p respectively. These processes are indeed submartingales, as the functions x 7→ x+ and
x 7→ exp(λx) are convex and non-decreasing for any λ > 0, and the functions x 7→ |x |p are convex for any
p ≥ 1. �
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Lp inequalities

The last estimate in Corollary 2.19 can be used to bound the Lp norm of the runningmaximumof amartingale
in terms of the Lp-norm of the last value. The resulting bound, known as Doob’s Lp-inequality, is crucial
for stochastic analysis. We first remark:

Lemma 2.20. If Y : Ω→ R+ is a non-negative random variable, and G(y) =
ý

0
g(x) dx is the integral of a

non-negative function g : R+ → R+, then

E[G(Y )] =

∞̂

0

g(c) · P[Y ≥ c] dc.

Proof. By Fubini’s theorem we have

E[G(Y )] = E


Ŷ

0

g(c) dc
 = E


∞̂

0

I[0,Y](c)g(c) dc


=

∞̂

0

g(c) · P[Y ≥ c] dc. �

Theorem 2.21 (Doob’s Lp inequality). Suppose that (Mn)n≥0 is a martingale, and let

M∗n := max
k≤n
|Mk |, and M∗ := sup

k

|Mk |.

Then, for any p,q ∈ (1,∞) such that 1
p +

1
q = 1, we have

‖M∗n‖Lp ≤ q · ‖Mn‖Lp , and ‖M∗‖Lp ≤ q · sup
n
‖Mn‖Lp .

In particular, if (Mn) is bounded in Lp then M∗ is contained in Lp.

Proof. By Lemma 2.20, Corollary 2.19 applied to the martingales Mn and (−Mn), and Fubini’s theorem,

E[(M∗n)
p]

2.20
=

ˆ ∞
0

pcp−1P[M∗n ≥ c] dc

2.19
≤

ˆ ∞
0

pcp−2E[|Mn | ; M∗n ≥ c] dc

Fub.
= E

[
|Mn | ·

ˆ M∗n

0
pcp−2 dc

]
=

p
p − 1

E[|Mn | · (M∗n)
p−1]

for any n ≥ 0 and p ∈ (1,∞). Setting q = p
p−1 and applying Hölder’s inequality to the right hand side, we

obtain
E[(M∗n)

p] ≤ q · ‖Mn‖Lp · ‖(M∗n)
p−1‖Lq = q · ‖Mn‖Lp · E[(M∗n)

p]1/q,
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i.e.,
‖M∗n‖Lp = E[(M∗n)

p]1−1/q ≤ q · ‖Mn‖Lp . (2.28)

This proves the first inequality. The second inequality follows as n→∞, since

‖M∗‖Lp =




 lim
n→∞

M∗n




Lp
≤ lim inf

n→∞



M∗n



Lp ≤ q · sup

n∈N
‖Mn‖Lp

by Fatou’s Lemma. �

Hoeffding’s inequality

For a standard RandomWalk (Sn) starting at 0, the reflection principle combined with Bernstein’s inequality
implies the upper bound

P[max(S0, . . . ,Sn) ≥ c] ≤ 2 · P[Sn ≥ c] ≤ 2 · exp(−2c2/n)

for any n ∈ N and c ∈ (0,∞). A similar inequality holds for arbitrary martingales with bounded increments:

Theorem 2.22 (Azuma, Hoeffding). Suppose that (Mn) is a martingale such that

|Mn − Mn−1 | ≤ an P-almost surely

for a sequence (an) of non-negative constants. Then

P
[
max
k≤n
(Mk − M0) ≥ c

]
≤ exp

(
−

1
2

c2

/
n∑
i=1

a2
i

)
(2.29)

for any n ∈ N and c ∈ (0,∞).

Proof. W.l.o.g. we may assume M0 = 0. Let Yn = Mn − Mn−1 denote the martingale increments. We will
apply the exponential form of the maximal inequality. For λ > 0 and n ∈ N, we have,

E[eλMn ] = E

[
n∏
i=1

eλYi
]
= E

[
eλMn−1 · E

[
eλYn | Fn−1

] ]
. (2.30)

To bound the conditional expectation, note that almost surely, we have

eλYn ≤
1
2

an − Yn
an

e−λan +
1
2

an + Yn
an

eλan,

since x 7→ exp(λx) is a convex function, and −an ≤ Yn ≤ an. Indeed, the right hand side is the value at Yn
of the secant connecting the points (−an,exp(−λan)) and (an,exp(λan)). Since (Mn) is a martingale,

E[Yn |Fn−1] = 0,

and therefore
E[eλYn | Fn−1] ≤

(
e−λan + eλan

)
/2 = cosh(λan) ≤ e(λan)

2/2

almost surely. Now, by (2.30), we obtain

E[eλMn ] ≤ E[eλMn−1] · e(λan)
2/2.
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Hence, by induction on n,

E[eλMn ] ≤ exp

(
1
2
λ2

n∑
i=1

a2
i

)
for any n ∈ N, (2.31)

and, by the exponential maximal inequality in Corollary 2.19,

P[max
k≤n

Mk ≥ c] ≤ exp

(
−λc +

1
2
λ2

n∑
i=1

a2
i

)
(2.32)

holds for any n ∈ N and c, λ > 0. For a given c and n, the expression on the right hand side of (2.32) is
minimal for λ = c/

∑n
i=1 a2

i . Choosing λ correspondingly, we finally obtain the upper bound (2.29). �

Hoeffding’s concentration inequality has numerous applications, for example in the analysis of algorithms,
see e.g. [11]. Here, we just consider one simple example to illustrate the way it typically is applied:

Example (Pattern Matching). Suppose that X1,X2, . . . ,Xn is a sequence of independent, uniformly
distributed random variables (“letters”) taking values in a finite set S (the underlying “alphabet”), and
let

N =
n−l∑
i=0

I{Xi+1=a1 ,Xi+2=a2 ,...,Xi+l=al } (2.33)

denote the number of occurrences of a given “word” a1a2 · · · al with l letters in the random text. In
applications, the “word” could for example be a DNA sequence. We easily obtain

E[N] =
n−l∑
i=0

P[Xi+k = ak for k = 1, . . . , l] = (n − l + 1)/|S |l . (2.34)

To estimate the fluctuations of the random variable N around its mean value, we consider the martingale

Mi = E[N | σ(X1, . . . ,Xi)] (i = 0,1, . . . ,n)

with initial value M0 = E[N] and terminal value Mn = N . Since at most l of the summands in (2.33)
are not independent of i, and each summand takes values 0 and 1 only, we have

|Mi − Mi−1 | ≤ l for each i = 0,1, . . . ,n.

Therefore, by Hoeffding’s inequality, applied in both directions, we obtain

P[|N − E[N]| ≥ c] = P[|Mn − M0 | ≥ c] ≤ 2 exp(−c2/(2nl2))

for any c > 0, or equivalently,

P[|N − E[N]| ≥ ε · l
√

n] ≤ 2 · exp(−ε2/2) for any ε > 0. (2.35)

The equation (2.34) and the bound (2.35) show that N is highly concentrated around its mean if l is small
compared to

√
n.
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The notion of a martingale, sub- and supermartingale in continuous time can be defined similarly as in the
discrete time case. Fundamental results such as the optional stopping theorem or themaximal inequality carry
over from discrete to continuous time martingales under additional regularity conditions as, for example,
continuity of the sample paths. Similarly as for Markov chains in discrete time, martingale methods can be
applied to derive explicit expressions and bounds for probabilities and expectations of Brownian motion in
a clear and efficient way.

We start with the definition of martingales in continuous time. Let (Ω,A,P) denote a probability space.

Definition 3.1. (i) A continuous-time filtration on (Ω,A) is a family (Ft )t∈[0,∞) of σ-algebras Ft ⊆ A
such that Fs ⊆ Ft for any 0 ≤ s ≤ t.

(ii) A real-valued stochastic process (Mt )t∈[0,∞) on (Ω,A,P) is called a martingale (or super-, sub-
martingale) w.r.t. a filtration (Ft ) if and only if

a) (Mt ) is adapted w.r.t. (Ft ), i.e., Mt is Ft measurable for every t ≥ 0.

b) For every t ≥ 0, the random variable Mt (resp. M+t ,M
−
t ) is integrable.

c) E[Mt | Fs]
(≤,≥)
= Ms P-almost surely for any 0 ≤ s ≤ t.

3.1. Some fundamental martingales of Brownian Motion

In this section, we identify some important martingales that are functions of Brownian motion. Let (Bt )t≥0
denote a d-dimensional Brownian motion defined on (Ω,A,P).

Filtrations generated by Brownian motion

Any stochastic process (Xt )t≥0 in continuous time generates a filtration

F X
t = σ(Xs : 0 ≤ s ≤ t), t ≥ 0.

However, not every hitting time that we are interested in is a stopping time w.r.t. this filtration. For example,
for one-dimensional Brownian motion (Bt ), the first hitting time T = inf{t ≥ 0 : Bt > c} of the open
interval (c,∞) is not an (F B

t ) stopping time. An intuitive explanation for this fact is that for t ≥ 0, the event
{T ≤ t} is not contained in F B

t , since for a path with Bs ≤ c on [0, t] and Bt = c, we can not decide at time
t, if the path will enter the interval (c,∞) in the next instant. For this and other reasons, we also consider the
right-continuous filtration

Ft :=
⋂
ε>0
F B
t+ε, t ≥ 0,

that takes into account “infinitesimal information on the future development.”

Exercise (Hitting times as stopping times). Prove that the first hitting time TA = inf{t ≥ 0 : Bt ∈ A}
of a set A ⊆ Rd is an (F B

t ) stopping time if A is closed, whereas TA is an (Ft ) stopping time, but not
necessarily an (F B

t ) stopping time if A is open.
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It is easy to verify that a d-dimensional Brownian motion (Bt ) is also a Brownian motion w.r.t. the
right-continuous filtration (Ft ):

Lemma 3.2. For any 0 ≤ s < t, the increment Bt −Bs is independent of Fs with distribution N(0, (t− s) · Id).

Proof. Since t 7→ Bt is almost surely continuous, we have

Bt − Bs = lim
ε↘0
ε∈Q

(Bt − Bs+ε) P-a.s. (3.1)

For small ε > 0 the increment Bt − Bs+ε is independent of F B
s+ε , and hence independent of Fs. Therefore,

by (3.1), Bt − Bs is independent of Fs as well. �

Another filtration of interest is the completed filtration (F P
t ). A σ-algebra F is called complete w.r.t. a

probability measure P iff it contains all subsets of P-measure zero sets. The completion of the filtration (Ft )
on the probability space (Ω,A,P) is the complete filtration defined by

F P
t = {A ⊆ Ω : ∃A1, A2 ∈ A : A1 ⊆ A ⊆ A2,P[A2 \ A1] = 0}.

Thus the σ-algebra F P
t is generated by all sets in Ft and all subsets of P-measure zero sets in A.

It can be shown that the completion (F P
t ) of the right-continuous filtration (Ft ) is again right-continuous.

Using the strong Markov property of Brownian motion, it can also be shown that the completion (F B,P
t ) of

the filtration (F B
t ) is complete and right-continuous, i.e., F B,P

t = F P
t , see e.g. [9, Section 2.7, Proposition

7.7]. The assertion of Lemma 3.2 obviously carries over to the completed filtration.

Remark (The “usual conditions”). Some textbooks on stochastic analysis consider only complete right-
continuous filtrations. A filtration with these properties is said to satisfy the usual conditions. A disadvantage
of completing the filtration, however, is that (F P

t ) depends on the underlying probability measure P (or, more
precisely, on its null sets). This can cause problems when considering several non-equivalent probability
measures at the same time.

Brownian Martingales

We now identify some basic martingales of Brownian motion:

Theorem 3.3 (Elementary martingales of Brownian motion). For a d-dimensional Brownian motion
(Bt ) the following processes are martingales w.r.t. each of the filtrations (F B

t ), (Ft ) and (F P
t ):

(i) The coordinate processes B(i)t , 1 ≤ i ≤ d.

(ii) B(i)t B(j)t − t · δi j for any 1 ≤ i, j ≤ d.

(iii) exp(α · Bt −
1
2 |α |

2t) for any α ∈ Rd.

The processes Mα
t = exp(α · Bt −

1
2 |α |

2t) are called exponential martingales.

Proof. We only prove the second assertion for d = 1 and the right-continuous filtration (Ft ). The verification
of the remaining statements is left as an exercise. For d = 1, since Bt is normally distributed, the Ft -
measurable random variable B2

t − t is integrable for any t. Moreover, by Lemma 3.2,

E[B2
t − B2

s | Fs] = E[(Bt − Bs)
2 | Fs] + 2Bs · E[Bt − Bs | Fs]

= E[(Bt − Bs)
2] + 2Bs · E[Bt − Bs] = t − s
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almost surely. Hence
E[B2

t − t | Fs] = B2
s − s P-a.s. for any 0 ≤ s ≤ t,

i.e., B2
t − t is an (Ft ) martingale. �

Remark (Doob decomposition, variance process of Brownian motion). For a one-dimensional Brown-
ian motion (Bt ), the theorem yields the Doob decomposition

B2
t = Mt + t

of the submartingale (B2
t ) into a martingale (Mt ) and the continuous increasing adapted process 〈B〉t = t.

A Doob decomposition of the process f (Bt ) for general functions f ∈ C2(R) will be obtained below as a
consequence of Itô’s celebrated formula. It states that

f (Bt ) − f (B0) =

tˆ

0

f ′(Bs) dBs +
1
2

tˆ

0

f ′′(Bs) ds (3.2)

where the first integral is an Itô stochastic integral, see Section 6.3. If f ′ is bounded, then the Itô integral
It =

´ t
0 f ′(Bs) dBs is a martingale. If f is convex then f (Bt ) is a submartingale and the second integral in

(3.2) is a continuous increasing adapted process in t.

Itô’s formula (3.2) can also be extended to the multi-dimensional case, see Section 6.4 below. The second
derivative is then replaced by the Laplacian ∆ f =

∑d
i=1

∂2 f

∂x2
i

. The multi-dimensional Itô formula implies
that a sub- or superharmonic function of d-dimensional Brownian motion is a sub- or supermartingale,
respectively, if appropriate integrability conditions hold. We now give a direct proof of this fact by the mean
value property:

Lemma 3.4 (Mean value property for harmonic functions on Rd). Suppose that h ∈ C2(Rd) is a har-
monic (resp. superharmonic) function, i.e.,

∆h(x)
(≤)
= 0 for all x ∈ Rd .

Then for any x ∈ Rd and any rotationally invariant probability measure µ on Rd,
ˆ

h(x + y) µ(dy)
(≤)
= h(x). (3.3)

Proof. By the classical mean value property, h(x) is equal to (resp. greater or equal than) the average valueffl
∂Br (x)

h of h on any sphere ∂Br (x) with center at x and radius r > 0, cf. e.g. [KoenigsbergerAna2].
Moreover, if µ is a rotationally invariant probability measure then the integral in (3.3) is an average of
average values over spheres:

ˆ
h(x + y) µ(dy) =

ˆ  

∂Br (x)

h µR(dr)
(≤)
= h(x),

where µR is the distribution of R(x) = |x | under µ. �

Theorem 3.5 (Superharmonic functions of Brownian motion are supermartingales). If h ∈ C2(Rd) is
a (super-) harmonic function then the process (h(Bt ))t≥0 is a (super-) martingale w.r.t. (Ft ) provided h(Bt )

is integrable for every t ≥ 0.

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 67



3. Martingales in continuous time

Proof. By Lemma 3.2 and the mean value property, we obtain

E[h(Bt ) | Fs](ω) = E[h(Bs + Bt − Bs) | Fs](ω)

= E[h(Bs(ω) + Bt − Bs)]

=

ˆ
h(Bs(ω) + y) N(0, (t − s) I)(dy)

(≤)
= h(Bs(ω))

for every 0 ≤ s ≤ t and P-almost every ω. �

3.2. Optional Sampling and Optional Stopping

Suppose that T : Ω → [0,∞] is a stopping time w.r.t. a filtration (Ft )t≥0, i.e., {T ≤ t} ∈ Ft for every
t ≥ 0. Recall that similarly to the discrete time case, the σ-algebra FT of events that are observable up to
the stopping time T is defined as

FT = {A ⊆ Ω : A ∩ {T ≤ t} ∈ Ft for all t ≥ 0} .

Exercise (Stopping times). Let (Ft )t∈[0,∞) be a filtration on a probability space (Ω,A,P), and let S and
T be (Ft ) stopping times. Show that the following properties hold:

(i) T ∧ S, T ∨ S and T + S are again (Ft ) stopping times.

(ii) FT is a σ-algebra, and T is FT -measurable.

(iii) S ≤ T ⇒ FS ⊆ FT ;

(iv) FS∧T = FS ∩ FT ;

(v) The events {S < T}, {S ≤ T} and {S = T} are all contained in FS ∩ FT .

The Optional Sampling Theorem

The optional stopping theorem can be easily extended to continuous timemartingales with continuous sample
paths. We directly prove a generalization:

Theorem 3.6 (Optional Sampling Theorem). Suppose that (Mt )t∈[0,∞] is a martingale w.r.t. an arbitrary
filtration (Ft ) such that t 7→ Mt (ω) is continuous for P-almost every ω. Then

E[MT | FS] = MS P-almost surely (3.4)

for any bounded (Ft ) stopping times S and T with S ≤ T .

We point out that an additional assumption on the filtration (e.g. right-continuity) is not required in the
theorem.

Remark (Optional Stopping). By taking expectations in the Optional Sampling Theorem, we obtain

E[MT ] = E[E[MT | F0]] = E[M0]

for any bounded stopping time T . For unbounded stopping times,

E[MT ] = E[M0]

holds by dominated convergence provided T < ∞ almost surely, and the random variables MT∧n,n ∈ N, are
uniformly integrable.
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Proof (of Theorem 3.6.). We verify the defining properties of the conditional expectation in (3.4) by ap-
proximating the stopping times by discrete random variables:

(i) MS has an FS-measurable modification: For n ∈ N let S̃n = 2−n b2nSc, i.e., for any k ∈ Z+,

S̃n = k · 2−n on {k · 2−n ≤ S < (k + 1)2−n}.

We point out that in general, S̃n is not a stopping time w.r.t. (Ft ). Clearly, the sequence (S̃n)n∈N is
increasing with S = lim S̃n. By almost sure continuity

MS = lim
n→∞

MS̃n
P-almost surely. (3.5)

On the other hand, each of the random variables MS̃n
is FS-measurable. In fact,

MS̃n
· I{S≤t } =

∑
k:k2−n≤t

Mk2−n · I{k2−n≤S<(k+1)2−n and S≤t }

is Ft -measurable for any t ≥ 0 since S is an (Ft ) stopping time. Therefore, by (3.5), the random
variable M̃S := lim sup

n→∞
MS̃n

is an FS-measurable modification of MS .

(ii) E[MT ; A] = E[MS ; A] for any A ∈ FS: For n ∈ N, the discrete random variables Tn = 2−n · d2nTe
and Sn = 2−n · d2nSe are (Ft ) stopping times satisfying Tn ≥ Sn ≥ S, cf. the proof of Theorem 1.32.
In particular, FS ⊆ FSn ⊆ FTn . Furthermore, (Tn) and (Sn) are decreasing sequences with T = limTn

and S = lim Sn. As T and S are bounded random variables by assumption, the sequences (Tn) and
(Sn) are uniformly bounded by a finite constant c ∈ (0,∞). Therefore, we obtain

S(ω)

ω

Sn(ω)

S̃n(ω)

Figure 3.1.: Two ways to approximate a continuous stopping time.

E[MTn ; A] =
∑

k:k2−n≤c
E[Mk2−n ; A ∩ {Tn = k2−n}]

=
∑

k:k2−n≤c
E[Mc ; A ∩ {Tn = k2−n}] (3.6)

= E[Mc ; A] for any A ∈ FTn,
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and similarly
E[MSn ; A] = E[Mc ; A] for any A ∈ FSn . (3.7)

In (3.6) we have used that (Mt ) is an (Ft ) martingale, and A ∩ {Tn = k · 2−n} ∈ Fk ·2−n . A set A ∈ FS
is contained both in FTn and FSn . Thus by (3.6) and (3.7),

E[MTn ; A] = E[MSn ; A] for any n ∈ N and any A ∈ FS . (3.8)

As n → ∞, MTn → MT and MSn → MS almost surely by continuity. It remains to show that the
expectations in (3.8) converge as well. To this end note that by (3.6) and (3.7),

MTn = E[Mc | FTn ] and MSn = E[Mc | FSn ] P-almost surely.

We will prove in Section 4.3 that any family of conditional expectations of a given random variable
w.r.t. different σ-algebras is uniformly integrable, and that for uniformly integrable random variables
a generalized Dominated Convergence Theorem holds, cf. Theorem 4.14. Therefore, we finally obtain

E[MT ; A] = E[lim MTn ; A] = lim E[MTn ; A]

= lim E[MSn ; A] = E[lim MSn ; A] = E[MS ; A],

completing the proof of the theorem. �

Remark (Measurability and completion). In general, the random variable MS is not necessarily FS-
measurable. However, we have shown in the proof that MS always has an FS-measurable modification
M̃S . If the filtration contains all measure zero sets, then this implies that MS itself is FS-measurable and
hence a version of E[MT | FS].

Ruin probabilities and passage times revisited

Similarly as for random walks, the Optional Sampling Theorem can be applied to compute distributions of
passage times and hitting probabilities for Brownian motion. For a one-dimensional Brownian motion (Bt )

starting at 0, and a, b > 0, let

T = inf{t ≥ 0 : Bt < (−b,a)} and Ta = inf{t ≥ 0 : Bt = a}

denote the first exit time from the interval (−b,a) and the first passage time to the point a, respectively. In
Section 1.5 we have computed the distribution of Ta by the reflection principle. This and other results can
be recovered by applying optional stopping to the basic martingales of Brownian motion. The advantage of
this approach is that it carries over to other diffusion processes.

Exercise (Exit and passage times of Brownian motion). Prove by optional stopping:

(i) Law of the exit point: P[BT = a] = b/(a + b), P[BT = −b] = a/(a + b),

(ii) Mean exit time: E[T] = a · b and E[Ta] = ∞,

(iii) Laplace transform of passage times: For any s > 0,

E[exp(−sTa)] = exp(−a
√

2s).

Conclude that the distribution of Ta on (0,∞) is absolutely continuous with density

fTa (t) = a · (2πt3)−1/2 · exp(−a2/2t).
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Exit laws and Dirichlet problem

Applying optional stopping to harmonic functions of a multidimensional Brownian motion yields a gener-
alization of the mean value property and a stochastic representation for solutions of the Dirichlet problem.
This will be exploited in full generality in Chapter 7. Here, we only sketch the basic idea.

Suppose that h ∈ C2(Rd) is a harmonic function and that (Bt )t≥0 is a d-dimensional Brownian motion
starting at x w.r.t. the probability measure Px . Assuming that

Ex[h(Bt )] < ∞ for any t ≥ 0,

the mean value property for harmonic functions implies that h(Bt ) is a martingale under Px , cf. Theorem
3.5. The first hitting time T = inf{t ≥ 0 : Bt ∈ R

d \ D} of the complement of an open set D ⊆ Rd is a
stopping time w.r.t. the filtration (F B

t ). Therefore, by Theorem 3.6 and the remark below, we obtain

Ex[h(BT∧n)] = Ex[h(B0)] = h(x) for any n ∈ N. (3.9)

Now let us assume in addition that the set D is bounded. Then T is almost surely finite, and the sequence of
random variables h(BT∧n) (n ∈ N) is uniformly bounded because BT∧n takes values in the closure D for any
n ∈ N. Applying the Dominated Convergence Theorem to (3.9), we obtain the integral representation

h(x) = Ex[h(BT )] =

ˆ

∂D

h(y)µx(dy) (3.10)

where µx = Px ◦ B−1
T denotes the exit law from D for Brownian motion starting at x. In Chapter 7, we

show that the representation (3.10) still holds true if h is a continuous function defined on D that is C2 and
harmonic on D. The proof requires localization techniques that will be developed below in the context of
stochastic calculus. For the moment we note that the representation (3.10) has several important aspects and
applications:

Generalized mean value property for harmonic functions. For any bounded domain D ⊆ Rd and any
x ∈ D, h(x) is the average of the boundary values of h on ∂D w.r.t. the measure µx .

Stochastic representation for solutions of the Dirichlet problem. A solution h ∈ C2(D) ∩ C(D) of the
Dirichlet problem

∆h(x) = 0 for x ∈ D, (3.11)
h(x) = f (x) for x ∈ ∂D,

has a stochastic representation

h(x) = Ex[ f (BT )] for any x ∈ D. (3.12)

Monte Carlo solution of the Dirichlet problem. The stochastic representation (3.12) can be used as the
basis of a Monte Carlo method for computing the harmonic function h(x) approximately by simulating a
large number n of sample paths of Brownian motion starting at x, and estimating the expectation by the
corresponding empirical average. Although in many cases classical numerical methods are more efficient,
the Monte Carlo method is useful in high dimensional cases. Furthermore, it carries over to far more general
situations.
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Computation of exit law. Conversely, if the Dirichlet problem (3.11) has a unique solution h, then compu-
tation of h (for example by standard numerical methods) enables us to obtain the expectations in (3.12). In
particular, the probability h(x) = Px[BT ∈ A] for Brownian motion exiting the domain on a subset A ⊆ ∂D
is informally given as the solution of the Dirichlet problem

∆h = 0 on D, h = IA on ∂D.

This can be made rigorous under regularity assumptions. The full exit law is the harmonic measure, i.e., the
probability measure µx such that the representation (3.10) holds for any function h ∈ C2(D) ∩ C(D) with
∆h = 0 on D. For simple domains such as half-spaces, balls and cylinders, this harmonic measure can be
computed explicitly.

Example (Exit laws from balls). For d ≥ 2, the exit law from the unit ball D = {y ∈ Rd : |y | < 1}
for Brownian motion starting at a point x ∈ Rd with |x | < 1 is given by

µx(dy) =
1 − |x |2

|y − x |d
ν(dy)

where ν denotes the normalized surface measure on the unit sphere Sd−1 = {y ∈ Rd : |y | = 1}. Indeed,
the classical Poisson integral formula states that for any f ∈ C(Sd−1), the function

h(x) =
ˆ

f (y) µx(dy)

solves the Dirichlet problem on D with boundary values lim
x→z

h(x) = f (z) for all z ∈ Sd−1, cf. e.g. [9, Ch.
4]. Hence by (3.12),

Ex[ f (BT )] =

ˆ
f (y)

1 − |x |2

|y − x |d
ν(dy)

holds for any f ∈ C(Sd−1), and thus by a standard approximation argument, for any indicator function
of a measurable subset of Sd−1.

3.3. Maximal inequalities and the Law of the Iterated Logarithm

The extension of Doob’s maximal inequality to the continuous time case is straightforward. As a first
application, we give a proof for the upper bound in the law of the iterated logarithm.

Maximal inequalities in continuous time

Theorem 3.7 (Doob’s Lp inequality in continuous time). Suppose that (Mt )t∈[0,∞) is a martingale with
almost surely right continuous sample paths t 7→ Mt (ω). Then the following bounds hold for any a ∈ [0,∞),
p ∈ [1,∞), q ∈ (1,∞] with 1

p +
1
q = 1, and c > 0:

(i) P

[
sup

t∈[0,a]
|Mt | ≥ c

]
≤ c−p · E[|Ma |

p],

(ii)






 sup
t∈[0,a]

|Mt |







Lp

≤ q · ‖Ma‖Lp .

Remark. The same bounds hold for non-negative submartingales.
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Proof. Let (πn) denote an increasing sequence of partitions of the interval [0,a] such that the mesh size of
πn goes to 0 as n→∞. By Corollary 2.19 applied to the discrete time martingale (Mt )t∈πn , we obtain

P
[
max
t∈πn
|Mt | ≥ c

]
≤ E[|Ma |

p]/cp for any n ∈ N.

Moreover, as n→∞,
max
t∈πn
|Mt | ↗ sup

t∈[0,a]
|Mt | almost surely

by right continuity of the sample paths. Hence

P

[
sup

t∈[0,a]
|Mt | > c

]
= P

[⋃
n

{
max
t∈πn
|Mt | > c

}]
= lim

n→∞
P

[
max
t∈πn
|Mt | > c

]
≤ E[|Ma |

p]/cp .

The first assertion now follows by replacing c by c − ε and letting ε tend to 0. The second assertion follows
similarly from Theorem 2.21. �

As a first application of the maximal inequality to Brownian motion, we derive an upper bound for the
probability that the graph of one-dimensional Brownian motion passes a line in R2:

T

β

Lemma 3.8 (Passage probabilities for lines). For a one-dimensional Brownian motion (Bt ) starting at 0
we have

P[Bt ≥ β + αt/2 for some t ≥ 0] ≤ exp(−αβ) for any α, β > 0.

Proof. Applying the maximal inequality to the exponential martingale Mα
t = exp(αBt − α

2t/2) yields

P[Bt ≥ β + αt/2 for some t ∈ [0,a]] = P

[
sup

t∈[0,a]
(Bt − αt/2) ≥ β

]
= P

[
sup

t∈[0,a]
Mα

t ≥ exp(αβ)

]
≤ exp(−αβ) · E[Mα

a ] = exp(−αβ)

for any a > 0. The assertion follows in the limit as a→∞. �

With slightly more effort, it is possible to compute the passage probability and the distribution of the first
passage time of a line explicitly, see Theorem 9.10 below.
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Application to LIL

A remarkable consequence of Lemma 3.8 is a simplified proof for the upper bound half of the Law of the
Iterated Logarithm:

Theorem 3.9 (LIL, upper bound). For a one-dimensional Brownian motion (Bt ) starting at 0,

lim sup
t↘0

Bt√
2t log log t−1

≤ +1 P-almost surely. (3.13)

Proof. Let δ > 0. We would like to show that almost surely,

Bt ≤ (1 + δ)h(t) for sufficiently small t > 0,

where h(t) :=
√

2t log log t−1. Fix θ ∈ (0,1). The idea is to approximate the function h(t) by affine functions

ln(t) = βn + αnt/2

on each of the intervals [θn, θn−1], and to apply the upper bounds for the passage probabilities from the
lemma. We choose αn and βn in a such way that ln(θn) = h(θn) and ln(0) = h(θn)/2, i.e.,

βn = h(θn)/2 and αn = h(θn)/θn.

1θθ2θ3θ4θ5
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For this choice we have ln(θn) ≥ θ · ln(θn−1), and hence

ln(t) ≤ ln(θn−1) ≤
ln(θn)
θ

=
h(θn)
θ
≤

h(t)
θ

for all t ∈ [θn, θn−1]. (3.14)

h(t)

θn−1θn

h(θn)

h(θn)/2

ln(t)

We now want to apply the Borel-Cantelli lemma to show that with probability one, Bt ≤ (1 + δ)ln(t) for
large n. By Lemma 3.8,

P[Bt ≥ (1 + δ)ln(t) for some t ≥ 0] ≤ exp(−αnβn · (1 + δ)2) = exp
(
−

h(θn)2

2θn
· (1 + δ)2

)
. (3.15)

Choosing h(t) =
√

2t log log t−1, the right hand side is equal to a constant multiple of n−(1+δ)
2 , which is a

summable sequence. Note that we do not have to know the precise form of h(t) in advance to carry out the
proof – we just choose h(t) in such a way that the probabilities become summable!
Now, by the Borel-Cantelli lemma, for P-almost every ω there exists N(ω) ∈ N such that

Bt (ω) ≤ (1 + δ)ln(t) for any t ∈ [0,1] and n ≥ N(ω). (3.16)

By (3.14), the right hand side of (3.16) is dominated by (1 + δ)h(t)/θ for t ∈ [θn, θn−1]. Hence

Bt ≤
1 + δ
θ

h(t) for any t ∈
⋃
n≥N

[θn, θn−1],

i.e., for any t ∈ (0, θN−1), and therefore,

lim sup
t↘0

Bt

h(t)
≤

1 + δ
θ

P-almost surely.

The assertion then follows in the limit as θ ↗ 1 and δ↘ 0. �

Since (−Bt ) is again a Brownian motion starting at 0, the upper bound (3.13) also implies

lim inf
t↘0

Bt√
2t log log t−1

≥ −1 P-almost surely. (3.17)

The converse bounds are actually easier to prove since we can use the independence of the increments and
apply the second Borel-Cantelli Lemma. We only mention the key steps and leave the details as an exercise:
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Exercise (Complete proof of LIL). Prove the Law of the Iterated Logarithm:

lim sup
t↘0

Bt

h(t)
= +1 and lim inf

t↘0

Bt

h(t)
= −1

where h(t) =
√

2t log log t−1. Proceed in the following way:

(i) Let θ ∈ (0,1) and consider the increments Zn = Bθn − Bθn+1,n ∈ N. Show that if ε > 0, then

P[Zn > (1 − ε)h(θn) infinitely often] = 1.

(Hint:
´ ∞
x exp(−z2/2)dz ≥ (x−1 − x−3) exp(−x2/2).)

(ii) Using the statements in (i) and (3.17), conclude that

lim sup
t↘0

Bt

h(t)
≥ 1 − ε P-almost surely for every ε > 0.

Hence complete the proof of the LIL by deriving the lower bounds

lim sup
t↘0

Bt

h(t)
≥ 1 and lim inf

t↘0

Bt

h(t)
≤ −1 P-almost surely. (3.18)
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4. Martingale Convergence Theorems

The strength of martingale theory is partially due to powerful general convergence theorems that hold for
martingales, sub- and supermartingales. In this chapter, we study convergence theorems with different types
of convergence including almost sure, L2 and L1 convergence, and consider first applications.

At first, we will again focus on discrete-parameter martingales – the results can then be easily extended to
martingales in continuous time.

4.1. Convergence in L2

Already when proving the Law of Large Numbers, L2 convergence is much easier to show than, for example,
almost sure convergence. The situation is similar for martingales: A necessary and sufficient condition for
convergence of a martingale in the Hilbert space L2(Ω,A,P) can be obtained by elementary methods.

Martingales in L2

Consider a discrete-parameter martingale (Mn)n≥0 w.r.t. a filtration (Fn) on a probability space (Ω,A,P).
Throughout this section we assume square integrability, i.e.,

E[M2
n] < ∞ for all n ∈ Z+. (4.1)

We start with an important remark:

Lemma 4.1. The incrementsYn = Mn−Mn−1 of a square-integrable martingale are centered and orthogonal
in L2(Ω,A,P) (i.e. uncorrelated).

Proof. By definition of a martingale, E[Yn | Fn−1] = 0 for any n ≥ 0. Hence E[Yn] = 0 and E[YmYn] =
E[Ym · E[Yn | Fn−1]] = 0 for 0 ≤ m < n. �

Since the increments are also orthogonal to M0 by an analogue argument, a square integrable martingale
sequence consists of partial sums of a sequence of uncorrelated random variables:

Mn = M0 +

n∑
k=1

Yk for any n ≥ 0.

The Convergence Theorem

The central result of this section shows that an L2-bounded martingale (Mn) can always be extended to
n ∈ {0,1,2, . . .} ∪ {∞}:

Theorem 4.2 (L2 Martingale Convergence Theorem). The martingale sequence (Mn) converges in
L2(Ω,A,P) as n→∞ if and only if it is bounded in L2 in the sense that

sup
n≥0

E[M2
n] < ∞. (4.2)
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4. Martingale Convergence Theorems

In this case, the representation
Mn = E[M∞ | Fn]

holds almost surely for any n ≥ 0, where M∞ denotes the limit of Mn in L2(Ω,A,P).

We will prove in the next section that (Mn) does also converge almost surely to M∞. An analogue result
to Theorem 4.2 holds with L2 replaced by Lp for every p ∈ (1,∞) but not for p = 1, see Section 4.3 below.

Proof. (i) Let us first note that

E[(Mn − Mm)
2] = E[M2

n] − E[M2
m] for 0 ≤ m ≤ n. (4.3)

Indeed,

E[M2
n] − E[M2

m] = E[(Mn − Mm)(Mn + Mm)]

= E[(Mn − Mm)
2] + 2E[Mm · (Mn − Mm)],

and the last term vanishes since the increment Mn − Mm is orthogonal to Mm in L2.

(ii) To prove that (4.2) is sufficient for L2 convergence, note that the sequence (E[M2
n])n≥0 is increasing

by (4.3). If (4.2) holds then this sequence is bounded, and hence a Cauchy sequence. Therefore, by
(4.3), (Mn) is a Cauchy sequence in L2. Convergence now follows by completeness of L2(Ω,A,P).

(iii) Conversely, if (Mn) converges in L2 to a limit M∞, then the L2 norms are bounded. Moreover, by
Jensen’s inequality, for each fixed k ≥ 0,

E[Mn | Fk] −→ E[M∞ | Fk] in L2(Ω,A,P) as n→∞.

As (Mn) is a martingale, we have E[Mn | Fk] = Mk for n ≥ k, and hence

Mk = E[M∞ | Fk] P-almost surely. �

Remark (Functional analytic interpretation of L2 convergence theorem). The assertion of the L2 mar-
tingale convergence theorem can be rephrased as a purely functional analytic statement:

An infinite sum
∞∑
k=1

Yk of orthogonal vectors Yk in the Hilbert space L2(Ω,A,P) is convergent if and only if

the sequence of partial sums
n∑

k=1
Yk is bounded.

How can boundedness in L2 be verified for martingales? Writing the martingale (Mn) as the sequence of
partial sums of its increments Yn = Mn − Mn−1, we have

E[M2
n] =

(
M0 +

n∑
k=1

Yk,M0 +

n∑
k=1

Yk

)
L2

= E[M2
0 ] +

n∑
k=1

E[Y2
k ]

by orthogonality of the increments and M0. Hence

sup
n≥0

E[M2
n] = E[M2

0 ] +

∞∑
k=1

E[Y2
k ].

Alternatively, we have E[M2
n] = E[M2

0 ] + E[〈M〉n]. Hence by monotone convergence

sup
n≥0

E[M2
n] = E[M2

0 ] + E[〈M〉∞]

where 〈M〉∞ = sup〈M〉n.
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4.1. Convergence in L2

Summability of sequences with random signs

As a first application we study the convergence of series with coefficients with random signs. In an intro-
ductory analysis course it is shown as an application of the integral and Leibniz criterion for convergence of
series that

∞∑
n=1

n−α converges ⇐⇒ α > 1 , whereas
∞∑
n=1
(−1)nn−α converges ⇐⇒ α > 0.

Therefore, it seems interesting to see what happens if the signs are chosen randomly. The L2 martingale
convergence theorem yields:

Corollary 4.3. Let (an) be a real sequence. If (εn) is a sequence of independent random variables on
(Ω,A,P) with P[εn = +1] = P[εn = −1] = 1/2, then

∞∑
n=1

εnan converges in L2(Ω,A,P) ⇐⇒

∞∑
n=1

a2
n < ∞.

Proof. The sequence Mn =
n∑

k=1
εkak of partial sums is a martingale with

sup
n≥0

E[M2
n] =

∞∑
k=1

E[ε2
ka2

k] =

∞∑
k=1

a2
k .

�

Example. The series
∞∑
n=1

εn · n−α converges in L2 if and only if α > 1
2 .

Remark (Almost sure asymptotics). By the Supermartingale Convergence Theorem (Theorem 4.5 below),
the series

∑
εnan also converges almost surely if

∑
a2
n < ∞. On the other hand, if

∑
a2
n = ∞ then the series

of partial sums has almost surely unbounded oscillations, see the exercise below.

Exercise (Random signs). Let (an) be a sequence of real numbers with
∑

a2
n = ∞, and let

Mn =

n∑
k=1

εkak , εk i.i.d. with P[εk = ±1] = 1/2.

(i) Determine the conditional variance process 〈M〉n.

(ii) For c > 0 let Tc := inf {n ≥ 0 : |Mn | ≥ c } . Show that P[Tc < ∞] = 1.

(iii) Conclude that almost surely, the process (Mn) has unbounded oscillations.

L2 convergence in continuous time

The L2 convergence theorem directly extends to the continuous-parameter case.
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4. Martingale Convergence Theorems

Theorem 4.4 (L2 Martingale Convergence Theorem in continuous time). Let u ∈ (0,∞]. If (Mt )t∈[0,u)
is a martingale w.r.t. a filtration (Ft )t∈[0,u) such that

sup
t∈[0,u)

E[M2
t ] < ∞

then Mu = lim
t↗u

Mt exists in L2(Ω,A,P) and (Mt )t∈[0,u] is again a square-integrable martingale.

Proof. Choose any increasing sequence tn ∈ [0,u) such that tn → u. Then (Mtn ) is an L2-bounded
discrete-parameter martingale. Hence the limit Mu = lim Mtn exists in L2, and

Mtn = E[Mu | Ftn ] for any n ∈ N. (4.4)

For an arbitrary t ∈ [0,u), there exists n ∈ N with tn ∈ (t,u). Hence

Mt = E[Mtn | Ft ] = E[Mu | Ft ]

by (4.4) and the tower property. In particular, (Mt )t∈[0,u] is a square-integrable martingale. By orthogonality
of the increments,

E[(Mu − Mtn )
2] = E[(Mu − Mt )

2] + E[(Mt − Mtn )
2] ≥ E[(Mu − Mt )

2]

whenever tn ≤ t ≤ u. Since Mtn → Mu in L2, we obtain

lim
t↗u

E[(Mu − Mt )
2] = 0.

�

Remark. (i) Note that in the proof it is enough to consider a fixed sequence tn ↗ u.

(ii) To obtain almost sure convergence, an additional regularity condition on the sample paths (e.g.
right-continuity) is required, see below. This assumption is not needed for L2 convergence.

4.2. Almost sure convergence of supermartingales

Let (Zn)n≥0 be a discrete-parameter supermartingale w.r.t. a filtration (Fn)n≥0 on a probability space
(Ω,A,P). The following theorem yields a stochastic counterpart to the fact that any lower bounded de-
creasing sequence of reals converges to a finite limit:

Theorem 4.5 (Supermartingale Convergence Theorem, Doob).
If sup

n≥0
E[Z−n ] < ∞ then (Zn) converges almost surely to a random variable Z∞ ∈ L1(Ω,A,P).

In particular, supermartingales that are uniformly bounded from below converge almost surely to an
integrable random variable.

Remark (L1 boundedness vs. L1 convergence). (i) The condition sup E[Z−n ] < ∞ holds if and only if
(Zn) is bounded in L1. Indeed, as E[Z+n ] < ∞ by our definition of a supermartingale, we have

E[ |Zn | ] = E[Zn] + 2E[Z−n ] ≤ E[Z0] + 2E[Z−n ] for any n ≥ 0.
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4.2. Almost sure convergence of supermartingales

(ii) Although (Zn) is bounded in L1 and the limit is integrable, L1 convergence does not hold in general,
see the examples below.

For proving the Supermartingale Convergence Theorem, we introduce the numberU(a,b)(ω) of upcrossings
of an interval (a, b) by the sequence Zn(ω), see below for the exact definition.

b

a

1st upcrossing 2nd upcrossing

Note that if U(a,b)(ω) is finite for every non-empty bounded interval [a, b] then lim sup Zn(ω) and
lim inf Zn(ω) coincide, i.e., the sequence (Zn(ω)) converges. Therefore, to show almost sure convergence of
(Zn), we derive an upper bound for U(a,b). We first prove this key estimate and then complete the proof of
the theorem.

Doob’s upcrossing inequality

For n ∈ N and a, b ∈ R with a < b, we define the number U(a,b)n of upcrossings of the interval [a, b] before
time n by

U(a,b)n = max
{
k ≥ 0 : ∃ 0 ≤ s1 < t1 < s2 < t2 < . . . < sk < tk ≤ n : Zsi (ω) ≤ a, Zti (ω) ≥ b

}
.

Lemma 4.6 (Doob). If (Zn) is a supermartingale then

(b − a) · E[U(a,b)n ] ≤ E[(Zn − a)−] for all a < b and n ≥ 0.

Proof. We may assume E[Z−n ] < ∞ since otherwise there is nothing to prove. The key idea is to set up
a predictable gambling strategy that increases our capital by (b − a) for each completed upcrossing. Since
the net gain with this strategy should again be a supermartingale, this yields an upper bound for the average
number of upcrossings. Here is the strategy:

• Wait until Zk ≤ a.

• Then play unit stakes until Zk ≥ b.

The stake Ck in round k is C1 = 1 if Z0 ≤ a, C1 = 0 otherwise, and for k ≥ 2,

Ck =

{
1 if (Ck−1 = 1 and Zk−1 < b) or (Ck−1 = 0 and Zk−1 ≤ a),
0 otherwise

.

Clearly, (Ck) is a predictable, bounded and non-negative sequence of random variables. Moreover, Ck · (Zk −

Zk−1) is integrable for any k ≤ n, because Ck is bounded and

E
[
|Zk |

]
= 2E[Z+k ] − E[Zk] ≤ 2E[Z+k ] − E[Zn] ≤ 2E[Z+k ] − E[Z−n ] < ∞
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for k ≤ n. Therefore, by Theorem 2.12 and the remark below, the process

(C•Z)k =
k∑
i=1

Ci · (Zi − Zi−1), 0 ≤ k ≤ n,

is again a supermartingale.

Clearly, the value of the process C•Z increases by at least (b − a) units during each completed upcrossing.
Between upcrossing periods, the value of (C•Z)k is constant. If the final time n is contained in an upcrossing
period, then the process can decrease by at most (Zn − a)− units during that last period (since Zk might
decrease before the next upcrossing is completed). Therefore, we have

(C•Z)n ≥ (b − a) ·U(a,b)n − (Zn − a)−, i.e.,

(b − a) ·U(a,b)n ≤ (C•Z)n + (Zn − a)−.

Gain ≥ b− a Gain ≥ b− a Loss ≤ (Zn − a)−

Zn

Since C•Z is a supermartingale with initial value 0, we finally obtain the upper bound

(b − a)E[U(a,b)n ] ≤ E[(C•Z)n] + E[(Zn − a)−] ≤ E[(Zn − a)−]. �

Proof of Doob’s Convergence Theorem

We can now complete the proof of Theorem 4.5.

Proof. Let
U(a,b) = sup

n∈N
U(a,b)n

denote the total number of upcrossings of the supermartingale (Zn) over an interval (a, b) with −∞ < a <

b < ∞. By the upcrossing inequality and monotone convergence,

E[U(a,b)] = lim
n→∞

E[U(a,b)n ] ≤
1

b − a
· sup
n∈N

E[(Zn − a)−]. (4.5)

Assuming sup E[Z−n ] < ∞, the right hand side of (4.5) is finite since (Zn − a)− ≤ |a| + Z−n . Therefore,

U(a,b) < ∞ P-almost surely,

and hence the event
{lim inf Zn , lim sup Zn} =

⋃
a,b∈Q

a<b

{U(a,b) = ∞}
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4.2. Almost sure convergence of supermartingales

has probability zero. This proves almost sure convergence to a limit in [−∞,∞].

It remains to show that the almost sure limit Z∞ = lim Zn is an integrable random variable (in particular, it
is finite almost surely). This holds true as, by the remark below Theorem 4.5, sup E[Z−n ] < ∞ implies that
(Zn) is bounded in L1, and therefore

E[ |Z∞ | ] = E[lim inf |Zn | ] ≤ lim inf E[ |Zn | ] < ∞

by Fatou’s lemma. �

Examples and first applications

We now consider a few prototypic applications of the almost sure convergence theorem:

Example (Sums of i.i.d. random variables). Consider a Random Walk

Sn =
n∑
i=1

ηi

on R with centered and bounded i.i.d. increments ηi such that P[ηi , 0] > 0. Then there exists ε > 0
such that P[|ηi | ≥ ε] > 0. As the increments are i.i.d., the event {|ηi | ≥ ε} occurs infinitely often with
probability one. Therefore, almost surely, the martingale (Sn) does not converge as n→∞.

Now let a ∈ R. We consider the first hitting time

Ta = inf{t ≥ 0 : Sn ≥ a}

of the interval [a,∞). By the Optional Stopping Theorem, the stopped RandomWalk (STa∧n)n≥0 is again
a martingale. Moreover, as Sk < a for any k < Ta and the increments ηi are bounded by a finite constant
c, we obtain the upper bound

STa∧n < a + c for any n ∈ N.

Therefore, by the Supermartingale Convergence Theorem, the stopped Random Walk converges almost
surely. As (Sn) does not converge, we can conclude that P[Ta < ∞] = 1 for any a > 0, i.e.,

lim sup Sn = ∞ almost surely.

Since (Sn) is also a submartingale, we obtain

lim inf Sn = −∞ almost surely

by an analogue argument. A generalization of this result is given in Theorem 4.7 below.

Remark (Almost sure vs. Lp convergence). In the last example, the stopped process does not converge in
Lp for any p ∈ [1,∞). In fact,

lim
n→∞

E[STa∧n] = E[STa ] ≥ a, whereas E[STa∧n] = E[S0] = 0 for all n.

Example (Products of non-negative i.i.d. random variables). Consider a growth process

Zn =

n∏
i=1

Yi

with i.i.d. factors Yi ≥ 0 with finite expectation α ∈ (0,∞). Then

Mn = Zn/α
n

is a martingale. By the almost sure convergence theorem, a finite limit M∞ exists almost surely, because
Mn ≥ 0 for all n. For the almost sure asymptotics of (Zn), we distinguish three different cases:
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(i) α < 1: In this case,
Zn = Mn · α

n

converges to 0 exponentially fast with probability one.

(ii) α = 1: Here (Zn) is a martingale and converges almost surely to a finite limit. If P[Yi , 1] > 0
then there exists ε > 0 such thatYi ≥ 1+ε infinitely often with probability one. This is consistent
with convergence of (Zn) only if the limit is zero. Hence, if (Zn) is not almost surely constant,
then also in the critical case, Zn → 0 almost surely.

(iii) α > 1 (supercritical): In this case, on the set {M∞ > 0},

Zn = Mn · α
n ∼ M∞ · αn,

i.e., (Zn) grows exponentially fast. The asymptotics on the set {M∞ = 0} is not evident and
requires separate considerations depending on the model.

Althoughmost of the conclusions in the last example could have been obtainedwithoutmartingalemethods
(e.g. by taking logarithms), the martingale approach has the advantage of carrying over to far more general
model classes. These include for example branching processes or exponentials of continuous time processes.

Example (Boundary behavior of harmonic functions). Let D ⊆ Rd be a bounded open domain, and
let h : D→ R be a harmonic function on D that is bounded from below, i.e.,

∆h(x) = 0 for all x ∈ D, inf
x∈D

h(x) > −∞. (4.6)

To study the asymptotic behavior of h(x) as x approaches the boundary ∂D, we construct a Markov
chain (Xn) such that h(Xn) is a martingale: Let r : D→ (0,∞) be a continuous function such that

0 < r(x) < dist(x, ∂D) for any x ∈ D, (4.7)

and let (Xn) w.r.t Px denote the canonical time-homogeneous Markov chain with state space D, initial
value x, and transition probabilities

p(x, dy) = Uniform distribution on {y ∈ Rd : |y − x | = r(x)}.

x
r(x)

D

By (4.7), the function h is integrable w.r.t. p(x, dy), and, by the mean value property,

(ph)(x) = h(x) for any x ∈ D.

Therefore, the process h(Xn) is a martingale w.r.t. Px for each x ∈ D. As h(Xn) is lower bounded by
(4.6), the limit as n → ∞ exists Px-almost surely by the Supermartingale Convergence Theorem. In
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particular, since the coordinate functions x 7→ xi are also harmonic and lower bounded on D, the limit
X∞ = lim

n→∞
Xn exists Px-almost surely. Moreover, X∞ is in ∂D, because r is bounded from below by a

strictly positive constant on any compact subset of D.

Summarizing we have shown:

(i) Boundary regularity: If h is harmonic and bounded from below on D then the limit lim
n→∞

h(Xn)

exists along almost every trajectory Xn to the boundary ∂D.

(ii) Representation of h in terms of boundary values: If h is continuous on D, then h(Xn) → h(X∞)
Px-almost surely and hence

h(x) = lim
n→∞

Ex[h(Xn)] = E[h(X∞)],

i.e., the law of X∞ w.r.t. Px is the harmonic measure on ∂D.

Note that, in contrast to classical results from analysis, the first statement holds without any smoothness
condition on the boundary ∂D. Thus, although boundary values of h may not exist in the classical sense,
they do exist along almost every trajectory of the Markov chain!

Generalized Borel-Cantelli Lemma

Another application of the almost sure convergence theorem is a generalization of the Borel-Cantelli lemmas.
We first prove a dichotomy for the asymptotic behavior of martingales with L1-bounded increments:

Theorem 4.7 (Asymptotics of martingales with L1 bounded increments). Suppose that (Mn) is a mar-
tingale, and there exists an integrable random variable Y such that

|Mn − Mn−1 | ≤ Y for any n ∈ N.

Then for P-almost every ω, the following dichotomy holds:
Either the limit lim

n→∞
Mn(ω) exists in R, or lim sup

n→∞
Mn(ω) = +∞ and lim inf

n→∞
Mn(ω) = −∞.

The theorem and its proof are a generalization of the first example above.

Proof. For a ∈ (−∞,0) let Ta = min{n ≥ 0 : Mn ≥ a}. By the Optional Stopping Theorem, (MTa∧n) is a
martingale. Moreover,

MTa∧n ≥ min(M0,a − Y ) for any n ≥ 0,

and the right hand side is an integrable random variable. Therefore, (Mn) converges almost surely on
{Ta = ∞}. Since this holds for every a < 0, we obtain almost sure convergence on the set

{lim inf Mn > −∞} =
⋃
a<0
a∈Q

{Ta = ∞}.

Similarly, almost sure convergence follows on the set {lim sup Mn < ∞}. �

Now let (Fn)n≥0 be an arbitrary filtration. As a consequence of Theorem 4.7 we obtain:
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Corollary 4.8 (Generalized Borel-Cantelli Lemma). If (An) is a sequence of events with An ∈ Fn for
any n, then the equivalence

ω ∈ An infinitely often ⇐⇒

∞∑
n=1

P[An | Fn−1](ω) = ∞

holds for almost every ω ∈ Ω.

Proof. Let Sn =
n∑

k=1
IAk

and Tn =
n∑

k=1
E[IAk

| Fk−1]. Then Sn and Tn are almost surely increasing sequences.

Let S∞ = sup Sn and T∞ = supTn denote the limits on [0,∞]. The claim is that almost surely,

S∞ = ∞ ⇐⇒ T∞ = ∞. (4.8)

To prove (4.8) we note that Sn − Tn is a martingale with bounded increments. Therefore, almost surely,
Sn − Tn converges to a finite limit, or (lim sup(Sn − Tn) = ∞ and lim inf(Sn − Tn) = −∞). In the first case,
(4.8) holds. In the second case, S∞ = ∞ and T∞ = ∞, so (4.8) holds, too. �

The assertion of Corollary 4.8 generalizes both classical Borel-Cantelli Lemmas: If (An) is an arbitrary
sequence of events in a probability space (Ω,A,P) then we can consider the filtration Fn = σ(A1, . . . , An).
By Corollary 4.8 we obtain:

1st Borel-Cantelli Lemma:. If
∑

P[An] < ∞ then
∑

P[An | Fn−1] < ∞ almost surely, and therefore

P[An infinitely often] = 0.

2nd Borel-Cantelli Lemma:. If
∑

P[An] = ∞ and the An are independent then∑
P[An | Fn−1] =

∑
P[An] = ∞ almost surely, and therefore

P[An infinitely often] = 1.

Upcrossing inequality and convergence theorem in continuous time

The upcrossing inequality and the supermartingale convergence theorem carry over immediately to the
continuous time case if we assume right continuity (or left continuity) of the sample paths. Let u ∈ (0,∞],
and let (Zs)s∈[0,u) be a supermartingale in continuous time w.r.t. a filtration (Fs). We define the number of
upcrossings of (Zs) over an interval (a, b) before time t as the supremum of the number of upcrossings over
all time discretizations (Zs)s∈π where π is a partition of the interval [0, t]:

U(a,b)t [Z] := sup
π⊂[0,t]
finite

U(a,b)[(Zs)s∈π].

Note that if (Zs) has right-continuous sample paths and (πn) is a sequence of partitions of [0, t] such that
0, t ∈ π0, πn ⊂ πn+1 and mesh(πn) → 0 then

U(a,b)t [Z] = lim
n→∞

U(a,b)[(Zs)s∈πn ].

Theorem 4.9 (Supermatingale Convergence Theorem in continuous time). Suppose that (Zs)s∈[0,u) is
a right continuous supermartingale.
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(i) Upcrossing inequality: For any t ∈ [0,u) and a < b,

E[U(a,b)t ] ≤
1

b − a
E[(Zt − a)−].

(ii) Convergence Theorem: If sup
s∈[0,u)

E[Z−s ] < ∞, then the limit Zu− = lim
s↗u

Zs exists almost surely, and

Zu− is an integrable random variable.

Proof. (i) By the upcrossing inequality in discrete time,

E[U(a,b)[(Zs)s∈πn ]] ≤
1

b − a
E[(Zt − a)−] for any n ∈ N,

where (πn) is a sequence of partitions as above. The assertion now follows by the Monotone
Convergence Theorem.

(ii) The almost sure convergence can now be proven in the same way as in the discrete time case. �

More generally than stated above, the upcrossing inequality also implies that for a right-continuous
supermartingale (Zs)s∈[0,u) all the left limits Zt−, t ∈ [0,u), exist simultaneously with probability one. Thus
almost every sample path is càdlàg (continue à droite, limites a gauche, i.e., right continuous with left limits).
By similar arguments, the existence of a modification with right continuous (and hence càdlàg) sample paths
can be proven for any supermartingale (Zs) provided the filtration is right continuous and complete, and
s 7→ E[Zs] is right continuous, see e.g. [12, Ch.II, §2].

4.3. Uniform integrability and L1 convergence

The Supermartingale Convergence Theorem shows that every supermartingale (Zn) that is bounded in L1

converges almost surely to an integrable limit Z∞. However, L1 convergence does not necessarily hold:

Example. (i) Suppose that Zn =
∏n

i=1 Yi where theYi are i.i.d. with E[Yi] = 1, P[Yi , 1] > 0. Then,
Zn → 0 almost surely, cf. the second example in Section 4.2. On the other hand, L1 convergence
does not hold as E[Zn] = 1 for any n.

(ii) Similarly, the exponential martingale Mt = exp(Bt − t/2) of a Brownian motion converges to 0
almost surely, but E[Mt ] = 1 for any t.

L1 convergence of martingales is of interest because it implies that a martingale sequence (Mn) can be
extended to n = ∞, and the random variables Mn are given as conditional expectations of the limit M∞.
Therefore, we now prove a generalization of the Dominated Convergence Theorem that leads to a necessary
and sufficient condition for L1 convergence.

Uniform integrability

Let (Ω,A,P) be a probability space. The key condition required to deduce L1 convergence from convergence
in probability is uniform integrability. To motivate the definition we first recall two characterizations of
integrable random variables:

Lemma 4.10. For a random variable X : Ω→ R, the following conditions are all equivalent:

(i) E[|X |] < ∞.
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(ii) lim
c→∞

E[|X | ; |X | ≥ c] = 0.

(iii) For every ε > 0 there exists δ > 0 such that

E[|X | ; A] < ε for all A ∈ A with P[A] < δ.

The last statement says that the positive measure

Q[A] = E[|X | ; A], A ∈ A,

with relative density |X | w.r.t. P is absolutely continuous w.r.t. P in the following sense: For every ε > 0
there exists δ > 0 such that

P[A] < δ ⇒ Q[A] < ε.

Proof. “(i)⇒(ii)” holds by the Monotone Convergence Theorem since |X | · I{ |X | ≥c } ↘ 0 as c↗∞.
“(ii)⇒(i)”: By (ii), there exists c ∈ (0,∞) such that E[|X |; |X | ≥ c] ≤ 1, and thus E[|X |] ≤ c + 1 < ∞.
“(ii)⇒(iii)”: Let ε > 0. If (ii) holds then

E[|X | ; A] = E[|X | ; A ∩ {|X | ≥ c}] + E[|X | ; A ∩ {|X | < c}]

≤ E[|X | ; |X | ≥ c] + c · P[A] <
ε

2
+
ε

2
= ε

provided c ∈ (0,∞) is chosen appropriately and P[A] < ε/2c.
“(iii)⇒(ii)”: Let ε > 0. Then by (iii), there exists δ > 0 such that E[|X |; |X | ≥ c] ≤ ε provided
P[|X | ≥ c] < δ. This condition is satisfied for c sufficiently large, and hence E[|X |; |X | ≥ c] → 0 as
c→∞. �

Uniform integrability means that properties (ii) and (iii), respectively, hold uniformly for a family of
random variables:

Definition 4.11 (Uniform integrability). A family {Xi : i ∈ I} of random variables on (Ω,A,P) is called
uniformly integrable if and only if

sup
i∈I

E[|Xi | ; |Xi | ≥ c] −→ 0 as c→∞.

Exercise (Equivalent characterization of uniform integrability). Prove that {Xi : i ∈ I} is uniformly
integrable if and only if sup E[|Xi | ; A] < ∞, and the measures Qi[A] = E[|Xi | ; A] are uniformly
absolutely continuous, i.e., for every ε > 0 there exists δ > 0 such that

P[A] < δ ⇒ sup
i∈I

E[|Xi | ; A] < ε.

We will prove below that convergence in probability plus uniform integrability is equivalent to L1 conver-
gence. Before, we state two lemmas giving sufficient conditions for uniform integrability (and hence for L1

convergence) that can often be verified in applications.

Lemma 4.12 (Sufficient conditions for uniform integrability). A family {Xi : i ∈ I} of random variables
is uniformly integrable if one of the following conditions holds:
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(i) There exists an integrable random variable Y such that

|Xi | ≤ Y for any i ∈ I .

(ii) There exists a measurable function g : R+ → R+ such that

lim
x→∞

g(x)
x
= ∞ and sup

i∈I
E[g(|Xi |)] < ∞.

Proof. (i) If |Xi | ≤ Y then
sup
i∈I

E[|Xi | ; |Xi | ≥ c] ≤ E[Y ; Y ≥ c].

The right hand side converges to 0 as c→∞ if Y is integrable.

(ii) The second condition implies uniform integrability, because

sup
i∈I

E[|Xi | ; |Xi | ≥ c] ≤ sup
y≥c

y

g(y)
· sup
i∈I

E[g(|Xi |)].
�

The first condition in Lemma 4.12 is the classical assumption in the Dominated Convergence Theorem.
The second condition holds in particular if

sup
i∈I

E[|Xi |
p] < ∞ for some p > 1 (Lp boundedness),

or, if
sup
i∈I

E[|Xi |(log |Xi |)
+] < ∞ (Entropy condition)

is satisfied. Boundedness in L1, however, does not imply uniform integrability, see the examples at the
beginning of this section.

The next observation is crucial for the application of uniform integrability to martingales:

Lemma 4.13 (Conditional expectations are uniformly integrable). If X is an integrable random variable
on (Ω,A,P) then the family

{E[X | F ] : F ⊆ A σ-algebra}

of all conditional expectations of X given sub-σ-algebras of A is uniformly integrable.

Proof. By Lemma 4.10, for every ε > 0 there exists δ > 0 such that

E[|E[X | F ]| ; |E[X | F ]| ≥ c] ≤ E[E[|X | | F ] ; |E[X | F ]| ≥ c] (4.9)
= E[|X | ; |E[X | F ]| ≥ c] < ε

holds for c > 0 with P[|E[X | F ]| ≥ c] < δ. Since

P[|E[X | F ]| ≥ c] ≤
1
c

E[|E[X | F ]|] ≤
1
c

E[ |X | ],

(4.9) holds simultaneously for all σ-algebras F ⊆ A if c is sufficiently large. �

Definitive version of Lebesgue’s Dominated Convergence Theorem
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Theorem 4.14. Suppose that (Xn)n∈N is a sequence of integrable random variables. Then (Xn) converges
to a random variable X w.r.t. the L1 norm if and only if Xn converges to X in probability and the family
{Xn : n ∈ N} is uniformly integrable.

Proof. (i) We first prove the “if” part of the assertion under the additional assumption that the random
variables |Xn | are uniformly bounded by a finite constant c: For ε > 0,

E[ |Xn − X | ] = E[ |Xn − X | ; |Xn − X | > ε] + E[ |Xn − X | ; |Xn − X | ≤ ε]

≤ 2c · P[ |Xn − X | > ε] + ε. (4.10)

Here we have used that |Xn | ≤ c and hence |X | ≤ c with probability one, because a subsequence of
(Xn) converges almost surely to X . For sufficiently large n, the right hand side of (4.10) is smaller
than 2ε. Therefore, E[ |Xn − X | ] → 0 as n→∞.

(ii) To prove the “if” part under the uniform integrability condition, we consider the cut-off-functions

φc(x) = (x ∧ c) ∨ (−c)

c

c−c

−c

φc

For c ∈ (0,∞), the function φc : R→ R is a contraction. Therefore,

|φc(Xn) − φc(X)| ≤ |Xn − X | for any n ∈ N.

If Xn → X in probability then φc(Xn) → φc(X) in probability. Hence by (i),

E[ |φc(Xn) − φc(X)| ] −→ 0 for any c > 0. (4.11)

We would like to conclude that E[ |Xn − X | ] → 0 as well. Since (Xn) is uniformly integrable, and
a subsequence converges to X almost surely, we have E[ |X | ] ≤ lim inf E[ |Xn | ] < ∞ by Fatou’s
Lemma. We now estimate

E[ |Xn − X | ] ≤ E[ |Xn − φc(Xn)| ] + E[ |φc(Xn) − φc(X)| ] + E[ |φc(X) − X | ]

≤ E[ |Xn | ; |Xn | ≥ c] + E[ |φc(Xn) − φc(X)| ] + E[ |X | ; |X | ≥ c].

Let ε > 0 be given. Choosing c large enough, the first and the last summand on the right hand
side are smaller than ε/3 for all n by uniform integrability of {Xn : n ∈ N} and integrability of X .
Moreover, by (4.11), there exists n0(c) such that the middle term is smaller than ε/3 for n ≥ n0(c).
Hence E[ |Xn − X | ] < ε for n ≥ n0, and thus Xn → X in L1.
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(iii) Now suppose conversely that Xn → X in L1. Then Xn → X in probability by Markov’s inequality.
To prove uniform integrability, we observe that

E[ |Xn | ; A] ≤ E[ |X | ; A] + E[ |X − Xn | ] for any n ∈ N and A ∈ A.

For ε > 0, there exist n0 ∈ N and δ > 0 such that

E[ |X − Xn | ] < ε/2 for all n > n0, and
E[ |X | ; A] < ε/2 whenever P[A] < δ,

see Lemma 4.10. Hence, if P[A] < δ then supn≥n0
E[ |Xn | ; A] < ε. Moreover, again by Lemma

4.10, there exist δ1, . . . , δn0 > 0 such that for n ≤ n0,

E[ |Xn | ; A] < ε if P[A] < δn.

Choosing δ̃ = min(δ, δ1, δ2, . . . , δn0), we obtain

sup
n∈N

E[ |Xn | ; A] < ε whenever P[A] < δ̃.

Therefore, {Xn : n ∈ N} is uniformly integrable by the exercise below the definition of uniform
integrability on page 88. �

L1 convergence of martingales

If X is an integrable random variable and (Fn) is a filtration then Mn = E[X | Fn] is a martingale w.r.t. (Fn).
The next result shows that an arbitrary martingale can be represented in this way if and only if it is uniformly
integrable:

Theorem 4.15 (L1 Martingale Convergence Theorem). Suppose that (Mn) is a martingale w.r.t. a filtra-
tion (Fn). Then the following statements are equivalent:

(i) {Mn : n ≥ 0} is uniformly integrable.

(ii) The sequence (Mn) converges w.r.t. the L1 norm.

(iii) There exists an integrable random variable X such that

Mn = E[X | Fn] for any n ≥ 0.

Proof. The implication (iii)⇒ (i) holds by Lemma 4.13.
(i)⇒ (ii): If the sequence (Mn) is uniformly integrable then it is bounded in L1 because

sup
n

E[ |Mn | ] ≤ sup
n

E[ |Mn | ; |Mn | ≥ c] + c ≤ 1 + c

for c ∈ (0,∞) sufficiently large. Therefore, the limit M∞ = lim Mn exists almost surely and in probability by
the almost sure convergence theorem. By Theorem 4.14, uniform integrability then implies Mn → M∞ in
L1.
(ii)⇒ (iii): If Mn converges to a limit M∞ in L1 then

Mn = E[M∞ | Fn] for any n ≥ 0.
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Indeed, Mn is a version of the conditional expectation since it is Fn-measurable and

E[M∞ ; A] = lim
k→∞

E[Mk ; A] = E[Mn ; A] for any A ∈ Fn (4.12)

by the martingale property. �

A first consequence of the L1 convergence theorem is a limit theorem for conditional expectations:

Corollary 4.16. If X is an integrable random variable and (Fn) is a filtration then

E[X | Fn] → E[X | F∞] almost surely and in L1,

where F∞ := σ(
⋃
Fn).

Proof. Let Mn := E[X | Fn]. By the almost sure and the L1 martingale convergence theorem, the limit
M∞ = lim Mn exists almost surely and in L1. To obtain a measurable function that is defined everywhere,
we set M∞ := lim sup Mn. It remains to verify that M∞ is a version of the conditional expectation E[X | F∞].
Clearly, M∞ is measurable w.r.t. F∞. Moreover, for n ≥ 0 and A ∈ Fn,

E[M∞ ; A] = E[Mn ; A] = E[X ; A]

by (4.12). Since
⋃
Fn is stable under finite intersections,

E[M∞ ; A] = E[X ; A]

holds for all A ∈ σ(
⋃
Fn) as well. �

Example (Existence of conditional expectations). The common existence proof for conditional ex-
pectations relies either on the Radon-Nikodym Theorem or on the existence of orthogonal projections
onto closed subspaces of the Hilbert space L2. Martingale convergence can be used to give an alternative
existence proof. Suppose that X is an integrable random variable on a probability space (Ω,A,P) and
F is a separable sub-σ-algebra of A, i.e., there exists a countable collection (Ai)i∈N of events Ai ∈ A

such that F = σ(Ai : i ∈ N). Let

Fn = σ(A1, . . . , An), n ≥ 0.

Note that for each n ≥ 0, there exist finitely many atoms B1, . . . ,Bk ∈ A (disjoint events with
⋃

Bi = Ω)
such that Fn = σ(B1, . . . ,Bk). Therefore, the conditional expectation given Fn can be defined in an
elementary way:

E[X | Fn] :=
∑

i : P[Bi ],0

E[X | Bi] · IBi .

Moreover, by Corollary 4.16, the limit M∞ = lim E[X | Fn] exists almost surely and in L1, and M∞ is a
version of the conditional expectation E[X | F ].

You might (and should) object that the proofs of the martingale convergence theorems require the existence
of conditional expectations. Although this is true, it is possible to state the necessary results by using only
elementary conditional expectations, and thus to obtain a more constructive proof for existence of conditional
expectations given separable σ-algebras.

Another immediate consequence of Corollary 4.16 is an extension of Kolmogorov’s 0-1 law:
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Corollary 4.17 (0-1 Law of P.Lévy). If (Fn) is a filtration on (Ω,A,P) then for any event A ∈ σ(
⋃
Fn),

P[A | Fn] −→ IA P-almost surely. (4.13)

Example (Kolmogorov’s 0-1 Law). Suppose that Fn = σ(A1, . . . ,An) with independent σ-algebras
Ai ⊆ A. If A is a tail event, i.e., A is in σ(An+1,An+2, . . .) for every n ∈ N, then A is independent of
Fn for any n. Therefore, the corollary implies that P[A] = IA P-almost surely, i.e.,

P[A] ∈ {0,1} for any tail event A.

The L1 Martingale Convergence Theorem also implies that every martingale that is Lp bounded for some
p ∈ (1,∞) converges in Lp:

Exercise (Lp Martingale Convergence Theorem). Let (Mn) be an (Fn)martingalewith sup E[|Mn |
p] <

∞ for some p ∈ (1,∞).

(i) Prove that (Mn) converges almost surely and in L1, and Mn = E[M∞ | Fn] for any n ≥ 0.

(ii) Conclude that |Mn − M∞ |p is uniformly integrable, and Mn → M∞ in Lp .

Note that uniform integrability of |Mn |
p holds automatically and has not to be assumed !

Backward Martingale Convergence

Wefinally remark thatDoob’s upcrossing inequality can also be used to prove that the conditional expectations
E[X | Fn] of an integrable random variable given a decreasing sequence (Fn) of σ-algebras converge almost
surely to E[X |

⋂
Fn]. For the proof one considers the martingale M−n = E[X | Fn] indexed by the negative

integers:

Exercise (Backward Martingale Convergence Theorem and LLN). Let (Fn)n≥0 be a decreasing se-
quence of sub-σ-algebras on a probability space (Ω,A,P).

(i) Prove that for every random variable X ∈ L1(Ω,A,P), the limit M−∞ of the sequence M−n :=
E[X | Fn] as n→ −∞ exists almost surely and in L1, and

M−∞ = E[X |
⋂
Fn] almost surely.

(ii) Now let (Xn) be a sequence of i.i.d. random variables inL1(Ω,A,P), and let Fn = σ(Sn,Sn+1, . . .)
where Sn = X1 + . . . + Xn. Prove that

E[X1 | Fn] =
Sn
n
,

and conclude that the strong Law of Large Numbers holds:

Sn
n
−→ E[X1] almost surely.
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Martingales

Suppose that we are interested in a continuous-time scaling limit of a stochastic dynamic of type X (h)0 = x0,

X (h)
k+1 − X (h)

k
= σ(X (h)

k
) ·
√

h · ηk+1, k = 0,1,2, . . . , (5.1)

with i.i.d. random variables ηi ∈ L2 such that E[ηi] = 0 and Var[ηi] = 1, a continuous function σ : R→ R,
and a scale factor h > 0. Equivalently,

X (h)n = X (h)0 +
√

h ·
n−1∑
k=0

σ(X (h)
k
) · ηk+1, n = 0,1,2, . . . . (5.2)

If σ is constant then as h ↘ 0, the rescaled process (X (h)
bt/hc
)t≥0 converges in distribution to (σ · Bt ) where

(Bt ) is a Brownian motion. We are interested in the scaling limit for general σ. One can prove that the
rescaled process again converges in distribution, and the limit process is a solution of a stochastic integral
equation

Xt = X0 +

tˆ

0

σ(Xs) dBs, t ≥ 0. (5.3)

Here the integral is an Itô stochastic integral w.r.t. a Brownian motion (Bt ). Usually the equation (5.3) is
written briefly as

dXt = σ(Xt ) dBt, (5.4)

and interpreted as a stochastic differential equation. Stochastic differential equations occur more generally
when considering scaling limits of appropriately rescaled Markov chains on Rd with finite second moments.
The goal of this section is to give a meaning to the stochastic integral, and hence to the equations (5.3), (5.4),
respectively.

Example (Stock prices, geometric Brownian motion). A simple discrete time model for stock prices
is given by

Xk+1 − Xk = Xk · ηk+1, ηi i.i.d.

To set up a corresponding continuous time model we consider the rescaled equation (5.1) as h↘ 0. The
limit in distribution is a solution of a stochastic differential equation

dXt = Xt dBt (5.5)

w.r.t. a Brownian motion (Bt ). Although with probability one, the sample paths of Brownian motion are
nowhere differentiable, we can give a meaning to this equation by rewriting it in the form (5.3) with an
Itô stochastic integral. A naive guess would be that the solution of (5.5) with initial condition X0 = 1 is
Xt = exp Bt . However, more careful considerations show that this can not be true! In fact, the discrete
time approximations satisfy

X (h)
k+1 = (1 +

√
hηk+1) · X

(h)
k

for k ≥ 0.

Hence (X (h)
k
) is a product martingale:

X (h)n =

n∏
k=1
(1 +
√

hηk) for any n ≥ 0.
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In particular, E[X (h)n ] = 1. We would expect similar properties for the scaling limit (Xt ), but exp Bt is
not a martingale and E[exp(Bt )] = exp(t/2) , 1. It turns out that in fact, the unique solution of (5.5)
with X0 = 1 is not exp(Bt ) but the exponential martingale

Xt = exp(Bt − t/2),

which is also called a geometric Brownian motion. The reason is that the irregularity of Brownian paths
enforces a correction term in the chain rule for stochastic differentials leading to Itô’s famous formula,
which is the fundament of stochastic calculus.

5.1. Defining stochastic integrals: A first attempt

Let us first fix some notation that will be used constantly below: By a partition π ofR+ wemean an increasing
sequence 0 = t0 < t1 < t2 < . . . such that sup tn = ∞. The mesh size of the partition is

mesh(π) = sup{|ti − ti−1 | : i ∈ N}.

We are interested in defining integrals of type

It =

tˆ

0

Hs dXs, t ≥ 0. (5.6)

Here (Hs) and (Xs) are continuous functions or continuous adapted processes, respectively. For a given t ≥ 0
and a given partition π of R+, we define the increments of (Xs) up to time t by

δXs := Xs′∧t − Xs∧t for any s ∈ π,

where s′ := min{u ∈ π : u > s} denotes the next partition point after s. Note that the increments δXs vanish
for s ≥ t. In particular, only finitely many of the increments are not equal to zero. A nearby approach for
defining the integral It in (5.6) would be Riemann sum approximations.

Riemann sum approximations

There are various possibilities to define approximatingRiemann sumsw.r.t. a given sequence (πn) of partitions
with mesh(πn) → 0, for example:

. Variant 1 (non-anticipative): Int =
∑

s∈πn

HsδXs,

. Variant 2 (anticipative): Înt =
∑

s∈πn

Hs′δXs,

. Variant 3 (anticipative):
◦

Int =
∑

s∈πn

1
2 (Hs + Hs′)δXs.

Note that for finite t, in each of the sums, only finitely many summands do not vanish. For example,

Int =
∑
s∈πn
s<t

HsδXs =
∑
s∈πn
s<t

Hs · (Xs′∧t − Xs).

Now let us consider at first the case where Hs = Xs, i.e., we would like to define the integral It =
´ t

0 Xs dXs.
Suppose first that X : [0,1] → R is a continuous function of finite variation, i.e.,

V (1)t (X) = sup

{∑
s∈π

|Xs′∧t − Xs∧t | : π partition of R+

}
< ∞.
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Then for H = X , all the approximations above converge to the same limit as n→∞. For example,

‖ Înt − Int ‖ =
∑
s∈πn

(Xs′∧t − Xs∧t )
2 ≤ V (1)t (X) · sup

s∈πn

|Xs′∧t − Xs∧t |,

and the right-hand side converges to 0 by uniform continuity of X on [0, t]. In this case the limit of the
Riemann sums is a Riemann-Stieltjes integral

lim
n→∞

Int = lim
n→∞

Înt =

tˆ

0

Xs dXs,

which is well-defined whenever the integrand is continuous and the integrator is of finite variation or
conversely. The sample paths of Brownian motion, however, are almost surely not of finite variation.
Therefore, the reasoning above does not apply, and in fact if Xt = Bt is a one-dimensional Brownian motion
and Ht = Xt then

E[ | Înt − Int | ] =
∑
s∈πn

E[(Bs′∧t − Bs∧t )
2] =

∑
s∈πn

(s′ ∧ t − s ∧ t) = t,

i.e., the L1-limits of the random sequence (Int ) and (Înt ) are different if they exist. Below we will see that

indeed, the limits of the sequences (Int ), (Înt ) and (
◦

Int ) do exist in L2, and all the limits are different. The
limit of the non-anticipative Riemann sums Int is the Itô stochastic integral

´ t
0 Bs dBs, the limit of (Înt ) is the

backward Itô integral
´ t

0 Bs d̂Bs, and the limit of
◦

Int is the Stratonovich integral
´ t

0 Bs ◦dBs. All three notions
of stochastic integrals are relevant. The most important one is the Itô integral because the non-anticipating
Riemann sum approximations imply that the Itô integral

´ t
0 Hs dBs is a continuous time martingale transform

of Brownian motion if the process (Hs) is adapted.

Itô integrals for continuous bounded integrands

We now give a first existence proof for Itô integrals w.r.t. Brownian motion. We start with a provisional
definition that will be made more precise later:

Preliminary Definition. For continuous functions or continuous stochastic processes (Hs) and (Xs) and a
given sequence (πn) of partitions with mesh(πn) → 0, the Itô integral of H w.r.t. X is defined by

tˆ

0

Hs dXs = lim
n→∞

∑
s∈πn

Hs (Xs′∧t − Xs∧t )

whenever the limit exists in a sense to be specified.

Note that the definition is vague since the mode of convergence is not specified. Moreover, the Itô integral
might depend on the sequence (πn). In the following sections we will see which kind of convergence holds
in different circumstances, and in which sense the limit is independent of (πn).

To get started let us consider the convergence of Riemann sum approximations for the Itô integrals
´ t

0 Hs dBs

of a bounded continuous (Fs) adapted process (Hs)s≥0 w.r.t. an (Fs) Brownian motion (Bs). Let (πn) be a
fixed sequence of partitions with πn ⊆ πn+1 and mesh(πn) → 0. Then for the Riemann-Itô sums

Int =
∑
s∈πn

Hs δBs =
∑
s∈πn
s<t

Hs(Bs′∧t − Bs)
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we have
Int − Imt =

∑
s∈πn
s<t

(Hs − Hbscm ) δBs for any m ≤ n,

where bscm = max{r ∈ πm : r ≤ s} denotes the next partition point in πm below s. Since Brownian motion
is a martingale, we have E[δBs | Fs] = 0 for any s ∈ πn. Moreover, E[(δBs)

2 | Fs] = δs. Therefore, we
obtain by conditioning on Fs,Fr respectively:

E[(Int − Imt )
2] =

∑
s∈πn
s<t

∑
r ∈πn
r<t

E[(Hs − Hbscm )(Hr − Hbr cm )δBsδBr ]

=
∑
s∈πn
s<t

E[(Hs − Hbscm )
2δs] ≤ E[εm] ·

∑
s∈πn
s<t

δs = E[εm] · t,

where
εm := sup

|s−r | ≤mesh(πm)
(Hs − Hr )

2 −→ 0 as m→∞

by uniform continuity of (Hs) on [0, t]. Since H is bounded, E[εm] → 0 as m → ∞, and hence (Int ) is a
Cauchy sequence in L2(Ω,A,P) for any given t ≥ 0. Thus we obtain:

Theorem 5.1 (Itô integrals for bounded continuous integrands, Variant 1). Suppose that (Hs)s≥0 is a
bounded continuous (Fs) adapted process, and (Bs)s≥0 is an (Fs) Brownian motion. Then for any fixed
t ≥ 0, the Itô integral

tˆ

0

Hs dBs = lim
n→∞

Int (5.7)

exists as a limit in L2(Ω,A,P). Moreover, the limit does not depend on the choice of a sequence of
partitions (πn) with mesh (πn) → 0.

Proof. An analogue argument as above shows that for any partitions π and π̃ such that π ⊇ π̃, the L2 distance
of the corresponding Riemann sum approximations Iπt and I π̃t is bounded by a constant C(mesh(π̃)) that only
depends on the maximal mesh size of the two partitions. Moreover, the constant goes to 0 as the mesh sizes
go to 0. By choosing a joint refinement and applying the triangle inequality, we see that

‖Iπt − I π̃t ‖L2(P) ≤ 2 C(∆)

holds for arbitrary partitions π, π̃ such that max(mesh(π)),mesh(π̃)) ≤ ∆. The assertion now follows by
completeness of L2(P). �

The definition of the Itô integral suggested by Theorem 5.1 has two obvious drawbacks:

Drawback 1: The integral
´ t

0 Hs dBs is only defined as an equivalence class in L2(Ω,A,P), i.e., uniquely up
tomodification on P-measure zero sets. In particular, we do not have a pathwise definition of

´ t
0 Hs(ω)dBs(ω)

for a given Brownian sample path s 7→ Bs(ω).
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Drawback 2: Even worse, the construction above works only for a fixed integration interval [0, t]. The
exceptional sets may depend on t and therefore, the process t 7→

´ t
0 Hs dBs does not have a meaning yet. In

particular, we do not know yet if there exists a version of this process that is almost surely continuous.

The first drawback is essential: In certain cases it is indeed possible to define stochastic integrals pathwise,
see Chapter 6 below. In general, however, pathwise stochastic integrals cannot be defined without additional
information. The extra input needed is the Lévy area process, see the rough paths theory developed by T.
Lyons and other [10, 8, 7].

Fortunately, the second drawback can be overcome easily. By extending the Itô isometry to an isometry into
the space M2

c of continuous L2 bounded martingales, we can construct the complete process t 7→
´ t

0 Hs dBs

simultaneously as a continuousmartingale. The key observation is that by themaximal inequality, continuous
L2 bounded martingales can be controlled uniformly in t by the L2 norm of their final value.

The Hilbert space M2
c

Fix u ∈ (0,∞] and suppose that for t ∈ [0,u], (Int ) is a sequence of Riemann sum approximations for´ t
0 Hs dBs as considered above. It is not difficult to check that for each fixed n ∈ N, the stochastic process

t 7→ Int is a continuous martingale. Our aim is to prove convergence of these continuous martingales to
a further continuous martingale It =

´ t
0 Hs dBs. Since the convergence holds only almost surely, the limit

process will not necessarily be (Ft ) adapted. To ensure adaptedness, we have to consider the completed
filtration

F P
t = {A ∈ A : P[A M B] = 0 for some B ∈ Ft }, t ≥ 0,

where A M B = (A \ B) ∪ (B \ A) is the symmetric difference of the sets A and B. Note that the conditional
expectations given Ft and F P

t agree P-almost surely. Hence, if (Bt ) is a Brownian motion resp. a martingale
w.r.t. the filtration (Ft ) then it is also a Brownian motion or a martingale w.r.t. (F P

t ).

LetM2([0,u]) denote the space of all L2-bounded (F P
t )martingales (Mt )0≤t≤u on (Ω,A,P). ByM2

c([0,u])
and M2

d
([0,u]) we denote the subspaces consisting of all continuous (respectively right continuous) mar-

tingales M ∈ M2([0,u]). Recall that by the L2 martingale convergence theorem, any (right) continuous
L2-bounded martingale (Mt ) defined for t ∈ [0,u) can be extended to a (right) continuous martingale in
M2([0,u]). Two martingales M, M̃ ∈ M2([0,u]) are called modifications of each other if

P[Mt = M̃t ] = 1 for any t ∈ [0,u].

If the martingales are right-continuous then two modifications agree almost surely, i.e.,

P[Mt = M̃t ∀t ∈ [0,u]] = 1.

In order to obtain norms and not just semi-norms, we consider the spaces

M2([0,u]) := M2([0,u])/∼ and M2
c ([0,u]) := M2

c([0,u])/∼

of equivalence classes of martingales that are modifications of each other. We will frequently identify
equivalence classes and their representatives. We endow the space M2([0,u]) with the inner product

(M,N)M2([0,u]) = (Mu,Nu)L2 = E[MuNu].

As the process (M2
t ) is a submartingale for any M ∈ M2([0,u]), the norm corresponding to this inner product

is given by
‖M ‖2

M2([0,u]) = E[M2
u] = sup

0≤t≤u
E[M2

t ].
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5. Stochastic Integration w.r.t. Continuous Martingales

Moreover, if (Mt ) is right continuous then by Doob’s L2-maximal inequality,



 sup
0≤t≤u

|Mt |






L2(Ω,A,P)

≤ 2 · sup
0≤t≤u

‖Mt ‖L2(Ω,A,P) = 2‖M ‖M2([0,u]). (5.8)

This crucial estimate shows that on the subspaces M2
c and M2

d
, the M2 norm is equivalent to the L2 norm of

the supremum of themartingale. Therefore, the M2 norm can be used to control right continuous martingales
uniformly in t!

Lemma 5.2 (Completeness). (i) The space M2([0,u]) is a Hilbert space, and the linear map M 7→ Mu

from M2([0,u]) to L2(Ω,Fu,P) is onto and isometric.

(ii) The spaces M2
c ([0,u]) and M2

d
([0,u]) are closed subspaces of M2([0,u]), i.e., if (Mn)n∈N is a Cauchy

sequence in M2
c ([0,u]) or in M2

d
([0,u]), respectively, then there exists a (right) continuous martingale

M ∈ M2([0,u]) such that

sup
t∈[0,u]

|Mn
t − Mt | −→ 0 in L2(Ω,A,P).

Proof. (i) By definition of the inner product on M2([0,u]), the map M 7→ Mu is an isometry. Moreover,
for X ∈ L2(Ω,Fu,P), the process Mt = E[X | Ft ] is in M2([0,u]) with Mu = X . Hence, the range of
the isometry is the whole space L2(Ω,Fu,P). Since L2(Ω,Fu,P) is complete w.r.t. the L2 norm, the
space M2([0,u]) is complete w.r.t. the M2 norm.

(ii) If (Mn) is a Cauchy sequence in M2
c ([0,u]) or in M2

d
([0,u]) respectively, then by (5.8),

‖Mn − Mm‖sup := sup
0≤t≤u

|Mn
t − Mm

t | −→ 0 in L2(Ω,A,P).

In particular, we can choose a subsequence (Mnk ) such that

P[ ‖Mnk+1 − Mnk ‖sup ≥ 2−k ] ≤ 2−k for all k ∈ N.

Hence, by the Borel-Cantelli Lemma,

P[ ‖Mnk+1 − Mnk ‖sup < 2−k eventually ] = 1,

and therefore Mnk
t converges almost surely uniformly in t as k →∞. The limit of the sequence (Mn)

in M2([0,u]) exists by (i), and the process M defined by

Mt :=

{
lim Mnk

t if (Mnk ) converges uniformly,
0 otherwise,

(5.9)

is a continuous (respectively right continuous) representative of the limit. Indeed, by Fatou’s Lemma,

E[ ‖Mnk − M ‖2sup ] = E[ lim
l→∞

‖Mnk − Mnl ‖2sup ] ≤ lim inf
l→∞

E[ ‖Mnk − Mnl ‖2sup ],

and the right hand side converges to 0 as k →∞. Finally, one can easily verify that M is a martingale
w.r.t. (F P

t ), and hence an element in M2
c ([0,u]) or in M2

d
([0,u]) respectively. �

Remark. The (right) continuous representative (Mt ) defined by (5.9) is a martingale w.r.t. the complete
filtration (F P

t ), but it is not necessarily adapted w.r.t. (Ft ).
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Definition of Itô integral in M2
c

Let u ∈ R+. For every bounded continuous (Ft ) adapted process (Ht ) and every sequence (πn) of partitions
of R+, the processes

Int =
∑
s∈πn

Hs (Bs′∧t − Bs∧t ), t ∈ [0,u],

are continuous L2 bounded martingales on [0,u]. We can therefore restate Theorem 5.1 in the following way:

Corollary 5.3 (Itô integrals for bounded continuous integrands, Variant 2). Suppose that (Hs)s∈[0,∞)
is a bounded continuous (Fs) adapted process. Then for any fixed u ≥ 0, the Itô integral

•ˆ

0

Hs dBs = lim
n→∞

(
Int

)
t∈[0,u] (5.10)

exists as a limit in M2
c ([0,u]). Moreover, the limit does not depend on the choice of a sequence of partitions

(πn) with mesh (πn) → 0.

Proof. The assertion is an immediate consequence of the definition of the M2 norm, Theorem 5.1 and
Lemma 5.2. �

Similar arguments as above apply if Brownianmotion is replaced by a boundedmartingale with continuous
sample paths. In the rest of this chapter we will work out the construction of the Itô integral w.r.t. Brownian
motion and more general continuous martingales more systematically and for a broader class of integrands.

5.2. Itô’s isometry

Let (Mt )t∈[0,∞) be a continuous (or, more generally, right continuous) martingale w.r.t. a filtration (Ft ) on a
probability space (Ω,A,P). We now develop a more systematic approach for defining stochastic integrals´ t

0 Hs dMs of adapted processes (Ht ) w.r.t. (Mt ).

Predictable step functions

In a first step, we define the integrals for predictable step functions (Ht ) of type

Ht (ω) =

n−1∑
i=0

Ai(ω)I(ti ,ti+1](t)

with n ∈ N,0 ≤ t0 < t1 < t2 < . . . < tn, and bounded Fti -measurable random variables Ai, i = 0,1, . . . ,n−1.
Let E denote the vector space consisting of all stochastic processes of this form.

Definition 5.4 (Itô integral for predictable step functions). For stochastic processes H ∈ E and t ≥ 0
we define

tˆ

0

Hs dMs :=
n−1∑
i=0

Ai · (Mti+1∧t − Mti∧t ) =
∑

i : ti<t
Ai · (Mti+1∧t − Mti ).
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5. Stochastic Integration w.r.t. Continuous Martingales

The stochastic process H•M given by

(H•M)t :=
tˆ

0

Hs dMs for t ∈ [0,∞]

is called the Itô integral of H w.r.t. M .

Note that the map (H,M) 7→ H•M is bilinear. The process H•M is a continuous timemartingale transform
of M w.r.t. H. It models for example the net gain up to time t if we hold Ai units of an asset with price
process (Mt ) during each of the time intervals (ti, ti+1].

Lemma 5.5. For any H ∈ E, the process H•M is a continuous (Ft ) martingale up to time t = ∞.

Similarly to the discrete time case, the fact that Ai is Fti -measurable is essential for themartingale property:

Proof. By definition, H•M is continuous and (Ft ) adapted. It remains to verify that

E[(H•M)t | Fs] = (H•M)s for any 0 ≤ s ≤ t . (5.11)

We do this in three steps:

(i) At first we note that (5.11) holds for s, t ∈ {t0, t1, . . . , tn}. Indeed, since Ai is Fti -measurable, the
process

(H•M)tj =
j−1∑
i=0

Ai · (Mti+1 − Mti ), j = 0,1, . . . ,n,

is a martingale transform of the discrete time martingale (Mti ), and hence again a martingale.

(ii) Secondly, suppose s, t ∈ [tj, tj+1] for some j ∈ {0,1,2, . . . ,n − 1}. Then almost surely,

E[(H•M)t − (H•M)s | Fs] = E[Aj · (Mt − Ms) | Fs] = Aj · E[Mt − Ms | Fs] = 0

because Aj is Ftj -measurable and hence Fs-measurable, and (Mt ) is a martingale.

(iii) Finally, suppose that s ∈ [tj, tj+1] and t ∈ [tk, tk+1] with j < k.

tj s tj+1 tk t tk+1

Then by the tower property for conditional expectations and by (i) and (ii),

E[(H•M)t | Fs] = E[E[E[(H•M)t | Ftk ] | Ftj+1] | Fs]

(ii)
= E[E[(H•M)tk | Ftj+1] | Fs]

(i)
= E[(H•M)tj+1 | Fs]

(ii)
= (H•M)s . �
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Remark (Riemann sum approximations). Non-anticipative Riemann sum approximations of stochastic
integrals are Itô integrals of predictable step functions: If (Ht ) is an adapted stochastic process and π =
{t0, t1, . . . , tn} is a partition then

n−1∑
i=0

Hti · (Mti+1∧t − Mti∧t ) =

tˆ

0

Hπ
s dMs (5.12)

where Hπ :=
n−1∑
i=0

Hti · I(ti ,ti+1] is a process in E.

Itô’s isometry for Brownian motion

Recall that our goal is to prove that non-anticipative Riemann sum approximations for a stochastic integral
converge. Let (πn) be a sequence of partitions of [0, t] with mesh(πn) → 0. By the remark above, the
corresponding Riemann-Itô sums Iπn defined by (5.12) are integrals of predictable step functions Hπn .
Hence in order to prove that the sequence (Iπn ) converges in the Hilbert space M2

c it suffices to show that

(i) (Hπn ) is a Cauchy sequence w.r.t. an appropriate norm on the vector space E, and

(ii) the “Itô map” J : E → M2
c defined by

J(H) = H•M =

•ˆ

0

Hs dMs

is continuous w.r.t. this norm.

It turns out that we can even identify explicitly a simple norm on E such that the Itô map is an isometry. We
first consider the case where (Mt ) is a Brownian motion:

Theorem 5.6 (Itô’s isometry for Brownian motion). If (Bt ) is an (Ft )Brownianmotion on (Ω,A,P) then
for every u ∈ [0,∞], and for every process H ∈ E,

‖H•B‖2M2([0,u]) = E
©­«

uˆ

0

Hs dBs
ª®¬

2 = E


uˆ

0

H2
s ds

 = ‖H‖2L2(P⊗λ(0,u))
. (5.13)

Proof. Suppose that H =
∑n−1

i=0 Ai · I(ti ,ti+1] with n ∈ N, 0 ≤ t0 < t1 < . . . < tn and Ai bounded and
Fti -measurable. With the notation δiB := Bti+1∧u − Bti∧u, we obtain

E

[(ˆ u

0
Hs dBs

)2
]
= E


(
n−1∑
i=0

AiδiB

)2 =
n−1∑
i,k=0

E [AiAk δiB δkB] . (5.14)

By the martingale property, the summands on the right hand side vanish for i , k. Indeed, if, for instance,
i < k then

E[AiAk δiB δkB] = E[AiAkδiB · E[δkB | Ftk ]] = 0.

Here we have used in an essential way, that Ak is Ftk -measurable. Similarly,

E[A2
i · (δiB)

2] = E[A2
i E[(δiB)2 | Fti ]] = E[A2

i · δit]
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by the independence of the increments of Brownian motion. Therefore, by (5.14) we obtain

E

[(ˆ u

0
Hs dBs

)2
]
=

n−1∑
i=0

E[A2
i · (ti+1 ∧ u − ti ∧ u)] = E

[ˆ u

0
H2
s ds

]
.

The assertion now follows by definition of the M2 norm. �

Theorem 5.6 shows that the linear map

J : E →M2
c([0,u]), J(H) =

(ˆ r

0
Hs dBs

)
r ∈[0,u]

,

is an isometry if the space E of simple predictable processes (s,ω) 7→ Hs(ω) is endowed with the L2 norm

‖H‖L2(P⊗λ(0,u))
= E

[ˆ u

0
H2
s ds

]1/2

on the product spaceΩ×(0,u). In particular, J respects P⊗λ classes, i.e., if Hs(ω) = H̃s(ω) for P⊗λ-almost
every (ω, s) then

´ •
0 H dB =

´ •
0 H̃ dB P-almost surely. Hence J also induces a linear map between the

corresponding spaces of equivalence classes. As usual, we do not always differentiate between equivalence
classes and functions, and so we denote the linear map on equivalence classes again by J :

J : E ⊂ L2(P ⊗ λ(0,u)) → M2
c ([0,u]),

‖H‖L2(P⊗λ(0,u))
= ‖J(H)‖M2([0,u]). (5.15)

Itô’s isometry for martingales

An Itô isometry also holds if Brownian motion is replaced by a continuous square-integrable martingale
(Mt ). More generally, suppose that (Mt )t≥0 is a right continuous square integrable (Ft )martingale satisfying
the following assumption:

Assumption A. There exists a non-decreasing adapted continuous process t 7→ 〈M〉t such that 〈M〉0 = 0
and M2

t − 〈M〉t is a martingale.

We will show in Section 6.3 that for continuous square integrable martingales, the assumption is always
satisfied. Indeed, assuming continuity, the “angle bracket process” 〈M〉t is almost surely uniquely determined
and coincides with the quadratic variation process [M]t of M . For Brownian motion, we immediately see
that Assumption A holds with

〈B〉t = t .

Note that for any 0 ≤ s ≤ t, Assumption A implies

E
[
(Mt − Ms)

2 | Fs
]
= E

[
M2

t − M2
s | Fs

]
= E [〈M〉t − 〈M〉s | Fs] . (5.16)

Since t 7→ 〈M〉t (ω) is continuous and non-decreasing for a given ω, it is the distribution function of a unique
positive measure 〈M〉(ω, dt) on R+. We now endow the product space Ω × R+ with the positive measure

P〈M 〉(dω dt) = P(dω) 〈M〉(ω, dt). (5.17)

For finite u, the restriction of P〈M 〉 to Ω × (0,u) is a finite measure with total mass

P〈M 〉[Ω × (0,u)] =
ˆ
Ω

ˆ
(0,u)
〈M〉(ω, dt) P(dω) = E[〈M〉u] . (5.18)

If M is a Brownian motion then 〈M〉t = t, and hence P〈M 〉 is the product of P and Lebesgue measure.
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Theorem 5.7 (Itô’s isometry for martingales). Suppose that (Mt )t≥0 is a right continuous (Ft )martingale
with angle bracket process 〈M〉 satisfying Assumption A. Then for any u ∈ [0,∞], and for any process
H ∈ E,

‖H•M ‖2M2([0,u]) = E

[(ˆ u

0
Hs dMs

)2
]
= E

[ˆ u

0
H2
s d〈M〉s

]
= ‖H‖2

L2(Ω×(0,u),P〈M 〉)
(5.19)

where d〈M〉 denotes integration w.r.t. the positive measure with distribution function F(t) = 〈M〉t .

For Brownian motion, (5.19) reduces to (5.13).

Proof. The proof is similar to the proof of Theorem 5.6 above. Suppose again that H =
∑n−1

i=0 Ai · I(ti ,ti+1]

with n ∈ N, 0 ≤ t0 < t1 < . . . < tn and Ai bounded and Fti -measurable. With the same notation as in the
proof above, we obtain by the martingale properties of M and M2 − 〈M〉,

E[AiAk δiM δkM] = 0 for i , k, and

E[A2
i (δiM)

2] = E[A2
i E[(δiM)2 | Fti ]] = E[A2

i E[δi 〈M〉 | Fti ]] = E[A2
i δi 〈M〉].

cf. (5.16). Therefore,

E

[(ˆ u

0
Hs dMs

)2
]
= E


(
n−1∑
i=0

AiδiM

)2 =
n−1∑
i,k=0

E [AiAk δiM δkM]

=

n−1∑
i=0

E[A2
i δi 〈M〉] = E

[ˆ u

0
H2
s d〈M〉s

]
. �

For a continuous square integrable martingale, Theorem 5.7 implies that the linear map

J : E →M2
c([0,u]), J(H) =

(ˆ r

0
Hs dMs

)
r ∈[0,u]

,

is an isometry if the space E of simple predictable processes (s,ω) 7→ Hs(ω) is endowed with the L2 norm

‖H‖L2(Ω×(0,u),P〈M 〉) = E
[ˆ u

0
H2
s d〈M〉s

]1/2
.

Again, we denote the corresponding linear map induced on equivalence classes by the same letter J .

Definition of Itô integrals for square-integrable integrands

From now on we assume that (Mt ) is a continuous square integrable (Ft ) martingale with angle bracket
process 〈M〉t . We fix u ∈ [0,∞] and consider the isometry

J : E ⊂ L2(Ω × (0,u),P〈M 〉) → M2
c ([0,u]) (5.20)

mapping an elementary predictable process H to the continuous martingale

(H•M)t =
ˆ t

0
Hs dMs .
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More precisely, we consider the induced map on equivalence classes.

Let Eu denote the closure of the space E in L2(Ω × (0,u),P〈M 〉). Since J is linear with

‖J(H)‖M2([0,u]) = ‖H‖L2(Ω×(0,u),P〈M 〉) for any H ∈ E,

there is a unique extension to a continuous (and even isometric) linear map

J : Eu ⊆ L2(Ω × (0,u),P〈M 〉) → M2
c ([0,u]).

This can be used to define the Itô integral for every process in Eu, i.e., for every process that can be
approximated by predictable step functions w.r.t. the L2(P〈M 〉) norm:

H•M := J(H),
ˆ t

0
Hs dMs := (H•M)t .

Explicitly, we obtain the following definition of stochastic integrals for integrands in Eu:

Definition 5.8 (Itô integral). For H ∈ Eu, the process H•M = (
´ t

0 Hs dMs)t∈[0,u] is the up tomodifications
unique continuous martingale on [0,u] satisfying

(H•M)t = lim
n→∞
(Hn
• M)t in L2(P) for every t ∈ [0,u]

whenever (Hn) is a sequence of elementary predictable processes such that Hn → H in L2(Ω×(0,u),P〈M 〉).

Remark. The definition above is consistent in the following sense: If H•M is the stochastic integral defined
on the time interval [0, v] and u ≤ v, then the restriction of H•M to [0,u] coincides with the stochastic
integral on [0,u].

Theorem 5.9 (Extension of Itô’s isometry). For H ∈ Eu, the Itô integral H•M = (
´ t

0 Hs dMs)t∈[0,u] is
well-defined as an equivalence class of martingales in M2

c ([0,u]). Moreover, Itô’s isometry (5.19) extends
to all integrands H ∈ Eu.

Proof. By the definition above, H•M = J(H), where J is the unique isometric extension of the Itô map J
to a linear map from Eu to M2

c ([0,u]). �

For 0 ≤ s ≤ t we define ˆ t

s

Hr dMr := (H•M)t − (H•M)s .

Exercise. Verify that for any H ∈ Et ,ˆ t

s

Hr dMr =

ˆ t

0
Hr dMr −

ˆ t

0
I(0,s)(r)Hr dMr =

ˆ t

0
I(s,t)(r)Hr dMr .

Having defined the Itô integral, we now show that bounded adapted processes with left-continuous sample
paths are contained in the closure of the simple predictable processes, and the corresponding stochastic
integrals are limits of predictable Riemann sum approximations. As above, we consider a sequence (πn) of
partitions of R+ such that mesh(πn) → 0.
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Theorem 5.10 (Approximation by Riemann-Itô sums). Let u ∈ (0,∞), and suppose that (Ht )t∈[0,u) is an
(F P

t ) adapted stochastic process on (Ω,A,P) such that (t,ω) 7→ Ht (ω) is product-measurable and bounded.
If t 7→ Ht is P-almost surely left continuous then H is in Eu, and

ˆ t

0
Hs dMs = lim

n→∞

∑
s∈πn

Hs(Ms′∧t − Ms∧t ), t ∈ [0,u], (5.21)

w.r.t. convergence uniformly in t in the L2(P) sense.

Remark. (i) In particular, a subsequence of the predictable Riemann sum approximations converges
uniformly in t with probability one.

(ii) The assertion also holds if H is unbounded with sups≤u |Hs | ∈ L
2(P).

Proof. For any t ∈ [0,u], the Riemann sums on the right hand side of (5.21) are the stochastic integrals´ t
0 Hn

s dMs of the step functions

Hn
t :=

∑
s∈πn ,s<u

Hs · I(s,s′](t), n ∈ N.

By assumption, Hs is F P
s measurable, and hence there exist bounded Fs measurable random variables H̃s

such that P-almost surely, H̃s = Hs for all s ∈ πn. Consequently, Hn coincides P〈M 〉-almost surely with an
elementary predictable process in E. By left-continuity, Hn

t → Ht as n → ∞ for any t ∈ [0,u], P-almost
surely. Therefore, Hn → H P〈M 〉-almost surely, and, by dominated convergence,

Hn → H in L2(P〈M 〉).

Here we have used that the sequence (Hn) is uniformly bounded since H is bounded by assumption. Hence
H represents an equivalence class in Eu, and by Itô’s isometry,ˆ •

0
Hs dMs = lim

n→∞

ˆ •
0

Hn
s dMs in M2

c ([0,u]). �

Identification of admissible integrands

Let u ∈ (0,∞]. We have already shown that if u < ∞ then any product-measurable adapted bounded process
with left-continuous sample paths is in Eu. More generally, we define:

Definition 5.11 (Progressively measurable process). A stochastic process (ω, t) 7→ Ht (ω) is called pro-
gressively measurablew.r.t. a filtration (Ft ) iff for every s ≥ 0, the restriction of H toΩ×[0, s] is measurable
w.r.t. the product σ-algebra Fs ⊗ B([0, s]).

A progressively measurable process is both adapted and product measurable. On the other hand, any
adapted process with left continuous paths is progressively measurable. For an (Ft ) martingale M ∈

M2
c([0,u]), we denote by L2

a(0,u; M) the linear space of all (F P
t ) progressively measurable stochastic

processes (ω, t) 7→ Ht (ω) defined on Ω × (0,u) such that

E
[ˆ u

0
H2
t d〈M〉t

]
< ∞.
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5. Stochastic Integration w.r.t. Continuous Martingales

The corresponding space of equivalence classes w.r.t. P〈M 〉 is denoted by L2
a(0,u; M). Below, we will

prove under an additional assumption on M that every process in L2
a(0,u; M) is contained in Eu, and hence

“integrable” w.r.t. (Mt ).

Lemma 5.12. L2
a(0,u; M) is a closed linear subspace of L2(Ω × (0,u),P〈M 〉).

Proof. It only remains to show that an L2(P〈M 〉) limit of progressively measurable processes again has
a progressively measurable P〈M 〉-version. Hence consider a sequence Hn ∈ L2

a(0,u; M) with Hn → H
in L2(P〈M 〉). Then there exists a subsequence (Hnk ) such that Hnk

t (ω) → Ht (ω) for P〈M 〉-almost every
(ω, t) ∈ Ω × (0,u). The process H̃ defined by H̃t (ω) := lim Hnk

t (ω) if the limit exists, H̃t (ω) := 0 otherwise,
is a progressively measurable version of H. �

We can now identify the class of integrands H for which the stochastic integral H•M is well-defined as a
limit of integrals of predictable step functions in M2

c ([0,u]):

Theorem 5.13 (Admissible integrands). Let u ∈ (0,∞), and suppose that M is a martingale inM2
c([0,u])

such that t 7→ 〈M〉t is almost surely absolutely continuous. Then

Eu = L2
a(0,u; M).

Proof. We will only give the proof in the case where M is a Brownian motion. The general case is left as
an exercise.
Since E ⊆ L2

a(0,u; M) it only remains to show the inclusion “⊇”. Hence fix a process H ∈ L2
a(0,u; M).

We will prove in several steps that H can be approximated by simple predictable processes w.r.t. the
L2(P ⊗ λ(0,u)) norm:

(i) Suppose first that H is bounded and has almost surely continuous trajectories. Then H is in Eu by
Theorem 5.10.

(ii) Now we assume only that H is bounded. To prove H ∈ Eu we approximate H by continuous adapted
processes. To this end let ψn : R → [0,∞),n ∈ N, be continuous functions such that ψ(s) = 0 for
s < (0,1/n) and

´ ∞
−∞

ψn(s) ds = 1. Let Hn := H ∗ ψn, i.e.,

Hn
t (ω) =

ˆ 1/n

0
Ht−ε(ω)ψn(ε) dε, (5.22)

where we set Ht := 0 for t ≤ 0. We prove that

a) Hn → H in L2(P ⊗ λ(0,u)), and

b) Hn ∈ Eu for any n ∈ N.

Combining a) and b), we see that H is in Eu as well.

a) Since H is in L2(P ⊗ λ(0,u)), we have
ˆ u

0
Ht (ω)

2 dt < ∞ (5.23)

for P-almost every ω. It is a standard fact from analysis that (5.23) implies
ˆ u

0
|Hn

t (ω) − Ht (ω)|
2 dt −→ 0 as n→∞.
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5.2. Itô’s isometry

By dominated convergence, we obtain

E
[ˆ u

0
|Hn

t − Ht |
2 dt

]
−→ 0 as n→∞ (5.24)

because H is bounded, and the sequence (Hn) is uniformly bounded.
b) This is essentially a consequence of part (i) of the proof. We sketch how to verify that Hn satisfies

the assumptions made there:
• The sample paths t 7→ Hn

t (ω) are continuous for all ω.
• |Hn

t | is bounded by sup |H |.
• Let s ∈ [0,u). By (5.22) and Fubini’s Theorem, the map (ω, t) 7→ Hn

t (ω) is measurable on
Ω× [0, s] w.r.t. F P

s ⊗ B([0, s]), because the map (ω, t, ε) 7→ Ht−ε(ω)ψn(ε) is measurable on
Ω×[0, s]×[0,1/n]w.r.t. F P

s ⊗B([0, s])⊗B([0,1/n]). Hence Hn is progressivelymeasurable.

(iii) We finally prove that general H ∈ L2
a(0,u; M) are contained in Eu. This is a consequence of (ii),

because we can approximate H by the processes

Hn
t := (Ht ∧ n) ∨ (−n), n ∈ N.

These processes are bounded and Hn → H in L2(P ⊗ λ(0,u)). By (ii), Hn is contained in Eu for every
n, so H is in Eu as well. �

Exercise (Admissible integrands w.r.t. continuous martingales). Suppose that (Mt ) is a continuous
square integrable (Ft ) martingale. Show that if almost surely, t 7→ 〈M〉t is absolutely continuous, then
the closure Eu of the elementary processes w.r.t. the L2(P〈M 〉) norm on Ω × (0,u) is given by

Eu = L2
a(0,u; M).

Remark (Riemann sum approximations). For discontinuous integrands, the predictable Riemann sum
approximations considered above do not converge to the stochastic integral in general. However, one can
prove under the assumptions made above that for u < ∞, every process H ∈ L2

a(0,u; M) is the limit of the
simple predictable processes

Hn
t =

2n−1∑
i=1

2n
ˆ i2−nu

(i−1)2−nu
Hs ds · I(i2−nu,(i+1)2−nu](t)

w.r.t. the L2(P〈M 〉) norm, see e.g.[13, Sect 6.6]. Therefore, the stochastic integral
´ t

0 H dM can be approxi-
mated for t ≤ u by the correspondingly modified Riemann sums.

Local dependence on integrand and integrator

The approximations considered above imply that the stochastic integral depends locally both on the integrand
and on the integrator in the following sense:

Corollary 5.14. Suppose thatT : Ω→ [0,∞] is a random variable, M, M̃ are square integrable martingales
in M2

c([0,u]) with absolutely continuous angle bracket processes 〈M〉, 〈M̃〉, and H, H̃ are processes in
L2

a(0,u; M), L2
a(0,u; M̃) respectively, such that almost surely, Ht = H̃t for any t < T ∧ u and Mt = M̃t for

any t ≤ T ∧ u. Then almost surely,
ˆ t

0
Hs dMs =

ˆ t

0
H̃s dM̃s for any t ≤ T ∧ u. (5.25)
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5. Stochastic Integration w.r.t. Continuous Martingales

Proof. We go through the same approximations as in the proof of Theorem 5.13 above:

(i) Suppose first that Ht and H̃t are almost surely continuous and bounded. Let (πn) be a sequence of
partitions with mesh(πn) → 0. Then by Theorem 5.10,

ˆ t

0
H dM = lim

n→∞

∑
s∈πn
s<t

Hs · (Ms′∧t − Ms), and

ˆ t

0
H̃ dM̃ = lim

n→∞

∑
s∈πn
s<t

H̃s · (M̃s′∧t − M̃s)

with P-almost sure uniform convergence for t ∈ [0,u] along a common subsequence. For t ≤ T the
right-hand sides coincide, and thus (5.25) holds true.

(ii) Now suppose that H and H̃ are bounded. Then the approximations

Hn
t =

ˆ 1/n

0
Ht−εψn(ε) dε, H̃n

t =

ˆ 1/n

0
H̃t−εψn(ε)

(with ψn defined as in the proof of Theorem 5.13 and Ht := H̃t := 0 for t < 0) coincide for t ≤ T .
Hence by (i), on {t ≤ T ∧ u},

ˆ t

0
H dM = lim

n→∞

ˆ t

0
Hn dM = lim

n→∞

ˆ t

0
H̃n dM̃ =

ˆ t

0
H̃ dM̃,

where the convergence holds again almost surely uniformly in t along a subsequence.

(iii) Finally, in the general case the assertion follows by approximating H and H̃ by the bounded processes

Hn
t = (Ht ∧ n) ∨ (−n), H̃n

t = (H̃t ∧ n) ∨ (−n). �

5.3. Localization

Square-integrability of the integrand is an assumption that we would like to avoid, since it is not always
easy to verify or may even fail to hold. The key to extending the class of admissible integrands further is
localization, which enables us to define a stochastic integral w.r.t. a continuous martingale for any continuous
adapted process. The price we have to pay is that for integrands that are not square integrable, the Itô integral
is in general not a martingale, but only a local martingale.

Local martingales

Itô integrals w.r.t. square integrable martingales are not necessarily martingales if the integrands are not
square integrable. However, they are still local martingales in the sense of the definition stated below.

Definition 5.15 (Predictable stopping time). A random variable T : Ω → [0,∞] is called a predictable
stopping time iff there exists an increasing sequence (Tk)k∈N consisting of (F P

t ) stopping times such that
Tk < T on {T , 0} for any k, and T = supTk .
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5.3. Localization

Example (Hitting time of a closed set). The hitting time TA of a closed set A by a continuous adapted
process is predictable, as it can be approximated from below by the hitting times TAk

of the neighbour-
hoods Ak = {x : dist(x, A) ≤ 1/k}. On the other hand, the hitting time of an open set is not predictable
in general.

Definition 5.16 (Local martingale). Suppose that T : Ω→ [0,∞] is a predictable stopping time.

(i) A stochastic process Mt (ω) defined for 0 ≤ t < T(ω) is called a local martingale up to time T , if
and only if there exists an increasing sequence (Tk)k∈N of stopping times with T = supTk such that
for any k ∈ N, Tk < T on {T > 0}, and the stopped process (Mt∧Tk )t∈[0,∞) is a martingale if we set
M0 := 0 on {T = 0}.

(ii) A sequence (Tk)k∈N as above is called a localizing sequence for M .

Recall that by the Optional Stopping Theorem, a continuous martingale stopped at a stopping time is again
a martingale. Therefore, every continuous martingale (Mt )t∈[0,∞) is a local martingale up to T = ∞. Even
if (Mt ) is assumed to be uniformly integrable, the converse implication fails to hold, see the corresponding
exercise in Section 6.4. On the other hand, note that if (Mt ) is a continuous local martingale up to T = ∞,
and the family {Mt∧Tk : k ∈ N} is uniformly integrable for each fixed t ≥ 0, then (Mt ) is a martingale,
because for 0 ≤ s ≤ t,

E[Mt | Fs] = lim
k→∞

E[Mt∧Tk | Fs] = lim
k→∞

Ms∧Tk = Ms

with convergence in L1. Another important observation is that continuous local martingales can always be
localized by a sequence of bounded martingales in M2

c ([0,∞)).
Exercise (Localization by bounded martingales). Suppose that (Mt ) is a continuous local martingale
up to time T , and (Tk) is a localizing sequence of stopping times.

(i) Show that T̃k = Tk ∧ inf{t ≥ 0 : |Mt | ≥ k} ∧ k is another localizing sequence, and for all k, the
stopped processes

(
Mt∧T̃k

)
t∈[0,∞)

are bounded martingales in M2
c ([0,∞)).

(ii) Show that if T = ∞ then T̂k := inf{t ≥ 0 : |Mt | ≥ k} is also a localizing sequence for M .

An angle bracket process of a local martingale (Mt )t<T is a non-decreasing continuous process (〈M〉t )t<T
such that 〈M〉0 = 0 and M2

t − 〈M〉t is a local martingale up to T . In Section 6.3 below we show that the
angle bracket process is uniquely determined up to modification on a measure zero set, see also the exercise
below. Moreover, assuming continuity, the angle bracket process 〈M〉t exists for t < T , and it coincides
almost surely with the quadratic variation process [M]t of M . If (Tk)k∈N is a localizing sequence for M then
almost surely,

〈M〉t = 〈M•∧Tk 〉t for any t ≤ Tk . (5.26)
Exercise (Uniqueness of the angle bracket process). Let (Ft )t∈[0,∞) be a filtration on (Ω,A,P).

(i) Suppose that (Mt ) is a square integrable continuous (Ft ) martingale such that for every t ∈ R+,
the first variation

V (1)t (M) = sup
π

∑
s∈π

|Ms′∧t − Ms∧t |

is an almost surely bounded random variable. Show that t 7→ Mt is almost surely constant.
Hint: E[(Mt − M0)

2] =
∑

s∈π E[(Ms′∧t − Ms∧t )
2].

(ii) More generally, prove that a continuous local martingale M with almost surely finite variation
paths is almost surely constant.

(iii) Conclude that the angle bracket process 〈M〉 of a continuous local martingale is uniquely deter-
mined up to modification on a measure zero set.
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5. Stochastic Integration w.r.t. Continuous Martingales

Itô integrals for locally square-integrable integrands w.r.t. local martingales

Let T : Ω→ [0,∞] be a predictable (F P
t ) stopping time. We will also be interested in the case where T = ∞.

We now assume that M is a continuous local martingale up to T with absolutely continuous angle bracket
process 〈M〉. LetL2

a,loc(0,T ; M) denote the linear space consisting of all stochastic processes (t,ω) 7→ Ht (ω)

defined for t ∈ [0,T(ω)) such that the trivially extended process

H̃t :=

{
Ht for t < T,
0 for t ≥ T,

is progressively measurable w.r.t. the filtration (F P
t ), and

t 7→ Ht (ω) is in L2
loc([0,T(ω)), d〈M〉(ω)) for P-a.e. ω. (5.27)

Here for u ∈ (0,∞], the spaceL2
loc([0,u), d〈M〉(ω)) consists of all measurable functions f : [0,u) → [−∞,∞]

such that
´ s

0 f (t)2 d〈M〉t (ω) < ∞ for any s ∈ (0,u). In particular, it contains all continuous functions.
From now on, we use the notation Ht · I{t<T } for the trivial extension (H̃t )0≤t<∞ of a process (Ht )0≤t<T

beyond the stopping time T . Processes in L2
a,loc(0,T ; M) allow for a localization by stopping times:

Lemma 5.17 (Localization by stopping). If (Mt )0≤t<T is a continuous local martingale and (Ht )0≤t<T is
a process in L2

a,loc(0,T ; M) then there exists a localizing sequence (Tn)n∈N such that for every n, the stopped
process Mt∧Tn is a bounded martingale inM2

c([0,∞)), and the trivially extended process Ht · I{t<Tn } is in
L2

a(0,∞; M•∧Tn ).

Proof. Let (T̃n)n∈N be a localizing sequence for M . Then one easily verifies that the random variables Tn

defined by

Tn := T̃n ∧ n ∧ inf
{
0 ≤ t < T :

ˆ t

0
H2
s d〈M〉s ≥ n or |Mt | ≥ n

}
, n ∈ N, (5.28)

are (F P
t ) stopping times. Moreover, for almost every ω, the function t 7→ Ht (ω) is in L2

loc([0,T), d〈M〉(ω)).
Hence the functions t 7→

´ t
0 Hs(ω)

2 d〈M〉s and t 7→ |Mt | are continuous on [0,T(ω)), and therefore
Tn(ω) ↗ T(ω) as n → ∞. Since Tn is an (F P

t ) stopping time, the process Ht · I{t<Tn } is progressively
measurable, and by (5.28) and (5.26),

E
[ˆ ∞

0
(Hs · I{s<Tn })

2 d〈M•∧Tn 〉s

]
= E

[ˆ Tn

0
H2
s d〈M〉s

]
≤ n for all n.

�

We can now extend the definition of the Itô integral to locally square-integrable, progressively measurable
integrands:

Definition 5.18 (Itô integral of a locally square integrable integrand w.r.t. a local martingale). For a
continuous local martingale M = (Mt )t<T and a process H ∈ L2

a,loc(0,T ; M), the Itô stochastic inte-
gral of H w.r.t. M is defined for t ∈ [0,T) by setting

ˆ t

0
Hs dMs :=

ˆ t

0
Hs · I{s<T̂ } dMs∧T̂ for t ∈ [0, T̂] (5.29)

whenever T̂ is an (F P
t ) stopping time such that Mt∧T̂ is inM2

c([0,∞)) and Ht · I{t<T̂ } is in L2
a(0,∞; M•∧T̂ ).

112 University of Bonn



5.3. Localization

Theorem 5.19. The Itô integral t 7→
´ t

0 Hs dMs of a process H ∈ L2
a,loc(0,T ; M) w.r.t. a continuous

local martingale M ∈ Mc,loc([0,T)) is an up to equivalence well-defined continuous local martingale in
Mc,loc([0,T)).

Proof. We have to verify that the definition does not depend on the choice of the localizing stopping times.
This is a direct consequence of Corollary 5.14: Suppose that T̂ and T̃ are stopping times such that Mt∧T̂

and Mt∧T̂ are both inM2
c([0,∞)), and Ht · I{t<T̂ } and Ht · I{t<T̃ } are in L

2
a(0,∞; M•∧T̂ ), L2

a(0,∞; M
•∧T̃ ),

respectively. Since the two trivially extended processes agree on [0, T̂ ∧ T̃), Corollary 5.14 implies that
almost surely,

ˆ t

0
Hs · I{s<T̂ } dMs∧T̂ =

ˆ t

0
Hs · I{s<T̃ } dMs∧T̃ for any t ∈ [0, T̂ ∧ T̃).

Hence, by Lemma 5.17, the stochastic integral is well defined on [0,T). Furthermore, we can choose a
localizing sequence (Tk) for M such that Ht · I{t<Tk } is in L

2
a(0,∞; M•∧Tk ) for any k. Then, by definition,

ˆ t∧Tk

0
Hs dMs =

ˆ t∧Tk

0
Hs · I{s<Tk } dMs∧Tk almost surely for any k ∈ N,

and the right-hand side is a continuous martingale in M2
c ([0,∞)). Hence the Itô integral of H w.r.t. M is a

continuous local martingale. �

Suppose that M is a continuousmartingale inM2
c([0,∞)), or, more generally, a continuous localmartingale.

Then the theorem shows that for a predictable (F P
t ) stopping time T , the Itô map H 7→

´ •
0 H dM extends to

a linear map
J : L2

a,loc(0,T ; M) −→ Mc,loc([0,T)),

where L2
a,loc(0,T ; M) is the space of equivalence classes of processes in L2

a,loc(0,T ; M) that coincide for
P〈M 〉-a.e. (ω, t), and Mc,loc([0,T)) denotes the space of equivalence classes of continuous local (F P

t )

martingales up to time T w.r.t. P-almost sure coincidence. Note that different notions of equivalence are
used for the integrands and the integrals.

Approximation by Riemann-Itô sums

If the integrand (Ht ) of a stochastic integral
´

H dM has continuous sample paths then local square integra-
bility always holds, and the stochastic integral is a limit of Riemann-Itô sums: Let (πn) be a sequence of
partition of R+ with mesh(πn) → 0.

Theorem 5.20. Suppose that T is a predictable stopping time, (Mt )0≤t<T is a continuous local martingale,
and (Ht )0≤t<T is a stochastic process defined for t < T . If the sample paths t 7→ Ht (ω) are continuous
on [0,T(ω)) for every ω, and the trivially extended process Ht · I{t<T } is (F P

t ) adapted, then H is in
L2

a,loc(0,T ; M), and for every t ≥ 0,

ˆ t

0
Hs dMs = lim

n→∞

∑
s∈πn
s<t

Hs · (Ms′∧t − Ms) on {t < T} (5.30)

with convergence in probability.
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5. Stochastic Integration w.r.t. Continuous Martingales

Proof. Suppose that (T̃k) is a sequence of stopping times approaching T from below in the sense of the
definition of a predictable stopping time given above, and let btcn = max{s ∈ πn : s ≤ t} denote the next
partition point below t. By continuity,

Ht · I{t<T } = lim
n→∞

Hbt cn · lim
k∈N

I
{t≤T̃k }

.

Using this expression, one can verify that H is progressivelymeasurable. Moreover, by continuity, t 7→ Ht (ω)

is locally bounded for every ω, and thus H is in L2
a,loc(0,T ; M). Notice that

Tk := T̃k ∧ k ∧ inf{t ≥ 0 : |Ht | ≥ k or |Mt | ≥ k}, k ∈ N,

is a localizing sequence of stopping times with Tk ↗ T such that for every k, M•∧Tk is a bounded martingale,
and Ht · I{t<Tk } is a bounded process in L2

a(0,T ; M). Therefore, by definition of the Itô integral and by
Theorem 5.10,

ˆ t

0
Hs dMs =

ˆ t

0
Hs · I{s<Tk } dMs∧Tk = lim

n→∞

∑
s∈πn
s<t

Hs · (Ms′∧t − Ms) on {t ≤ Tk}

w.r.t. convergence in probability. Since

P

[
{t < T} \

⋃
k

{t ≤ Tk}

]
= 0,

we obtain (5.30). �
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6. Itô’s formula and pathwise integrals

Our approach to Itô’s formula in this chapter follows that of Föllmer [5, 6]. We start with a heuristic
derivation of the formula that will be the central topic of this chapter.

Suppose that s 7→ Xs is a function from [0, t] to R, and F is a smooth function on R. If (πn) is a sequence of
partitions of the interval [0, t] with mesh(πn) → 0 then by Taylor’s theorem,

F(Xs′) − F(Xs) = F ′(Xs) · (Xs′ − Xs) +
1
2

F ′′(Xs) · (Xs′ − Xs)
2 + higher order terms.

Summing over s ∈ πn we obtain

F(Xt ) − F(X0) =
∑
s∈πn

F ′(Xs) · (Xs′ − Xs) +
1
2

∑
s∈πn

F ′′(Xs) · (Xs′ − Xs)
2 + remainder terms. (6.1)

We are interested in the limit of this formula as n→∞.

(a) Classical case, e.g. Xt continuously differentiable. For X ∈ C1 we have

Xs′ − Xs =
dXs

ds
(s′ − s) +O(|s′ − s |2), and (Xs′ − Xs)

2 = O(|s′ − s |2).

Therefore, the second order terms can be neglected in the limit of (6.1) as mesh(πn) → 0. Similarly, the
higher order terms can be neglected, and we obtain the limit equation

F(Xt ) − F(X0) =

tˆ

0

F ′(Xs) dXs, (6.2)

or, in differential notation,
dF(Xt ) = F ′(Xt ) dXt, (6.3)

Of course, (6.3) is just the chain rule of classical analysis, and (6.2) is the equivalent chain rule for Stieltjes
integrals, cf. Section 6.1 below.

(b) Xt Brownian motion. If (Xt ) is a Brownian motion then

E[(Xs′ − Xs)
2] = s′ − s.

Summing these expectations over s ∈ πn, we obtain the value t independently of n. This shows that the
sum of the second order terms in (6.1) can not be neglected anymore. Indeed, as n → ∞, a law of large
numbers type result implies that we can almost surely replace the squared increments (Xs′ − Xs)

2 in (6.1)
asymptotically by their expected values. The higher order terms are on average O(|s′ − s |3/2) whence their
sum can be neglected. Therefore, in the limit of (6.1) as n→∞ we obtain the modified chain rule

F(Xt ) − F(X0) =

tˆ

0

F ′(Xs) dXs +
1
2

tˆ

0

F ′′(Xs) ds (6.4)
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6. Itô’s formula and pathwise integrals

with probability one. The equation (6.4) is the basic version of Itô’s celebrated formula.

In Section 6.1, we will introduce Stieltjes integrals and the chain rule from Stieltjes calculus systematically.
In Section 6.2, we prove a general version of Itô’s formula for continuous functions with finite quadratic
variation in dimension one. Here the setup and the proof are still purely deterministic. As an aside we obtain
a pathwise definition for stochastic integrals involving only a single one-dimensional process due to Föllmer.
After computing the quadratic variation of Brownian motion in Section 6.3, we consider first consequences
of Itô’s formula for Brownian motions and continuous martingales. Section 6.4 contains extensions to the
multivariate and time-dependent case, as well as further applications.

6.1. Stieltjes integrals and chain rule

In this section, we define Lebesgue-Stieltjes integrals w.r.t. deterministic functions of finite variation, and
we prove a corresponding chain rule. The resulting calculus can then be applied path by path to stochastic
processes with sample paths of finite variation.

Lebesgue-Stieltjes integrals

Fix u ∈ (0,∞], and suppose that t 7→ At is a right-continuous and non-decreasing function on [0,u). Then
At − A0 is the distribution function of the positive measure µA on [0,u) determined uniquely by

µA[(s, t]] = At − As for any 0 ≤ s ≤ t < u.

Therefore, we can define integrals of type
´ t
s Hr dAr as Lebesgue integrals w.r.t. the measure µA. Let

L1
loc([0,u), µA) denote the space of all functions H : [0,u) → R that are integrable w.r.t. µA on every interval
[0, t) with t < u. Then for any u ∈ [0,∞] and any function H ∈ L1

loc([0,u), µA), the Lebesgue-Stieltjes
integral of H w.r.t. A is defined by

tˆ

s

Hr dAr :=
ˆ

Hr · I(s,t](r) µA(dr) for 0 ≤ s ≤ t < u.

It is easy to verify that the definition is consistent, i.e., varying u does not change the definition of the
integrals, and that t 7→

´ t
0 Hr dAr is again a right-continuous function.

For an arbitrary right-continuous function A : [0,u) → R, the (first order) variation of A on an interval [0, t)
is defined by

V (1)t (A) := sup
π

∑
s∈π

|As′∧t − As∧t | for t ∈ [0,u),

where the supremum is over all partitions π of R+. The function t 7→ At is said to be (locally) of finite
variation on the interval [0,u) iff V (1)t (A) < ∞ for all t ∈ [0,u). Any right-continuous function of finite
variation can be written as the difference of two non-decreasing right-continuous functions. In fact, we have

At = A↗t − A↘t (6.5)

with

A↗t = sup
π

∑
s∈π

(As′∧t − As∧t )
+ =

1
2
(V (1)t (A) + At ), (6.6)

A↘t = sup
π

∑
s∈π

(As′∧t − As∧t )
− =

1
2
(V (1)t (A) − At ). (6.7)
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Exercise. Prove that if At is right-continuous and is locally of finite variation on [0,u) then the functions
V (1)t (A), A↗t and A↘t are all right-continuous and non-decreasing for t < u.

Remark (Hahn-Jordan decomposition). The functions A↗t − A↗0 and A↘t − A↘0 are again distribution
functions of positive measures µ+A and µ−A on [0,u). Correspondingly, At − A0 is the distribution function of
the signed measure

µA[B] := µ+A[B] − µ
−
A[B], B ∈ B([0,u)), (6.8)

and V (1)t is the distribution function of the measure |µA| = µ+A + µ
−
A. It is a consequence of (6.6) and (6.7)

that the measures µ+A and µ−A are singular, i.e., the mass is concentrated on disjoint sets S+ and S−. The
decomposition (6.8) is hence a particular case of the Hahn-Jordan decomposition of a signed measure µ of
finite variation into a positive and a negative part, and the measure |µ| is the total variation measure of µ, cf.
e.g. [Alt].

We can now apply (6.5) to define Lebesgue-Stieltjes integrals w.r.t. functions of finite variation. A function
is integrable w.r.t. a signed measure µ if and only if it is integrable w.r.t. both the positive part µ+ and the
negative part µ−. The Lebesgue integral w.r.t. µ is then defined as the difference of the Lebesgue integrals
w.r.t. µ+ and µ−. Correspondingly, we define the Lebesgue-Stieltjes integral w.r.t. a function At of finite
variation as the Lebesgue integral w.r.t. the associated signed measure µA:

Definition 6.1 (Lebesgue-Stieltjes integral). Suppose that t 7→ At is right-continuous and locally of finite
variation on [0,u). Then for every function H ∈ L1

loc([0,u), |dA|), the Lebesgue-Stieltjes integral of H w.r.t.
A is defined by

tˆ

s

Hr dAr :=
ˆ

Hr · I(s,t](r) dA↗r −
ˆ

Hr · I(s,t](r) dA↘r , 0 ≤ s ≤ t < u.

Here the local L1 space w.r.t. the total variation measure |dA| = |µA| is defined as the intersection

L1
loc([0,u), |dA|) := L1

loc([0,u), dA↗) ∩ L1
loc([0,u), dA↘)

of the local L1 spaces w.r.t. the positive measures dA↗ = µ+A and dA↘ = µ−A.

Remark. (i) Simple integrands: If Ht =
n−1∑
i=0

ci · I(ti ,ti+1] is a step function with 0 ≤ t0 < t1 < . . . < tn < u

and c0, c1, . . . , cn−1 ∈ R then

tˆ

0

Hs dAs =

n−1∑
i=0

ci · (Ati+1∧t − Ati∧t ).

(ii) Continuous integrands; Riemann-Stieltjes integral: If H : [0,u) → R is a continuous function then
the Stieltjes integral can be approximated by Riemann sums:

tˆ

0

Hs dAs = lim
n→∞

∑
s∈πn
s<t

Hs · (As′∧t − As), t ∈ [0,u),
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for any sequence (πn) of partitions of R+ such that mesh(πn) → 0. For the proof note that the step
functions

Hn
r =

∑
s∈πn
s<t

Hs · I(s,s′](r), r ∈ [0,u),

converge to Hr pointwise on (0,u) by continuity. Moreover, again by continuity, Hr is locally bounded
on [0,u),and hence the sequence Hn

r is locally uniformly bounded. Therefore, by the dominated
convergence theorem, ˆ

Hr I(0,t](r) dAr = lim
n→∞

ˆ
Hn
r I(0,t](r) dAr

for any t < u.

(iii) Absolutely continuous integrators: If At is an absolutely continuous function on [0,u) then At has
locally finite variation

V (1)t (A) =

tˆ

0

|A′s | ds < ∞ for t ∈ [0,u).

The signedmeasure µAwith distribution function At−A0 is then absolutely continuousw.r.t. Lebesgue
measure with Radon-Nikodym density

dµA
dt
(t) = A′t for almost every t ∈ [0,u).

Therefore, L1
loc([0,u), |dA|) = L1

loc([0,u), |A
′ |dt), and the Lebesgue-Stieltjes integral of a locally

integrable function H is given by

tˆ

0

Hs dAs =

tˆ

0

HsA′s ds for t ∈ [0,u).

In the applications that we are interested in, the integrand will mostly be continuous, and the integrator
absolutely continuous. Hence Remarks (ii) and (iii) above apply.

The chain rule in Stieltjes calculus

We are now able to prove Itô’s formula in the special situation where the integrator has finite variation. In
this case, the second order correction disappears, and Itô’s formula reduces to the classical chain rule from
Stieltjes calculus:

Theorem 6.2 (Fundamental Theorem of Stieltjes Calculus). Suppose that A : [0,u) → R is a continu-
ous function of locally finite variation. Then for every F ∈ C2(R),

F(At ) − F(A0) =

tˆ

0

F ′(As) dAs ∀t ∈ [0,u). (6.9)

Proof. Let t ∈ [0,u) be given. Choose a sequence of partitions (πn) of R+ with mesh(πn) → 0, and let

δAs := As′∧t − As∧t for s ∈ πn,
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where, as usual, s′ denotes the next partition point. By Taylor’s formula, for s ∈ πn with s < t we have

F(As′∧t ) − F(As) = F ′(As)δAs +
1
2

F ′′(Zs) · (δAs)
2,

where Zs is an intermediate value between As and As′∧t . Summing over s ∈ πn, we obtain

F(At ) − F(A0) =
∑
s∈πn
s<t

F ′(As)δAs +
1
2

∑
s∈πn
s<t

F ′′(Zs)(δAs)
2. (6.10)

As n→∞, the first (Riemann) sum converges to the Stieltjes integral
´ t

0 F ′(As) dAs by continuity of F ′(As),
see Remark (ii) above. In order to see that the second sum converges to zero, note that the range of the
continuous function A restricted to [0, t] is a bounded interval. Since F ′′ is continuous by assumption, F ′′ is
bounded on this range by a finite constant c. As Zs is an intermediate value between As and As′∧t , we obtain�������

∑
s∈πn
s<t

F ′′(Zs)(δAs)
2

������� ≤ c ·
∑
s∈πn
s<t

(δAs)
2 ≤ c · V (1)t (A) · sup

s∈πn
s<t

|δAs |.

Since V (1)t (A) < ∞ and A is a uniformly continuous function on [0, t], the right hand side converges to 0 as
n→∞. Hence we obtain (6.9) in the limit of (6.10) as n→∞. �

To see that (6.9) can be interpreted as a chain rule, we write the equation in differential form:

dF(A) = F ′(A) dA. (6.11)

In general, the equation (6.11) is to be understood mathematically only as an abbreviation for the integral
equation (6.9). For intuitive arguments, the differential notation is obviously much more attractive than the
integral form of the equation. However, for the differential form to be useful at all, we should be able to
multiply the equation (6.11) by another function, and still obtain a valid equation. This is indeed possible
due to the next result, which states briefly that if dI = H dA then also G dI = GH dA:

Theorem 6.3 (Stieltjes integrals w.r.t. Stieltjes integrals). Suppose that Is =
´ s

0 Hr dAr where A :
[0,u) → R is a right-continuous function of locally finite variation, and H ∈ L1

loc([0,u), |dA|). Then
the function s 7→ Is is again right continuous with locally finite variation V (1)t (I) ≤

´ t
0 |H | |dA| < ∞, and,

for every function G ∈ L1
loc([0,u), |dI |),

tˆ

0

Gs dIs =

tˆ

0

GsHs dAs for all t ∈ [0,u). (6.12)

Proof. Right continuity of It and the upper bound for the variation are left as an exercise. We now use
Riemann sum approximations to prove (6.12) if G is continuous. For a partition 0 = t0 < t1 < . . . < tk = t,
we have

n−1∑
i=0

Gti (Iti+1 − Iti ) =
n−1∑
i=0

Gti ·

ti+1ˆ

ti

Hs dAs =

tˆ

0

G bscHs dAs

where bsc denotes the largest partition point ≤ s. Choosing a sequence (πn) of partitions with mesh(πn) → 0,
the integral on the right hand side converges to the Lebesgue-Stieltjes integral

´ t
0 GsHs dAs by continuity

of G and the dominated convergence theorem, whereas the Riemann sum on the left hand side converges to´ t
0 Gs dIs. Hence (6.12) holds for continuous G. The equation for general G ∈ L1

loc([0,u), |dI |) follows then
by standard arguments. �
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6. Itô’s formula and pathwise integrals

6.2. Quadratic variation and Itô’s formula

Our next goal is to derive a generalization of the chain rule from Stieltjes calculus to continuous functions
that are not of finite variation. Examples of such functions are typical sample paths of Brownian motion. As
pointed out above, in this case an additional term will appear in the chain rule.

Quadratic variation

Consider once more the approximation (6.10) that we have used to prove the fundamental theorem of Stieltjes
calculus. We would like to identify the limit of the last sum

∑
s∈πn F ′′(Zs)(δAs)

2 when A is not locally of
finite variation. For F ′′ = 1 this limit is called the quadratic variation of A if it exists:

Definition 6.4. Let u ∈ (0,∞] and let (πn) be a sequence of partitions of R+ with mesh(πn) → 0. The
quadratic variation [X]t of a continuous function X : [0,u) → R w.r.t. the sequence (πn) is defined by

[X]t = lim
n→∞

∑
s∈πn

(Xs′∧t − Xs∧t )
2 for t ∈ [0,u)

whenever the limit exists.

WARNINGS (Dependence on partition, classical 2-variation).

(i) The quadratic variation should not be confused with the classical 2-variation defined by

V (2)t (X) := sup
π

∑
s∈π

|Xs′∧t − Xs∧t |
2

where the supremum is over all partitions π. The classical 2-variation V (2)t (X) is strictly positive for
every function X that is not constant on [0, t] whereas [X]t vanishes in many cases, see e.g. Example
(i) below.

(ii) In general, the quadratic variation may depend on the sequence of partitions considered. See however
Examples (i) and (iii) below.

Example. (i) Functions of finite variation: For every continuous function A : [0,u) → R of locally
finite variation, the quadratic variation along (πn) vanishes:

[A]t = 0 for any t ∈ [0,u).

In fact, for δAs = As′∧t − As∧t we have∑
s∈πn

|δAs |
2 ≤ V (1)t (A) · sup

s∈πn
s<t

|δAs | → 0 as n→∞

by uniform continuity and since V (1)t (A) < ∞.

(ii) Perturbations by functions of finite variation: If the quadratic variation [X]t of X w.r.t. (πn) exists,
and A is of finite variation, then [X + A]t also exists, and

[X + A]t = [X]t .

This holds since ∑
|δ(X + A)|2 =

∑
(δX)2 + 2

∑
δXδA +

∑
(δA)2,

and the last two sums converge to 0 as mesh(πn) → 0 by Example (i) and the Cauchy-Schwarz
inequality.
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(iii) Brownian motion: If (Bt )t≥0 is a one-dimensional Brownian motion then P-almost surely,

[B]t = t for all t ≥ 0

w.r.t. any fixed increasing sequence (πn) of partitions such that mesh(πn) → 0, cf. Theorem 6.8
below.

(iv) Itô processes: If It =
´ t

0 Hs dBs is the stochastic integral of a process H ∈ L2
a,loc(0,∞; B) w.r.t.

a Brownian motion (Bt ) then almost surely, the quadratic variation w.r.t. a fixed sequence of
partitions is

[I]t =

tˆ

0

H2
s ds for all t ≥ 0.

(v) Continuous local martingales: For a continuous local martingale M , the quadratic variation [M]
exists almost surely, see below.

Note that in Examples (iii), (iv) and (v), the exceptional sets may depend on the sequence (πn). If it exists,
the quadratic variation [X]t is a non-decreasing function in t. In particular, Stieltjes integrals w.r.t. [X] are
well-defined provided [X] is right continuous.

Lemma 6.5. Suppose that X : [0,u) → R is a continuous function. If the quadratic variation [X]t along
(πn) exists for t ∈ [0,u), and t 7→ [X]t is continuous then∑

s∈πn
s<t

Hs · (Xs′∧t − Xs)
2 −→

tˆ

0

Hs d[X]s as n→∞ (6.13)

for any continuous function H : [0,u) → R and any t ≥ 0.

Remark. Heuristically, the assertion of the lemma says that

“
ˆ

H d[X] =
ˆ

H (dX)2”,

i.e., the infinitesimal increments of the quadratic variation are something like squared infinitesimal increments
of X . This observation is crucial for controlling the second order terms in the Taylor expansion used for
proving Itô’s formula.

Proof. The sum on the left-hand side of (6.13) is the integral of H w.r.t. the finite positive measure

µn :=
∑
s∈πn
s<t

(Xs′∧t − Xs)
2 · δs

on the interval [0, t). The distribution function of µn is

Fn(u) = :
∑
s∈πn
s≤u

(Xs′∧t − Xs)
2, u ∈ [0, t].

As n → ∞, Fn(u) → [X]u for any u ∈ [0, t] by continuity of X . Since [X]u is a continuous function of u,
convergence of the distribution functions implies weak convergence of the measures µn to the measure d[X]
on [0, t) with distribution function [X]. Hence,

ˆ
Hs µn(ds) −→

ˆ
Hs d[X]s as n→∞

for any continuous function H : [0, t] → R. �
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Itô’s formula and pathwise integrals in R1

We are now able to complete the proof of the following purely deterministic (pathwise) version of the
one-dimensional Itô formula going back to [5].

Theorem 6.6 (Itô’s formula without probability). Suppose that X : [0,u) → R is a continuous function
with continuous quadratic variation [X] w.r.t. (πn). Then for any function F that is C2 in a neighbourhood
of X([0,u)), and for any t ∈ [0,u), the Itô integral

tˆ

0

F ′(Xs) dXs = lim
n→∞

∑
s∈πn
s<t

F ′(Xs) · (Xs′∧t − Xs) (6.14)

exists, and Itô’s formula

F(Xt ) − F(X0) =

tˆ

0

F ′(Xs) dXs +
1
2

tˆ

0

F ′′(Xs) d[X]s (6.15)

holds. In particular, if the quadratic variation [X] does not depend on (πn) then the Itô integral (6.14) does
not depend on (πn) either.

Note that the theorem implies the existence of
´ t

0 f (Xs)dXs for any function f ∈ C1(R)! Hence this type of
Itô integrals can be defined in a purely deterministic way without relying on the Itô isometry. Unfortunately,
the situation is more complicated in higher dimensions, see below.

Proof. Fix t ∈ [0,u) and n ∈ N. As before, for s ∈ πn we set δXs = Xs′∧t − Xs∧t where s′ denotes the next
partition point. Then as above we have

F(Xt ) − F(X0) =
∑
s∈πn
s<t

F ′(Xs)δXs +
1
2

∑
s∈πn
s<t

F ′′(Z (n)s )(δXs)
2

(6.16)

=
∑
s∈πn
s<t

F ′(Xs)δXs +
1
2

∑
s∈πn
s<t

F ′′(Xs)(δXs)
2 +

∑
s∈πn
s<t

R(n)s ,

where Z (n)s is an intermediate point between Xs and Xs′∧t , and R(n)s := 1
2 (F

′′(Z (n)s ) − F ′′(Xs)) · (δXs)
2. As

n → ∞, the second sum on the right hand side of (6.16) converges to
´ t

0 F ′′(Xs) d[X]s by Lemma 6.5.
We claim that the sum of the remainders R(n)s converges to 0. To see this note that Z (n)s = Xr for some
r ∈ [s, s′ ∧ t], whence

|R(n)s | =
1
2
|F ′′(Z (n)s ) − F ′′(Xs)| · (δXs)

2 ≤
1
2
εn (δXs)

2,

where
εn := sup

a,b∈[0,t]
|a−b | ≤mesh(πn)

|F ′′(Xa) − F ′′(Xb)|.

As n→∞, εn converges to 0 by uniform continuity of F ′′ ◦ X on the interval [0, t]. Thus∑
s∈πn
s<t

|R(n)s | ≤
1
2
εn

∑
s∈πn
s<t

(δXs)
2 → 0 as well,
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because the sum of the squared increments converges to the finite quadratic variation [X]t .
We have shown that all the terms on the right hand side of (6.16) except the first Riemann-Itô sum converge
as n → ∞. Hence, by (6.16), the limit

´ t
0 F ′(Xs) dXs of the Riemann-Itô sums also exists, and the limit

equation (6.14) holds. �

In differential notation, we obtain the Itô chain rule

dF(X) = F ′(X) dX +
1
2

F ′′(X) d[X]

which includes a second order correction term due to the quadratic variation. A justification for the
differential notation is given in Section 8.1. For functions X with [X] = 0, we recover the classical chain
rule dF(X) = F ′(X) dX from Stieltjes calculus as a particular case of Itô’s formula.

Example. (i) Exponentials: Choosing F(x) = ex in Itô’s formula, we obtain

eXt − eX0 =

tˆ

0

eXs dXs +
1
2

tˆ

0

eXs d[X]s,

or, in differential notation,
deX = eX dX +

1
2

eX d[X].

Thus eX does not solve the Itô differential equation

dZ = Z dX (6.17)

if [X] , 0. An appropriate renormalization is required instead. We will see below that the correct
solution of (6.17) is given by

Zt = exp (Xt − [X]t/2) ,
cf. the first example below Theorem 6.23.

(ii) Polynomials: Similarly, choosing F(x) = xn for some n ∈ N, we obtain

dXn = nXn−1 dX +
n(n − 1)

2
Xn−2 d[X].

Again, Xn does not solve the equation dXn = nXn−1 dX . Here, the appropriate renormalization
leads to the Hermite polynomials : X :n, cf. the second example below Theorem 6.23.

The chain rule for anticipative integrals

The form of the second order correction term appearing in Itô’s formula depends crucially on choosing
non-anticipative Riemann sum approximations. For limits of anticipative Riemann sums, we obtain different
correction terms, and hence also different notions of integrals.

Theorem 6.7. Suppose that X : [0,u) → R is continuous with continuous quadratic variation [X] along
(πn). Then for any function F that is C2 in a neighbourhood of X([0,u)) and for any t ≥ 0, both the
backward Itô integral

tˆ

0

F ′(Xs) d̂Xs := lim
n→∞

∑
s∈πn
s<t

F ′(Xs′∧t ) · (Xs′∧t − Xs),

and the Stratonovich integral

tˆ

0

F ′(Xs) ◦ dXs := lim
n→∞

∑
s∈πn
s<t

1
2
(F ′(Xs) + F ′(Xs′∧t )) · (Xs′∧t − Xs)
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exist, and

F(Xt ) − F(X0) =

tˆ

0

F ′(Xs) d̂Xs −
1
2

tˆ

0

F ′′(Xs) d[X]s =

tˆ

0

F ′(Xs) ◦ dXs . (6.18)

Proof. The proof of the backward Itô formula in (6.18) is completely analogous to that of Itô’s formula. The
Stratonovich formula follows by averaging the Riemann sum approximations to the forward and backward
Itô rule. �

Note that Stratonovich integrals satisfy the classical chain rule

◦dF(X) = F ′(X) ◦ dX .

This makes them very attractive for various applications. For example, in stochastic differential geometry,
the chain rule is of fundamental importance to construct stochastic processes that stay on a given manifold.
Therefore, it is common to use Stratonovich instead of Itô calculus in this context, see the corresponding
example in the next section. On the other hand, Stratonovich calculus has a significant disadvantage against
Itô calculus: The Stratonovich integrals

tˆ

0

Hs ◦ dBs = lim
n→∞

∑
s∈πn

1
2
(Hs + Hs′∧t )(Bs′∧t − Bs∧t )

w.r.t. Brownianmotion typically are notmartingales, because the coefficients 1
2 (Hs+Hs′∧t ) are not predictable.

6.3. Itô’s formula for Brownian motion and martingales

Our next aim is to compute the quadratic variation and to state Itô’s formula for typical sample paths of
Brownianmotion. More generally, we will show that for continuous local martingales, the quadratic variation
exists almost surely.
Let (πn)n∈N be a sequence of partitions of R+ with mesh(πn) → 0. We note first that for every function
t 7→ Xt the identity

X2
t − X2

0 =
∑
s∈πn
s<t

(X2
s′∧t − X2

s ) = Vn
t + 2Int (6.19)

with
Vn
t =

∑
s∈πn
s<t

(Xs′∧t − Xs)
2 and Int =

∑
s∈πn
s<t

Xs · (Xs′∧t − Xs)

holds. The equation (6.19) is a discrete approximation of Itô’s formula for the function F(x) = x2. The
remainder terms in the approximation vanish in this particular case.

Note that by (6.19), the quadratic variation [X]t = limn→∞Vn
t exists if and only if the Riemann sum

approximations Int to the Itô integral
´ t

0 Xs dXs converge:

∃ [X]t = lim
n→∞

Vn
t ⇐⇒ ∃

ˆ t

0
Xs dXs = lim

n→∞
Int .

Now suppose that (Xt ) is a continuous martingale with E[X2
t ] < ∞ for any t ≥ 0. Then the Riemann sum

approximations (Int ) are continuous martingales for any n ∈ N. Therefore, by the maximal inequality, for a
given u > 0, the processes (Int ) and (Vn

t ) converge uniformly for t ∈ [0,u] in L2(P) if and only if the random
variables Inu or Vn

u respectively converge in L2(P).
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Quadratic variation of Brownian motion

For the sample paths of a Brownian motion B, the quadratic variation [B] exists almost surely along any
fixed increasing sequence of partitions (πn) such that πn ⊂ πn+1 and mesh(πn) → 0, and [B]t = t a.s. In
particular, [B] is a deterministic function that does not depend on (πn). The reason is a law of large numbers
type effect when taking the limit of the sum of squared increments as n→∞.

Theorem 6.8 (P. Lévy). If (Bt ) is a one-dimensional Brownian motion on (Ω,A,P) then as n→∞

sup
t∈[0,u]

�������
∑
s∈πn
s<t

(Bs′∧t − Bs)
2 − t

������� −→ 0 P-a.s. and in L2(Ω,A,P) (6.20)

for any u ∈ (0,∞), and for each sequence (πn) of partitions of R+ such that πn ⊂ πn+1 for all n ∈ N and
mesh(πn) → 0.

Remark. (i) Although the almost sure limit in (6.20) does not depend on the sequence (πn), the excep-
tional set may depend on the chosen sequence!

(ii) The classical quadratic variation V (2)t (B) = supπ
∑

s∈π(δBs)
2 is almost surely infinite for all t ≥ 0.

The classical p-variation is almost surely finite if and only if p > 2.

Proof. (i) L2-convergence for fixed t: As usual, the proof of L2 convergence is comparatively simple.
For Vn

t =
∑

s∈πn

(δBs)
2 with δBs = Bs′∧t − Bs∧t , we have

E[Vn
t ] =

∑
s∈πn

E[(δBs)
2] =

∑
s∈πn

δs = t, and

Var[Vn
t ] =

∑
s∈πn

Var[(δBs)
2] =

∑
s∈πn

Var[Z2] (δs)2 ≤ const. · t ·mesh(πn)

where Z is a standard normal random variable. Hence, as n→∞,

Vn
t − t = Vn

t − E[Vn
t ] → 0 in L2(Ω,A,P).

Moreover, by (6.19), Vn
t − Vm

t = 2(Int − Imt ) is a continuous martingale for any n,m ∈ N. Therefore,
the maximal inequality yields uniform convergence of Vn

t to t for t in a finite interval in the L2(P)
sense.

(ii) Almost sure convergence if
∑

mesh(πn) < ∞: Similarly, by applying the maximal inequality to the
process Vn

t − Vm
t and taking the limit as m→∞, we obtain

P

[
sup

t∈[0,u]
|Vn

t − t | > ε

]
≤

1
ε2 E[(Vn

u − u)2] ≤ const. ·mesh(πn)

for any given ε > 0 and u ∈ (0,∞). If
∑

mesh(πn) < ∞ then the sum of the probabilities is finite, and
hence sup

t∈[0,u]
|Vn

t − t | → 0 almost surely by the Borel-Cantelli Lemma.

(iii) Almost sure convergence if
∑

mesh(πn) = ∞: In this case, almost sure convergence can be shown by
the backward martingale convergence theorem, see the exercise below. �
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Exercise (Quadratic variation of Brownian motion revisited). Let (Bt )t≥0 be a Brownian motion on
a probability space (Ω,A,P). The goal of this exercise is to show that for an arbitrary sequence of
partitions such that πn ⊂ πn+1 and mesh(πn) → 0, the quadratic variation [B]t exists almost surely.
Without loss of generality, we assume B0 = 0.

a) Show that if h : [0,∞) → {−1,1} is a measurable deterministic function, then the process
Iht :=

´ t
0 h(s) dBs is again a Brownian motion. Conclude that for any 0 ≤ s ≤ s′, the process (B̃t )

defined by

B̃t :=


Bt for t ∈ [0, s],
Bs − (Bt − Bs) for t ∈ [s, s′],
Bs − (Bs′ − Bs) + Bt − Bs′ for t ∈ [s′,∞),

is a Brownian motion, i.e., (B̃t ) ∼ (Bt ).

b) Now fix t ≥ 0 and n ∈ N, and let Fn denote the σ-algebra generated by the random variables
(Bs′∧t − Bs∧t )

2, s ∈ πn. Show that∑
(Bs′∧t − Bs∧t )

2 = E
[∑
(Bs′∧t − Bs∧t )

2��Fn] = E
[
B2
t |Fn

]
,

where the sum is over all partition points s ∈ πn.

c) Conclude that
∑
(Bs′∧t − Bs∧t )

2 converges almost surely as n→∞, and identify the limit.

Itô’s formula for Brownian motion

By Theorem 6.8, we can apply Theorem 6.6 to almost every sample path of a one-dimensional Brownian
motion (Bt ):

Theorem 6.9 (Itô’s formula for Brownian motion). Suppose that F ∈ C2(I) where I ⊆ R is an open
interval. Then almost surely,

F(Bt ) − F(B0) =

tˆ

0

F ′(Bs) dBs +
1
2

tˆ

0

F ′′(Bs) ds for all t < T, (6.21)

where T = inf{t ≥ 0 : Bt < I} is the first exit time from I.

Proof. For almost every ω, the quadratic variation of t 7→ Bt (ω) along a fixed sequence of partitions is t.
Moreover, for any r < T(ω), the function F is C2 on a neighbourhood of {Bt (ω) : t ∈ [0,r]}. The assertion
now follows from Theorem 6.6 by noting that the pathwise integral and the Itô integral as defined in Section
5 coincide almost surely since both are limits of Riemann-Itô sums w.r.t. uniform convergence for t in a finite
interval, almost surely along a common (sub)sequence of partitions. �

Consequences

(i) Doob decomposition in continuous time: The Itô integral MF
t =

´ t
0 F ′(Bs) dBs is a local martingale

up to T , and MF
t is a square integrable martingale if I = R and F ′ is bounded. Therefore, (6.21)

can be interpreted as a continuous time Doob decomposition of the process F(Bt ) into the (local)
martingale part MF

t and an adapted process of finite variation. This process takes over the role of the
predictable part in discrete time. In particular, we obtain:
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Corollary 6.10 (Martingale problem for Brownian motion). Brownian motion is a solution of the mar-

tingale problem for the operator L =
1
2

d2

dx2 with domain Dom(L) = {F ∈ C2(R) : dF
dx is bounded}, i.e.,

the process

MF
t = F(Bt ) − F(B0) −

tˆ

0

(L f )(Bs) ds

is a martingale for any F ∈ Dom(L).

(ii) Kolmogorov’s forward equation: Taking expectations in (6.21), we recover Kolmogorov’s equation

E[F(Bt )] = E[F(B0)] +

ˆ t

0
E[(LF)(Bs)] ds ∀ t ≥ 0

for any F ∈ C2
b
(R). In differential form,

d
dt

E[F(Bt )] =
1
2

E[(F ′′)(Bt )].

(iii) Computation of expectations: The Itô formula can be applied in many ways to compute expectations.

Example. a) For each n ∈ N, the process

Bn
t −

n(n − 1)
2

tˆ

0

Bn−2
s ds = n ·

tˆ

0

Bn−1
s dBs

is a martingale. By taking expectations for t = 1 we obtain the recursion

E[Bn
1 ] =

n(n − 1)
2

1ˆ

0

E[Bn−2
s ] ds =

n(n − 1)
2

1ˆ

0

sn−2/2 ds · E[Bn−2
1 ]

= (n − 1) · E[Bn−2
1 ]

for the moments of the standard normally distributed random variable B1. This identity can
also be obtained directly by integration by parts in the Gaussian integral

´
xne−x

2/2 dx.

b) For α ∈ R, the process

exp(αBt ) −
α2

2

ˆ t

0
exp(αBs) ds = α

ˆ t

0
exp(αBs) dBs

is a martingale because E[
´ t

0 exp(2αBs) ds] < ∞. Denoting by Tb = min{t ≥ 0 : Bt = b}
the first passage time to a level b > 0, we obtain the identity

E
[ˆ Tb

0
exp(αBs) ds

]
=

2
α2 (e

αb − 1) for any α > 0

by optional stopping and dominated convergence.

Itô’s formula is also the key tool to derive or solve stochastic differential equations for various stochastic
processes of interest:
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Example (Brownian motion on S1). Brownianmotion on the unit circle S1 = {z ∈ C : |z | = 1}
is the process given by

Zt = exp(iBt ) = cos Bt + i · sin Bt

where (Bt ) is a standard Brownian motion on R1. Itô’s formula yields the stochastic differential
equation

dZt = t(Zt ) dBt −
1
2
n(Zt ) dt, (6.22)

iz

z

z

where t(z) = iz is the unit tangent vector to S1 at the point z, and n(z) = z is the outer normal
vector. If we would omit the correction term − 1

2n(Zt ) dt in (6.22), the solution to the s.d.e.
would not stay on the circle. This is contrary to classical o.d.e. where the correction term is not
required. For Stratonovich integrals, we obtain the modified equation

◦dZt = t(Zt ) ◦ dBt,

which does not involve a correction term!

Exercise (Random rotations: Itô vs. Stratonovich). We consider stochastic differential equations of
the form

dZt = A Zt dBt, Z0 =

(
1
0

)
, (6.23)

where A =
(
0 −1
1 0

)
is the antisymmetric matrix generating the unit rotation in R2, (Bt ) is a one

dimensional Brownian motion, and the solution (Zt ) is a stochastic process taking values in R2.

a) Write down a time-discretization of the Itô equation (6.23), and simulate sample paths of the
solution.

b) What do you observe ? Can you explain your observations ?

c) Now consider the Stratonovich equation

◦dZt = AZt ◦ dBt, Z0 =

(
1
0

)
. (6.24)

Find a numerical discretization for the SDE and simulate approximate solutions. What do you
observe now ?
Hint: Make sure that before starting the implementation, you have transformed the discretization
into an accessible form.

Matrix inversion in Python: from scipy import linalg; inversematrix=linalg.inv(matrix)
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Quadratic variation of continuous martingales

Next, we will show that the sample paths of continuous local martingales almost surely have finite quadratic
variation. Let (Mt ) be a continuous local martingale, and fix an increasing sequence (πn) of partitions of R+
with mesh(πn) → 0. Let

Vn
t =

∑
s∈πn

(Ms′∧t − Ms∧t )
2

denote the quadratic variation of M along πn. Recall the crucial identity

M2
t − M2

0 =
∑
s∈πn

(
M2

s′∧t − M2
s∧t

)
= Vn

t + 2Int (6.25)

where Int =
∑

s∈πn Ms(Ms′∧t −Ms∧t ) are the Riemann sum approximations to the Itô integral
´ t

0 M dM . The
identity shows that Vn

t converges (uniformly) as n → ∞ if and only if the same holds for Int . Moreover, in
this case, we obtain the limit equation

M2
t − M2

0 = [M]t + 2
ˆ t

0
Ms dMs (6.26)

which is exactly Itô’s equation for F(x) = x2.

Theorem 6.11 (Existence of quadratic variation). Suppose that (Mt )t∈[0,∞) is a continuous local martin-
gale on (Ω,A,P). Then there exist a continuous non-decreasing process t 7→ [M]t and a continuous local
martingale t 7→

´ t
0 M dM such that as n→∞,

sup
s∈[0,t]

��Vn
s − [M]s

�� → 0 and sup
s∈[0,t]

����Ins − ˆ s

0
M dM

���� → 0

in probability for any t ≥ 0, and in L2(P) if M is bounded. Moreover, the identity (6.26) holds.

Notice that in the theorem, we do not assume the existence of an angle bracket process 〈M〉. Indeed, the
theorem proves that for continuous local martingales, the angle bracket process always exists and it coincides
almost surely with the quadratic variation process [M] ! We point out that for discontinuous martingales,
〈M〉 and [M] do not coincide.

Proof. We first assume that M is a bounded martingale: |Mt | ≤ C for some finite constant C. We then show
that (In) is a Cauchy sequence in the Hilbert space M2

c ([0, t]) for any given t ∈ R+. To this end let n,m ∈ N
with m ≤ n. Then πm ⊆ πn. For s ∈ πn, we denote the next partition point in πn by s′, and the previous
partition point in πm by bscm. Fix t ≥ 0. Then

Int − Imt =
∑
s∈πn
s<t

(Ms − Mbscm ) (Ms′∧t − Ms), and hence

‖In − Im‖2
M2([0,t]) = E

[
(Int − Imt )

2] = ∑
s∈πn
s<t

E
[
(Ms − Mbscm )

2 (Ms′∧t − Ms)
2]

≤ E
[
δ2
m

]1/2
E

[(∑
(δMs)

2
)2

]1/2
, (6.27)

where δm := sup{|Ms − Mr |
2 : |s − r | ≤ mesh(πm)}. Here we have used in the second step that the

non-diagonal summands cancel because M is a martingale.
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Since M is bounded and continuous, dominated convergence shows that E[δ2
m] → 0 as m → ∞.

Furthermore,

E

(∑

s

(δMs)
2

)2 = E

[∑
s

(δMs)
4

]
+ 2 E

[ ∑
r ,s:r<s

(δMr )
2(δMs)

2

]
≤ 4C2 E

[∑
s

(δMs)
2

]
+ 2 E

[∑
r

(δMr )
2E

[∑
s>r

(δMs)
2

�����Fr
] ]

(6.28)

≤ 6 C2 E[M2
t − M2

0 ] ≤ 6 C4 < ∞.

Here we have used that by the martingale property,

E

[∑
s

(δMs)
2

]
= E[M2

t − M2
0 ] ≤ C2, and

E

[∑
s>r

(δMs)
2

�����Fr
]
= E

[
M2

t − M2
r |Fr

]
≤ C2.

By (6.27) and (6.28), ‖In − Im‖2
M2([0,t]) → 0 as n,m→∞. Hence (Ins )s∈[0,t] converges uniformly as n→∞

in the L2(P) sense. By (6.25), (Vn
s )s∈[0,t] converges uniformly as n→ ∞ in the L2(P) sense as well. Hence

the limits
´ •

0 M dM and [M] exist, the stochastic integral is in M2
c ([0, t]), and the identity (6.26) holds.

It remains to extend the result from bounded martingales to local martingales. If M is a continuous
local martingale then there exists a sequence of stopping times Tk ↑ ∞ such that the stopped processes
(MTk∧t )t≥0 are continuous bounded martingales. Hence the corresponding quadratic variations [MTk∧•]

converge uniformly on [0, t] in the L2(P) sense for any finite t and k. Therefore, the approximations Vn
t for

the quadratic variation of M converge uniformly in the L2(P) sense on each of the random intervals [0,Tk∧ t],
and thus for any ε, δ > 0,

P
[
sup
s≤t
|Vn

s − [M]s | > ε

]
≤ P [t > Tk] + P

[
sup
s≤Tk

|Vn
s − [M]s | > ε

]
≤ δ

for k,n sufficiently large. �

Having shown the existence of the quadratic variation [M] for continuous local martingales, we observe
next that [M] is always non-trivial if M is not constant:

Theorem 6.12 (Non-constant continuous martingales have non-trivial quadratic variation).
Suppose that (Mt ) is a continuous local martingale. If [M]t = 0 almost surely for some t ≥ 0,
then M is almost surely constant on the interval [0, t].

Proof. Again, we assume at first that M is a bounded martingale. Then the Itô integral
´ •

0 M dM is a
martingale as well. Therefore, by (6.26),

‖M − M0‖
2
M2([0,t]) = E[(Mt − M0)

2] = E[M2
t − M2

0 ] = E[ [M]t ] = 0,

i.e., almost surely, Ms = M0 for any s ∈ [0, t]. In the general case, the assertion follows once more by
localization. �
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The theorem shows in particular that every local martingale with continuous finite variation paths is almost
surely constant, i.e., the decomposition of a continuous stochastic process into a local martingale and a
continuous finite variation process starting at 0 is unique up to equivalence. As a consequence we observe
that the quadratic variation is the unique angle bracket process of M . In particular, up to modification on
measure zero sets, [M] does not depend on the chosen partition sequence (πn):

Corollary 6.13 (Quadratic variation as unique angle bracket process). Suppose that (Mt ) is a continu-
ous local martingale. Then [M] is the up to equivalence unique continuous process of finite variation such
that [M]0 = 0 and M2

t − [M]t is a local martingale.

Proof. By (6.26), M2
t − [M]t is a continuous local martingale. To prove uniqueness, suppose that (At ) and

(Ãt ) are continuous finite variation processes with A0 = Ã0 = 0 such that both M2
t − At and M2

t − Ãt are local
martingales. Then At − Ãt is a continuous local martingale as well. Since the paths have finite variation, the
quadratic variation of A − Ã vanishes. Hence almost surely, At − Ãt = A0 − Ã0 = 0 for all t. �

The next theorem follows by localization and optional stopping applied to the local martingale M2
t −[M]t .

Theorem 6.14 (Quadratic variation and square integrability). Suppose that (Mt )t∈[0,∞) is a continuous
local martingale, and let a ∈ [0,∞). Then M ∈ M2

c([0,a]) if and only if M0 ∈ L
2 and [M]a ∈ L1. In this

case, M2
t − [M]t (0 ≤ t ≤ a) is a martingale, and

| |M | |2
M2([0,a]) = E

[
M2

0
]
+ E

[
[M]a

]
. (6.29)

Proof. We may assume M0 = 0; otherwise we consider M̃ = M − M0. Let (Tn)n∈N be a joint localizing
sequence for the local martingales M and M2 − [M]. Then by optional stopping,

E
[
[M]t

]
= sup

n∈N
E

[
[M]t∧Tn

]
= sup

n∈N
E

[
M2

t∧Tn

]
for any t ∈ [0,a]. (6.30)

If M ∈ M2
c([0,a]) then we obtain E

[
[M]a

]
< ∞. Conversely, suppose now that [M]a is integrable. Then

by (6.30), the family {Mt∧Tn : n ∈ N} is uniformly integrable for every t ∈ [0,a], and hence (Mt )t∈[0,a] is a
martingale. Furthermore, it is L2 bounded since by Fatou’s lemma,

E
[
M2

a

]
≤ lim inf

n→∞
E

[
M2

a∧Tn

]
≤ E

[
[M]a

]
.

Moreover, in this case, the sequence
(
M2

t∧Tn
− [M]t∧Tn

)
n∈N is also uniformly integrable for each t ∈ [0,a],

because,
sup
t≤a
|M2

t − [M]t | ≤ sup
t≤a
|Mt |

2 + [M]a ∈ L1.

Therefore, the martingale property carries over from the stopped processes M2
t∧Tn
− [M]t∧Tn to M2

t − [M]t .
In particular,

| |M | |2
M2([0,a]) = E

[
M2

a

]
= E

[
[M]a

]
,

so (6.29) is satisfied. �

Remark. The assertion of Theorem 6.14 also remains valid for a = ∞ in the sense that if M0 is in L2

and [M]∞ = limt→∞[M]t is in L1 then M extends to a square integrable martingale (Mt )t∈[0,∞] satisfying
(6.30) with a = ∞. The existence of the limit M∞ = limt→∞ Mt follows in this case from the L2 Martingale
Convergence Theorem.
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Exercise (Square integrability of stopped local martingales). Show that if (Mt ) is a continuous local
(Ft ) martingale and T : Ω→ [0,∞) is an arbitrary (Ft ) stopping time, then

E
[
M2

T

]
= E

[
[M]T

]
. (6.31)

Furthermore, if the expected values are finite then the stopped process Mt∧T (t ∈ [0,∞]) is a martingale
inM2

c([0,∞]), and M2
t∧T − [M]t∧T is a continuous martingale.

From continuous martingales to Brownian motion

A remarkable consequence of Itô’s formula for martingales is that a continuous local martingale (Mt ) (up to
T = ∞) with quadratic variation given by [M]t = t for all t ≥ 0 is a Brownian motion!

Theorem 6.15 (P. Lévy 1948). A continuous local martingale (Mt )t∈[0,∞) is a Brownian motion if and
only if almost surely,

[M]t = t for any t ≥ 0.

Proof. For 0 ≤ s ≤ t and p ∈ R, Itô’s formula yields

eipMt − eipMs = ip

tˆ

s

eipMr dMr −
p2

2

tˆ

s

eipMr dr (6.32)

where the stochastic integral
´ t

0 eipMr dMr can be identified as a continuous local martingale. Furthermore,
the identity shows that this local martingale is uniformly bounded on finite time intervals, and hence it is a
martingale. Dividing the equation by eipMs and conditioning on Fs, we obtain

E
[
eip(Mt−Ms )

��Fs] = 1 −
p2

2

tˆ

s

E
[
eip(Mr−Ms )

��Fs] dr

by Fubini’s theorem for conditional expectations. Hence the processUt := E[eip(Mt−Ms ) |Fs] is almost surely
absolutely continuous with U0 = 1 and derivative dUt/dt = −(p2/2)Ut , and thus for any 0 ≤ s ≤ t,

E
[
eip(Mt−Ms )

��Fs] = e−p
2(t−s)/2 almost surely for any p ∈ R.

It is now not difficult to conclude that the increment Mt − Ms is independent of Fs with distribution
Mt − Ms ∼ N(0, t − s). �

Lévy’s Theorem is the basis for many important developments in stochastic analysis including transforma-
tions and weak solutions for stochastic differential equations. An extension to the multi-dimensional case,
as well as several applications, are contained in Section ?? below.

One remarkable consequence of Lévy’s characterization of Brownian motion is that every continuous
local martingale can be represented as a time-changed Brownian motion (in general possibly on an extended
probability space):

Exercise (Continuous local martingales as time-changed Brownian motions). Let (Mt )t∈[0,∞) be a
continuous local martingale, and assume for simplicity that t 7→ [M]t is almost surely strictly increasing
with limt→∞[M]t = ∞. Prove that there exists a Brownian motion (Bt )t∈[0,∞) such that

Mt = B[M]t for t ∈ [0,∞). (6.33)

Hint: Set Ba = MTa where Ta = [M]−1(a) = inf{t ≥ 0 : [M]t = a}, and verify by Lévy’s characteriza-
tion that B is a Brownian motion.
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In a more general form, the representation of continuous local martingales as time-changed Brownian
motions is due to a paper of Dambis and Dubins-Schwarz from 1965, see [12] or Section ?? below for
details. Remarkably, even before Itô, Wolfgang Doeblin (a son of the novelist Alfred Döblin) had developed
an alternative approach to stochastic calculus where stochastic integrals are defined as time changes of
Brownian motion. During World War II, Doeblin fought as a French soldier at the German front, and
shot himself when German troops came in sight. His results remained hidden in a closed envelope at the
Académie de Sciences and have become known and been published only recently, more than fifty years after
their discovery, [yor, 14].

6.4. Multivariate and time-dependent Itô formula

We now extend Itô’s formula to Rd-valued functions and stochastic processes. Let u ∈ (0,∞] and suppose
that X : [0,u) → D,Xt = (X

(1)
t , . . . ,X (d)t ), is a continuous function taking values in an open set D ⊆ Rd. As

before, we fix a sequence (πn) of partitions of R+ with mesh(πn) → 0. For a function F ∈ C2(D), we have
similarly as in the one-dimensional case:

F(Xs′∧t ) − F(Xs) = ∇F(Xs) · (Xs′∧t − Xs) (6.34)

+
1
2

d∑
i, j=1

∂2F
∂xi∂xj

(Xs)(X
(i)
s′∧t − X (i)s )(X

(j)
s′∧t − X (j)s ) + R(n)s

for any s ∈ πn with s < t where the dot denotes the Euclidean inner product, and R(n)s is the remainder term
in Taylor’s formula. We would like to obtain a multivariate Itô formula by summing over s ∈ πn with s < t
and taking the limit as n→ ∞. A first problem that arises in this context is the identification of the limit as
n→∞ of the sums ∑

s∈πn
s<t

g(Xs)δX (i)s δX (j)s

for a continuous function g : D→ R.

Covariation

Suppose that X,Y : [0,u) → R are continuous functions with continuous quadratic variations [X]t and [Y ]t
w.r.t. the partition sequence (πn).

Definition 6.16 (Covariation). Provided the limit exists, the function

[X,Y ]t = lim
n→∞

∑
s∈πn

(Xs′∧t − Xs∧t )(Ys′∧t − Ys∧t ), t ∈ [0,u),

is called the covariation of X and Y w.r.t. (πn).

The covariation [X,Y ]t is the bilinear form corresponding to the quadratic form [X]t . In particular,
[X,X] = [X]. Furthermore:

Lemma 6.17 (Polarization identity). The covariation [X,Y ]t exists and is a continuous function in t if and
only if the quadratic variation [X + Y ]t exists and is continuous, respectively. In this case,

[X,Y ]t =
1
2
([X + Y ]t − [X]t − [Y ]t ).
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Proof. For n ∈ N we have

2
∑
s∈πn

δXsδYs =
∑
s∈πn

(δXs + δYs)2 −
∑
s∈πn

(δXs)
2 −

∑
s∈πn

(δYs)2.

The assertion follows as n → ∞ because the limits [X]t and [Y ]t of the last two terms are continuous
functions by assumption. �

Note that by the polarization identity, the covariation [X,Y ]t is the difference of two increasing functions,
i.e., t 7→ [X,Y ]t has finite variation.

Example. (i) Functions and processes of finite variation: IfY has finite variation and X is continuous
then [X,Y ]t = 0 for any t ≥ 0. Indeed,����� ∑

s∈πn

δXsδYs

����� ≤ sup
s∈πn

|δXs | ·
∑
s∈πn

|δYs |

and the right hand side converges to 0 by uniform continuity of X on [0, t]. In particular,

[X + Y ] = [X + Y,X + Y ] = [X] + [Y ] + 2[X,Y ] = [X].

(ii) Independent Brownian motions: If (Bt ) and (B̃t ) are independent Brownian motions on a proba-
bility space (Ω,A,P) then for any given increasing sequence (πn) with mesh(πn) → 0,

[B, B̃]t = lim
n→∞

∑
s∈πn

δBsδB̃s = 0 for any t ≥ 0,

P-almost surely. For the proof note that (Bt + B̃t )/
√

2 is again a Brownian motion, whence

[B, B̃]t = [(B + B̃)/
√

2]t −
1
2
[B]t −

1
2
[B̃]t = t −

t
2
−

t
2
= 0 almost surely.

(iii) Itô processes: If It =
´ t

0 Gs dBs and Jt =
´ t

0 Hs dB̃s with continuous adapted processes (Gt )

and (Ht ) and Brownian motions (Bt ) and (B̃t ) then

[I, J]t = 0 if B and B̃ are independent, and (6.35)

[I, J]t =

tˆ

0

GsHs ds if B = B̃, (6.36)

see Theorem 8.6 below. More generally, under appropriate assumptions on G,H,X and Y , the
identity

[I, J]t =

tˆ

0

GsHs d[X,Y ]s

holds for Itô integrals It =
t́

0
Gs dXs and Jt =

t́

0
Hs dYs , cf. Corollary ??.

Itô to Stratonovich conversion

The covariation also occurs as the correction term in Itô compared to Stratonovich integrals.

Theorem 6.18. If the Itô integral
´ t

0 Xs dYs and the covariation [X,Y ]t exist along a sequence (πn) of
partitions with mesh(πn) → 0, then the corresponding backward Itô integral

´ t
0 Xs d̂Ys and the Stratonovich

integral
´ t

0 Xs ◦ dYs also exist, and
tˆ

0

Xs d̂Ys =

tˆ

0

Xs dYs + [X,Y ]t, and
tˆ

0

Xs ◦ dYs =

tˆ

0

Xs dYs +
1
2
[X,Y ]t .
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Proof. This follows from the identities∑
Xs′∧tδYs =

∑
XsδYs +

∑
δXsδYs, and∑ 1

2
(Xs + Xs′∧t )δYs =

∑
XsδYs +

1
2

∑
δXsδYs . �

Itô’s formula in Rd

By the polarization identity, if [X]t, [Y ]t and [X + Y ]t exist and are continuous, then [X,Y ]t is a continuous
function of finite variation.

Lemma 6.19. Suppose that X,Y and X + Y are continuous function on [0,u) with continuous quadratic
variations w.r.t. (πn). Then

∑
s∈πn
s<t

Hs(Xs′∧t − Xs)(Ys′∧t − Ys) −→

tˆ

0

Hs d[X,Y ]s as n→∞

for any continuous function H : [0,u) → R and any t ≥ 0.

Proof. The assertion follows from Lemma 6.5 by polarization. �

By Lemma 6.19, we can take the limit as mesh(πn) → 0 in the equation derived by summing (6.34) over
all s ∈ πn with s < t. In analogy to the one-dimensional case, this yields the following multivariate version
of the pathwise Itô formula:

Theorem 6.20 (Multivariate Itô formula without probability). Suppose that X : [0,u) → D ⊆ Rd is
a continuous function with continuous covariations [X (i),X (j)]t,1 ≤ i, j ≤ d, w.r.t. (πn). Then for any
F ∈ C2(D) and t ∈ [0,u),

F(Xt ) = F(X0) +

tˆ

0

∇F(Xs) · dXs +
1
2

d∑
i, j=1

tˆ

0

∂2F
∂xi∂xj

(Xs) d[X (i),X (j)]s,

where the Itô integral is defined as the limit of Riemann sums along (πn):

tˆ

0

∇F(Xs) · dXs = lim
n→∞

∑
s∈πn
s<t

∇F(Xs) · (Xs′∧t − Xs). (6.37)

The details of the proof are similar to the one-dimensional case and left as an exercise to the reader. Note
that the theorem shows in particular that the Itô integral in (6.37) is independent of the sequence (πn) if the
same holds for the covariations [X (i),X (j)].

Remark (Existence of pathwise Itô integrals). Theorem6.20 implies the existence of the integral
´ t

0 b(Xs)·

dXs whenever b is the gradient of a C2 function F : D ⊆ Rd → R. In contrast to the one-dimensional case,
not every C1 vector field b : D → Rd is a gradient. Therefore, for d ≥ 2 we do not obtain the existence of
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6. Itô’s formula and pathwise integrals

´ t
0 b(Xs) · dXs for every b ∈ C1(D,Rd) from Itô’s formula. In particular, we do not know in general if the
integrals

´ t
0
∂F
∂xi
(Xs) dX (i)s ,1 ≤ i ≤ d, exist and if

tˆ

0

∇F(Xs) · dXs =

d∑
i=1

tˆ

0

∂F
∂xi
(Xs) dX (i)s .

If (Xt ) is a Brownian motion this is almost surely the case by the existence proof for Itô integrals w.r.t.
Brownian motion from Section 5.

Example (Itô’s formula for Brownian motion in Rd). Suppose that Bt = (B
(1)
t , . . . ,B(d)t ) is a d-dimen-

sional Brownian motion defined on a probability space (Ω,A,P). Then the component processes
B(1)t , . . . ,B(d)t are independent one-dimensional Brownian motions. Hence for a given increasing se-
quence of partitions (πn) with mesh(πn) → 0, the covariations [B(i),B(j)],1 ≤ i, j ≤ d, exist almost
surely by Theorem 6.8 and the example above, and almost surely,

[B(i),B(j)]t = t · δi j for all t ≥ 0.

Therefore, we can apply Itô’s formula to almost every trajectory Bt (ω). For an open subset D ⊆ Rd and
a function F ∈ C2(D) we obtain:

F(Bt ) = F(B0) +

tˆ

0

∇F(Bs) · dBs +
1
2

tˆ

0

∆F(Bs) ds ∀t < TDC P-a.s. (6.38)

where TDC := inf{t ≥ 0 : Bt < D} denotes the first exit time from D. As in the one-dimensional case,
(6.38) yields a decomposition of the process F(Bt ) into a continuous local martingale and a continuous
process of finite variation.

Exercise (A uniformly integrable local martingale that is not a martingale). Let x ∈ R3 with x , 0,
and suppose that (Bt ) is a three-dimensional Brownian motion with initial value B0 = x. Prove that the
process Mt = 1/|Bt | is a uniformly integrable local martingale up to T = ∞, but (Mt ) is not a martingale.

Product rule, integration by parts

As a special case of the multivariate Itô formula, we obtain the following integration by parts identity for Itô
integrals:

Corollary 6.21. Suppose that X,Y : [0,u) → R are continuous functions with continuous quadratic
variations [X] and [Y ], and continuous covariation [X,Y ]. Then

XtYt − X0Y0 =

tˆ

0

(
Ys
Xs

)
· d

(
Xs

Ys

)
+ [X,Y ]t for all t ∈ [0,u). (6.39)

If one, or, equivalently, both of the Itô integrals
t́

0
Ys dXs and

t́

0
Xs dYs exist then (6.39) yields

XtYt − X0Y0 =

tˆ

0

Ys dXs +

tˆ

0

Xs dYs + [X,Y ]t . (6.40)
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Proof. The identity (6.39) follows by applying Itô’s formula in R2 to the process (Xt,Yt ) and the function
F(x, y) = xy. If one of the integrals

´ t
0 Y dX or

´ t
0 X dY exists, then the other exists as well, and

tˆ

0

(
Ys
Xs

)
· d

(
Xs

Ys

)
=

tˆ

0

Ys dXs +

tˆ

0

Xs dYs .
�

As it stands, (6.40) is an integration by parts formula for Itô integrals which involves the correction term
[X,Y ]t . In differential notation, it is a product rule for Itô differentials:

d(XY ) = X dY + Y dX + d[X,Y ].

Again, in Stratonovich calculus a corresponding product rule holds without the correction term [X,Y ]:

◦d(XY ) = X ◦ dY + Y ◦ dX .

Remark (Existence of
´

X dY, Lévy area). Under the conditions of the theorem, the integrals
´ t

0 Xs dYs
and

´ t
0 Ys dXs do not necessarily exist! The following statements are equivalent:

(i) The Itô integral
´ t

0 Y dX exists (along (πn)).

(ii) The Itô integral
´ t

0 X dY exists.

(iii) The Lévy area At (X,Y ) defined by

At (X,Y ) =

tˆ

0

(Y dX − X dY ) = lim
n→∞

∑
s∈πn
s<t

(YsδXs − XsδYs)

exists.

If (Xs,Ys)s∈[0,t] is the parametrization of a smooth curve in R2 then At (X,Y ) is the oriented area between the
curve and the straight line connecting (X0,Y0) and (Xt,Yt ). In general, if the Lévy area At (X,Y ) is given, the
stochastic integrals

´
X dY and

´
Y dX can be constructed pathwise. Pushing these ideas further leads to

the rough paths theory developed by T. Lyons and others [10, 8].

Example (Integrating finite variation processes w.r.t. Brownian motion). If (Ht ) is an adapted pro-
cess with continuous sample paths of finite variation and (Bt ) is a one-dimensional Brownian motion
then [H,B] = 0, and hence

HtBt − H0B0 =

tˆ

0

Hs dBs +

tˆ

0

Bs dHs .

This integration by parts identity can be used as an alternative definition of the stochastic integral
´ t

0 H dB
for integrands of finite variation, which can then again be extended to general integrands in L2

a(0, t) by
the Itô isometry.

For continuous local martingales M and N , the covariation [M,N] along a partition sequence exists almost
surely w.r.t. convergence in probability. The product rule shows that similarly to the quadratic variation it
can be characterized as the finite variation part in the Doob-Meyer decomposition of MtNt .
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Corollary 6.22 (Covariation of martingales as unique angle bracket process). Suppose that (Mt ) and
(Nt ) are continuous local martingales. Then [M,N] is the up to equivalence unique continuous process of
finite variation such that [M,N]0 = 0 and MtNt − [M,N]t is a local martingale.

The proof is similar to that of Corollary 6.13. The details are left as an exercise.

Time-dependent Itô formula

The multi-dimensional Itô formula can be applied to functions that depend explicitly on the time variable t
or on the quadratic variation [X]t . For this purpose we simply add t or [X]t respectively as an additional
component to the function, i.e., we apply the multi-dimensional Itô formula to Yt = (t,Xt ) or Yt = (t, [X]t )
respectively.

Theorem 6.23. Suppose that X : [0,u) → Rd is a continuous function with continuous covariations
[X (i),X (j)]t along (πn), and let F ∈ C2(R+ × R

d). If A : [0,u) → R is a continuous function of finite
variation then the integral

tˆ

0

∇xF(As,Xs) · dXs = lim
n→∞

∑
s∈πn
s<t

∇xF(As,Xs) · (Xs′∧t − Xs)

exists, and the Itô formula

F(At,Xt ) = F(A0,X0) +

tˆ

0

∇xF(As,Xs) · dXs +

tˆ

0

∂F
∂a
(As,Xs) dAs (6.41)

+
1
2

d∑
i, j=1

tˆ

0

∂2F
∂xi∂xj

(As,Xs) d[X (i),X (j)]s

holds for any t ≥ 0. Here ∂F/∂a denotes the derivative of F(a, x) w.r.t. the first component, and ∇xF and
∂2F/∂xi∂xj are the gradient and the second partial derivatives w.r.t. the other components.

An important application of the theorem is for At = t. Here we obtain the time-dependent Itô formula

dF(t,Xt ) = ∇xF(t,Xt ) · dXt +
∂F
∂t
(t,Xt ) dt +

1
2

d∑
i, j=1

∂2F
∂xi∂xj

(t,Xt ) d[X (i),X (j)]t . (6.42)

Similarly, if d = 1 and At = [X]t then we obtain

dF([X]t,Xt ) =
∂F
∂t
([X]t,Xt ) dt +

(
∂F
∂a
+

1
2
∂2F
∂x2

)
([X]t,Xt ) d[X]t . (6.43)

If (Xt ) is a Brownian motion and d = 1 then both formulas coincide.
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Proof. Let Yt = (Y
(0)
t ,Y (1)t , . . . ,Y (d)t ) := (At,Xt ). Then [Y (0),Y (i)]t = 0 for any t ≥ 0 and 0 ≤ i ≤ d because

Y (0)t = At has finite variation. Therefore, by Itô’s formula in Rd+1,

F(At,Xt ) = F(A0,X0) + It +
1
2

d∑
i, j=1

∂2F
∂xi∂xj

(As,Xs) d[X (i),X (j)]s, where

It = lim
n→∞

∑
s∈πn
s<t

∇R
d+1

F(As,Xs) ·

(
As′∧t − As

Xs′∧t − Xs

)
= lim

n→∞

(∑ ∂F
∂a
(As,Xs)(As′∧t − As) +

∑
∇xF(As,Xs) · (Xs′∧t − Xs)

)
.

The first sum on the right hand side converges to the Stieltjes integral
´ t

0
∂F
∂a (As,Xs) dAs as n→∞. Hence,

the second sum also converges, and we obtain (6.41) in the limit as n→∞. �

Note that if h(t, x) is a solution of the dual heat equation

∂h
∂t
+

1
2
∂2h
∂x2 = 0 for t ≥ 0, x ∈ R, (6.44)

then by (6.43),

h([X]t,Xt ) = h(0,X0) +

tˆ

0

∂h
∂x
([X]s,Xs) dXs .

In particular, if (Xt ) is a Brownian motion, or more generally a local martingale, then h([X]t,Xt ) is also a
local martingale. The next example considers two situations where this is particular interesting:

Example. (i) Itô exponentials: For any α ∈ R, the function

h(t, x) = exp(αx − α2t/2)

satisfies (6.44) and ∂h/∂x = αh. Hence the function

Z (α)t := exp
(
αXt −

1
2
α2[X]t

)
is a solution of the Itô differential equation

dZ (α)t = αZ (α)t dXt

with initial condition Z (α)0 = 1. This shows that in Itô calculus, the functions Z (α)t are the correct
replacements for the exponential functions. The additional factor exp(−α2[X]t/2) should be
thought of as an appropriate renormalization in the continuous time limit.

(ii) Hermite polynomials: For n = 0,1,2, . . ., the Hermite polynomials

hn(t, x) =
∂n

∂αn
exp(αx −

1
2
α2t)

����
α=0

also satisfy (6.44). The first Hermite polynomials are 1, x, x2 − t, x3 − 3t x, . . . Note also that by
Taylor’s theorem,

exp(αx − α2t/2) =
∞∑
n=0

αn

n!
hn(t, x).
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Moreover, the following properties can be easily verified:

hn(1, x) = ex
2/2(−1)n

dn

dxn
e−x

2/2 for all x ∈ R, (6.45)

hn(t, x) = tn/2hn(1, x/
√

t) for all t ≥ 0, x ∈ R, (6.46)
∂hn
∂x

= nhn−1,
∂hn
∂t
+

1
2
∂2hn
∂x2 = 0. (6.47)

For example, (6.45) holds since

exp(αx − α2/2) = exp(−(x − a)2/2) exp(x2/2)

yields

hn(1, x) = exp(x2/2)(−1)n
dn

dβn
exp(−β2/2)

����
β=x

,

and (6.46) follows from

exp(αx − α2t/2) = exp(α
√

t · (x/
√

t) − (α
√

t)2/2) =
∞∑
n=0

αn

n!
tn/2hn(1, x/

√
t).

By (6.45) and (6.46), hn is a polynomial of degree n. For any n ≥ 0, the function

H(n)t := hn([X]t,Xt )

is a solution of the Itô equation
dH(n)t = nH(n−1)

t dXt . (6.48)

Therefore, the Hermite polynomials are appropriate replacements for the ordinary monomials xn

in Itô calculus. If X0 = 0 then H(n)0 = 0 for n ≥ 1, and we obtain inductively

H(0)t = 1, H(1)t =

tˆ

0

dXs, H(2)t =

tˆ

0

H(1)s dXs =

tˆ

0

sˆ

0

dXr dXs,

and so on.

Corollary 6.24. If X : [0,u) → R is continuous with X0 = 0 and continuous quadratic variation then for
t ∈ [0,u),

tˆ

0

snˆ

0

· · ·

s2ˆ

0

dXs1 · · · dXsn−1 dXsn =
1
n!

hn([X]t,Xt ).

Proof. The equation follows from (6.48) by induction on n. �

Iterated Itô integrals occur naturally in Taylor expansions of Itô calculus. Therefore, the explicit expression
from the corollary is valuable for numerical methods for stochastic differential equations.
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7. Brownian Motion and Partial Differential
Equations

The stationary and time-dependent Itô formula enable us to work out the connection of Brownian motion to
several partial differential equations involving the Laplace operator. One of the many consequences is the
evaluation of probabilities and expectation values for Brownian motion by p.d.e. methods. More generally,
Itô’s formula establishes a link between stochastic processes and analysis that is extremely fruitful in both
directions.

Suppose that (Bt ) is a d-dimensional Brownian motion defined on a probability space (Ω,A,P) such that
every sample path t 7→ Bt (ω) is continuous. We first note that Itô’s formula shows that Brownian motion

solves the martingale problem for the operator L =
1
2
∆ in the following sense:

Corollary 7.1 (Time-dependent martingale problem). For every C2 function F : [0,∞) ×Rd → R with
bounded first derivatives, the process

MF
t = F(t,Bt ) − F(0,B0) −

tˆ

0

(
∂F
∂s
+

1
2
∆F

)
(s,Bs) ds

is a continuous (F B
t ) martingale. More generally, for every F ∈ C2([0,∞) × D),D ⊆ Rd open, MF is a

continuous local martingale up to TDC = inf{t ≥ 0 : Bt < D}.

Proof. By the continuity assumptions one easily verifies that MF is (F B
t ) adapted. Moreover, by the

time-dependent Itô formula (6.42),

MF
t =

tˆ

0

∇xF(s,Bs) · dBs for t < TDC ,

which implies the claim. �

Choosing a function F that does not explicitly depend on t, we obtain in particular that

MF
t = F(Bt ) − F(B0) −

tˆ

0

1
2
∆F(Bs) ds

is a martingale for any f ∈ C2
b
(Rd), and a local martingale up to TDC for any F ∈ C2(D).

7.1. Dirichlet problem, recurrence and transience

As a first consequence of Corollary 7.1, we can now complete the proof of the stochastic representation
for solutions of the Dirichlet problem that has been already mentioned in Section 3.2 above. By solving
the Dirichlet problem for balls explicitly, we will then study recurrence, transience and polar sets for multi-
dimensional Brownian motion.
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The Dirichlet problem revisited

Suppose that h ∈ C2(D) ∩ C(D) is a solution of the Dirichlet problem

∆h = 0 on D, h = f on ∂D, (7.1)

for a bounded open set D ⊂ Rd and a continuous function f : ∂D → R. If (Bt ) is under Px a continuous
Brownian motion with B0 = x Px-almost surely, then by Corollary 7.1, the process h(Bt ) is a local (F B

t )

martingale up to TDC . By applying the optional stopping theorem with a localizing sequence of bounded
stopping times Sn ↗ TDC , we obtain

h(x) = Ex[h(B0)] = Ex[h(BSn )] for all n ∈ N.

Since Px[TDC < ∞] = 1 and h is bounded on D, dominated convergence then yields the stochastic
representation

h(x) = Ex[h(BT
DC )] = Ex[ f (BT

DC )] for all x ∈ Rd .

We thus have shown:

Theorem 7.2 (Stochastic representation for solutions of the Dirichlet problem). Suppose that D is a
bounded open subset of Rd, f is a continuous function on the boundary ∂D, and h ∈ C2(D) ∩ C(D) is a
solution of the Dirichlet problem (7.1). Then

h(x) = Ex[ f (BT )] for all x ∈ D.

We will generalize this result substantially in Theorem 7.5 below. Before, we apply the Dirichlet problem
to study recurrence and transience of Brownian motions.

Recurrence and transience of Brownian motion in Rd

Let (Bt ) be a d-dimensional Brownian motion on (Ω,A,P) with initial value B0 = x0, x0 , 0. For r ≥ 0 let

Tr = inf{t > 0 : |Bt | = r}.

We now compute the probabilities P[Ta < Tb] for a < |x0 | < b. Note that this is a multi-dimensional
analogue of the classical ruin problem. To compute the probability for given a, b we consider the domain

D = {x ∈ Rd : a < |x | < b}.

For b < ∞, the first exit time TDC is almost surely finite,

TDC = min(Ta,Tb), and P[Ta < Tb] = P[|BT
DC | = a].
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a

b

D

x0

Suppose that h ∈ C(U) ∩ C2(U) is a solution of the Dirichlet problem

∆h(x) = 0 for all x ∈ D, h(x) =

{
1 if |x | = a,
0 if |x | = b.

(7.2)

Then h(Bt ) is a bounded local martingale up to TDC , and optional stopping yields

P[Ta < Tb] = E[h(BT
DC )] = h(x0). (7.3)

By rotational symmetry, the solution of the Dirichlet problem (7.2) can be computed explicitly. The ansatz
h(x) = f (|x |) leads us to the boundary value problem

d2 f
dr2 (|x |) +

d − 1
|x |

df
dr
(|x |) = 0, f (a) = 1, f (b) = 0,

for a second order ordinary differential equation. Solutions of the o.d.e. are linear combinations of the
constant function 1 and the function

φ(s) :=


s for d = 1,
log s for d = 2,
s2−d for d ≥ 3.
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s

φ(s)

Figure 7.1.: The function φ(s) for different values of d: red (d = 1), blue (d = 2) and purple (d = 3)

Hence, the unique solution f with boundary conditions f (a) = 1 and f (b) = 0 is

f (r) =
φ(b) − φ(r)
φ(b) − φ(a)

.

Summarizing, we have shown:

Theorem 7.3 (Ruin problem in Rd). For a, b > 0 with a < |x0 | < b,

P[Ta < Tb] =
φ(b) − φ(|x0 |)

φ(b) − φ(a)
, and

P[Ta < ∞] =

{
1 for d ≤ 2
(a/|x0 |)

d−2 for d > 2.

Proof. The first equation follows by 6.44. Moreover,

P[Ta < ∞] = lim
b→∞

P[Ta < Tb] =

{
1 for d ≤ 2
φ(|x0 |)/φ(a) for d ≥ 3. �

Corollary 7.4. For a Brownian motion in Rd the following statements hold for any initial value x0 ∈ R
d:

(i) If d ≤ 2 then every non-empty ball D ⊆ Rd is recurrent, i.e., the last visit time of D is almost surely
infinite:

Ld = sup{t ≥ 0 : Bt ∈ D} = ∞ P-a.s.

(ii) If d ≥ 3 then every ball D is transient, i.e.,

Ld < ∞ P-a.s.

(iii) If d ≥ 2 then every point x ∈ Rd is polar, i.e.,

P[ ∃ t > 0 : Bt = x] = 0.

144 University of Bonn



7.2. Boundary value problems, exit and occupation times

We point out that the last statement holds even if the starting point x0 coincides with x. The first statement
implies that a typical Brownian sample path is dense in R2, whereas by the second statement, lim

t→∞
|Bt | = ∞

almost surely for d ≥ 3.

Proof. (i), (ii). The first two statements follow from Theorem 7.3 and the Markov property.
(iii). For the third statement we assume w.l.o.g. x = 0. If x0 , 0 then

P[T0 < ∞] = lim
b→∞

P[T0 < Tb]

for any a > 0. By Theorem 7.3,

P[T0 < Tb] ≤ inf
a>0

P[Ta < Tb] = 0 for d ≥ 2,

whence T0 = ∞ almost surely. If x0 = 0 then by the Markov property,

P[ ∃ t > ε : Bt = 0] = E[PBε [T0 < ∞]] = 0

for any ε > 0. thus we again obtain

P[T0 < ∞] = lim
ε↘0

P[ ∃ t > ε : Bt = 0] = 0.
�

Remark (Polarity of linear subspaces). For d ≥ 2, any (d − 2) dimensional subspace V ⊆ Rd is polar for
Brownian motion. For the proof note that the orthogonal projection of a one-dimensional Brownian motion
onto the orthogonal complement V⊥ is a 2-dimensional Brownian motion.

7.2. Boundary value problems, exit and occupation times

The connection of Brownian motion to boundary value problems for partial differential equations involving
the Laplace operator can be extended substantially:

The stationary Feynman-Kac-Poisson formula

Suppose that f : ∂D → R,V : D → R and g : D → [0,∞) are continuous functions defined on an open
bounded domain D ⊂ Rd, or on its boundary respectively. We assume that under Px , (Bt ) is Brownian
motion with Px[B0 = x] = 1, and that

Ex

exp
T̂

0

V−(Bs) ds
 < ∞ for any x ∈ D, (7.4)

where T = TDC is the first exit time from D.
Note that (7.4) always holds if V is non-negative.

Theorem 7.5. If u ∈ C2(D) ∩ C(D) is a solution of the boundary problem

1
2
∆u(x) = V(x)u(x) − g(x) for x ∈ D, (7.5)

u(x) = f (x) for x ∈ ∂D, (7.6)

and (7.4) holds, then for any x ∈ D,

u(x) = Ex

exp ©­«−
T̂

0

V(Bs) dsª®¬ · f (BT )

 + Ex


T̂

0

exp ©­«−
tˆ

0

V(Bs) dsª®¬ · g(Bt ) dt
 . (7.7)
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Remark. Note that we assume the existence of a smooth solution of the boundary value problem (7.5).
Proving that the function u defined by (7.7) is a solution of the b.v.p. without assuming existence is much
more demanding.

Proof. By continuity of V and (Bs), the sample paths of the process

At =

tˆ

0

V(Bs) ds

are C1 and hence of finite variation for t < T . Let

Xt = e−At u(Bt ), t < T .

Applying Itô’s formula with F(a, b) = e−au(b) yields the decomposition

dXt = e−At∇u(Bt ) · dBt − e−At u(Bt ) dAt +
1
2

e−At∆u(Bt ) dt

= e−At∇u(Bt ) · dBt + e−At

(
1
2
∆u − V · u

)
(Bt ) dt

of Xt into a local martingale up to time T and an absolutely continuous part. Since u is a solution of (7.5), we

have
1
2
∆u − Vu = −g on D. By applying the optional stopping theorem with a localizing sequence Tn ↗ T

of stopping times, we obtain the representation

u(x) = Ex[X0] = Ex[XTn ] + Ex


Tnˆ

0

e−At g(Bt ) dt


= Ex[e−ATn u(BTn )] + Ex


Tnˆ

0

e−At g(Bt ) dt


for x ∈ D. The assertion (7.7) now follows provided we can interchange the limit as n → ∞ and the
expectation values. For the second expectation on the right hand side this is possible by the monotone
convergence theorem, because g ≥ 0. For the first expectation value, we can apply the dominated convergence
theorem, because ��e−ATn u(BTn )

�� ≤ exp ©­«
T̂

0

V−(Bs) dsª®¬ · sup
y∈D

|u(y)| ∀n ∈ N,

and the majorant is integrable w.r.t. each Px by Assumption 7.4. �

Remark (Extension to diffusion processes). A corresponding result holds under appropriate assumptions
if the Brownian motion (Bt ) is replaced by a diffusion process (Xt ) solving a stochastic differential equation
of the type dXt = σ(Xt ) dBt + b(Xt ) dt, and the operator 1

2∆ in (7.5) is replaced by the generator

L =
1
2

d∑
i, j=1

ai, j(x)
∂2

∂xi∂xj
+ b(x) · ∇, a(x) = σ(x)σ(x)>,

of the diffusion process, cf. ??. The theorem hence establishes a general connection between Itô diffusions
and boundary value problems for linear second order elliptic partial differential equations.
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By Theorem 7.5 we can compute many interesting expectation values for Brownian motion by solving
appropriate p.d.e. We now consider various corresponding applications.

Let us first recall the Dirichlet problem where V ≡ 0 and g ≡ 0. In this case, u(x) = Ex[ f (BT )]. We
have already pointed out in the last section that this can be used to compute exit distributions and to study
recurrence, transience and polarity of linear subspaces for Brownian motion in Rd. A second interesting
case of Theorem 7.5 is the stochastic representation for solutions of the Poisson equation:

Poisson problem and mean exit time

If V and f vanish in Theorem 7.5, the boundary value problem (7.5) reduces to the boundary value problem

1
2
∆u = −g on D, u = 0 on ∂D,

for the Poisson equation. The solution has the stochastic representation

u(x) = Ex


T̂

0

g(Bt ) dt
 , x ∈ D, (7.8)

which can be interpreted as an average cost accumulated by the Brownian path before exit from the domain
D. In particular, choosing g ≡ 1, we can compute the mean exit time

u(x) = Ex[T]

from D for Brownian motion starting at x by solving the corresponding Poisson problem.

Example. If D = {x ∈ Rd : |x | < r} is a ball around 0 of radius r > 0, then the solution u(x) of the
Poisson problem

1
2
∆u(x) =

{
−1 for |x | < r
0 for |x | = r

can be computed explicitly. We obtain

Ex[T] = u(x) =
r2 − |x |2

d
for any x ∈ D.

Occupation time density and Green function

If (Bt ) is a Brownian motion in Rd then the corresponding Brownian motion with absorption at the first exit
time from the domain D is the Markov process (Xt ) with state space D ∪ {∆} defined by

Xt =

{
Bt for t < T
∆ for t ≥ T

,

where ∆ is an extra state added to the state space. By setting g(∆) = 0, the stochastic representation (7.8)
for a solution of the Poisson problem can be written in the form

u(x) = Ex


∞̂

0

g(Xt ) dt
 =

∞̂

0

(pD
t g)(x) dt, (7.9)

where
pD
t (x, A) = Px[Xt ∈ A], A ⊆ Rd measurable,
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is the transition function for the absorbed process (Xt ). Note that for A ⊂ Rd,

pD
t (x, A) = Px[Bt ∈ A and t < T] ≤ pt (x, A) (7.10)

where pt is the transition function of Brownian motion on Rd. For t > 0 and x ∈ Rd, the transition function
pt (x,•) of Brownian motion is absolutely continuous. Therefore, by (7.10), the sub-probability measure
pD
t (x,•) restricted to Rd is also absolutely continuous with non-negative density

pD
t (x, y) ≤ pt (x, y) = (2πt)−d/2 exp

(
−
|x − y |2

2t

)
.

The function pD
t is called the heat kernel on the domain D w.r.t. absorption on the boundary. Note that

GD(x, y) =

∞̂

0

pD
t (x, y) dt

is an occupation time density, i.e., it measures the average time time a Brownian motion started in x spends
in a small neighbourhood of y before it exits from the Domain D. By (7.9), a solution u of the Poisson
problem 1

2∆u = −g on D, u = 0 on ∂D, can be represented as

u(x) =
ˆ

D

GD(x, y)g(y) dy for x ∈ D.

This shows that the occupation time density GD(x, y) is the Green function (i.e., the fundamental solution of
the Poisson equation) for the operator 1

2∆ with Dirichlet boundary conditions on the domain D.

Note that although for domains with irregular boundary, the Green’s function might not exist in the classical
sense, the function GD(x, y) is always well-defined!

Stationary Feynman-Kac formula and exit time distributions

Next, we consider the case where g vanishes and f ≡ 1 in Theorem 7.5. Then the boundary value problem
(7.5) takes the form

1
2
∆u = Vu on D, u = 1 on ∂D. (7.11)

The p.d.e. 1
2∆u = Vu is a stationary Schrödinger equation. We will comment on the relation between

the Feynman-Kac formula and Feynman’s path integral formulation of quantum mechanics below. For the
moment, we only note that for the solution of (7.11), the stochastic representation

u(x) = Ex

exp ©­«−
T̂

0

V(Bt ) dtª®¬


holds for x ∈ D.
As an application, we can, at least in principle, compute the full distribution of the exit time T . In fact,
choosing V ≡ α for some constant α > 0, the corresponding solution uα of (7.11) yields the Laplace
transform

uα(x) = Ex[e−αT ] =

∞̂

0

e−αt µx(dt) (7.12)

of µx = Px ◦ T−1.
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Example (Exit times in R1). Suppose d = 1 and D = (−1,1). Then (7.11) with V = α reads

1
2

u′′α(x) = αuα(x) for x ∈ (−1,1), uα(1) = uα(−1) = 1.

This boundary value problem has the unique solution

uα(x) =
cosh(x ·

√
2α)

cosh(
√

2α)
for x ∈ [−1,1].

By inverting the Laplace transform (7.12), one can now compute the distribution µx of the first exit time
T from (−1,1). It turns out that µx is absolutely continuous with density

fT (t) =
1
√

2πt3

∞∑
n=−∞

(
(4n + 1 + x)e−

(4n+1+x)2
2t + (4n + 1 − x)e−

(4n+1−x)2
2t

)
, t ≥ 0.

x

t

fT (t)

Figure 7.2.: The density of the first exit time T depending on the starting point x ∈ [−1,1] and the time
t ∈ (0,2].

Boundary value problems in Rd and total occupation time

Suppose we would like to compute the distribution of the total occupation time
∞̂

0

IA(Bs) ds

of a bounded domain A ⊂ Rd for Brownian motion. This only makes sense for d ≥ 3, since for d ≤ 2,
the total occupation time of any non-empty open set is almost surely infinite by recurrence of Brownian

motion in R1 and R2. The total occupation time is of the form
∞́

0
V(Bs) ds with V = IA. Therefore, we

should in principle be able to apply Theorem 7.5, but we have to replace the exit time T by +∞ and hence
the underlying bounded domain D by Rd.
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Corollary 7.6. Suppose d ≥ 3 and let V : Rd → [0,∞) be continuous. If u ∈ C2(Rd) is a solution of the
boundary value problem

1
2
∆u = Vu on Rd, lim

|x |→∞
u(x) = 1 (7.13)

then

u(x) = Ex

exp ©­«−
∞̂

0

V(Bt ) dtª®¬
 for any x ∈ Rd .

Proof. Applying the stationary Feynman-Kac formula on an open bounded subset D ⊂ Rd, we obtain the
representation

u(x) = Ex

u(BT
DC ) exp

©­­«−
T
DCˆ

0

V(Bt ) dt
ª®®¬
 (7.14)

by Theorem 7.5. Now let Dn = {x ∈ Rd : |x | < n}. Then TDC
n
↗ ∞ as n → ∞. Since d ≥ 3, Brownian

motion is transient, i.e., lim
t→∞
|Bt | = ∞, and therefore by (7.13)

lim
n→∞

u(BT
DC

n
) = 1 Px-almost surely for any x.

Since u is bounded and V is non-negative, we can apply dominated convergence in (7.14) to conclude

u(x) = Ex

exp ©­«−
∞̂

0

V(Bt ) dtª®¬
 . �

Let us now return to the computation of occupation time distributions. Consider a bounded subset
A ⊂ Rd, d ≥ 3, and let

vα(x) = Ex

exp ©­«−α
∞̂

0

IA(Bs) dsª®¬
 , α > 0,

denote the Laplace transform of the total occupation time of A. Although V = αIA is not a continuous
function, a representation of vα as a solution of a boundary problem holds:

Exercise. Prove that if A ⊂ Rd is a bounded domain with smooth boundary ∂A and uα ∈ C1(Rd) ∩
C2(Rd \ ∂A) satisfies

1
2
∆uα = αIAuα on Rd \ ∂A, lim

|x |→∞
uα(x) = 1, (7.15)

then vα = uα.

Remark. The condition uα ∈ C1(Rd) guarantees that uα is a weak solution of the p.d.e. (7.13) on all of Rd
including the boundary ∂U.

Example (Total occupation time of the unit ball in R3). Suppose A = {x ∈ R3 : |x | < 1}. In this
case the boundary value problem (7.13) is rotationally symmetric. The ansatz uα(x) = fα(|x |), yields a
Bessel equation for fα on each of the intervals (0,1) and (1,∞):

1
2

f ′′α (r) + r−1 f ′α(r) = α fα(r) for r < 1,
1
2

f ′′α (r) + r−1 f ′α(r) = 0 for r > 1.
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Taking into account the boundary condition and the condition uα ∈ C1(Rd), one obtains the rotationally
symmetric solution

uα(x) =



1 +

(
tanh(

√
2α)

√
2α

− 1

)
· r−1 for r ∈ [1,∞),

sinh(
√

2αr)
√

2α cosh
√

2α
· r−1 for r ∈ (0,1)

1
cosh(

√
2α)

for r = 0

.

of (7.13), and hence an explicit formula for vα. In particular, for x = 0 we obtain the simple formula

E0

exp ©­«−α
∞̂

0

IA(Bt ) dtª®¬
 = uα(0) =

1
cosh(

√
2α)

.

The right hand side has already appeared in the example above as the Laplace transform of the exit time
distribution of a one-dimensional Brownian motion starting at 0 from the interval (−1,1). Since the
distribution is uniquely determined by its Laplace transform, we have proven the remarkable fact that
the total occupation time of the unit ball for a standard Brownian motion in R3 has the same distribution
as the first exit time from the unit ball for a standard one-dimensional Brownian motion:

∞̂

0

I
{ |BR

3
t |<1} dt ∼ inf{t > 0 : |BR

3

t | > 1}.

This is a particular case of a theorem of Ciesielski and Taylor who proved a corresponding relation
between Brownian motion in Rd+2 and Rd for arbitrary d.

7.3. Heat Equation and Time-Dependent Feynman-Kac Formula

Itô’s formula also yields a connection between Brownian motion (or, more generally, solutions of stochastic
differential equations) and parabolic partial differential equations. The parabolic p.d.e. are Kolmogorov
forward or backward equations for the corresponding Markov processes. In particular, the time-dependent
Feynman-Kac formula shows that the backward equation for Brownian motion with absorption is a heat
equation with dissipation.

Brownian Motion with Absorption

Supposewewould like to describe the evolution of a Brownianmotion that is absorbed during an infinitesimal
time interval [t, t + dt] with probability V(t, x)dt where x is the current position of the process. We assume
that the absorption rate V(t, x) is given by a measurable locally-bounded function

V : [0,∞) × Rd → [0,∞).

Then the accumulated absorption rate up to time t is given by the increasing process

At =

tˆ

0

V(s,Bs) ds, t ≥ 0.

We can think of the process At as an internal clock for the Brownian motion determining the absorption
time. More precisely, we define:
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Definition 7.7. Suppose that (Bt )t≥0 is a d-dimensional Brownian motion and T is a with parameter 1
exponentially distributed random variable independent of (Bt ). Let ∆ be a separate state added to the state
space Rd. Then the process (Xt ) defined by

Xt :=

{
Bt for At < T,
∆ for At ≥ T,

is called a Brownian motion with absorption rate V(t, x), and the random variable

ζ := inf{t ≥ 0 : At ≥ T}

is called the absorption time.

A justification for the construction is given by the following informal computation: For an infinitesimal
time interval [t, t + dt] and almost every ω,

P[ζ ≤ t + dt | (Bs)s≥0, ζ > t](ω) = P[At+dt (ω) ≥ T | At (ω) < T]

= P[At+dt (ω) − At (ω) ≥ T]

= P[V(t,Bt (ω))dt ≥ T]

= V(t,Bt (ω))dt

by the memoryless property of the exponential distribution, i.e., V(t, x) is indeed the infinitesimal absorption
rate.

Rigorously, it is not difficult to verify that (Xt ) is a Markov process with state space Rd ∪ {∆} where ∆ is an
absorbing state. The Markov process is time-homogeneous if V(t, x) is independent of t.

For a measurable subset D ⊆ Rd and t ≥ 0 the distribution µt of Xt is given by

µt [D] = P[Xt ∈ D] = P[Bt ∈ D and At < T]

= E[P[At < T | (Bt )] ; Bt ∈ D] (7.16)

= E
exp ©­«−

tˆ

0

V(s,Bs) dsª®¬ ; Bt ∈ D
 .

Itô’s formula can be used to prove a Kolmogorov type forward equation:

Theorem 7.8 (Forward equation for Brownian motion with absorption). The sub-probability mea-
sures µt on Rd solve the heat equation

∂µt
∂t
=

1
2
∆µt − V(t,•)µt (7.17)

in the following distributional sense:

ˆ
f (x)µt (dx) −

ˆ
f (x)µ0(dx) =

tˆ

0

ˆ
(
1
2
∆ f (x) − V(s, x) f (x))µs(dx) ds

for any function f ∈ C2
0 (R

d).
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Here C2
0 (R

d) denotes the space of C2-functions with compact support. Under additional regularity
assumptions it can be shown that µt has a smooth density that solves (7.17) in the classical sense. The
equation (7.17) describes heat flow with cooling when the heat at x at time t dissipates with rate V(t, x).

Proof. By (7.16), ˆ
f dµt = E[exp(−At ) ; f (Bt )] (7.18)

for any bounded measurable function f : Rd → R. For f ∈ C2
0 (R

d), an application of Itô’s formula yields

e−At f (Bt ) = f (B0) + Mt +

tˆ

0

e−As f (Bs)V(s,Bs) ds +
1
2

tˆ

0

e−As∆ f (Bs) ds,

for t ≥ 0, where (Mt ) is a local martingale. Taking expectation values for a localizing sequence of stopping
times and applying the dominated convergence theorem subsequently, we obtain

E[e−At f (Bt )] = E[ f (B0)] +

tˆ

0

E[e−As (
1
2
∆ f − V(s,•) f )(Bs)] ds.

Here we have used that 1
2∆ f (x) − V(s, x) f (x) is uniformly bounded for (s, x) ∈ [0, t] × Rd, because f has

compact support and V is locally bounded. The assertion now follows by (7.18). �

Exercise (Heat kernel and Green’s function). The transition kernel for Brownian motion with time-
homogeneous absorption rate V(x) restricted to Rd is given by

pVt (x,D) = Ex

exp ©­«−
tˆ

0

V(Bs) dsª®¬ ; Bt ∈ D
 .

(i) Prove that for any t > 0 and x ∈ Rd , the sub-probability measure pVt (x,•) is absolutely continuous
on Rd with density satisfying

0 ≤ pVt (x, y) ≤ (2πt)−d/2 exp(−|x − y |2/(2t)).

(ii) Identify the occupation time density

GV (x, y) =

∞̂

0

pVt (x, y) dt

as a fundamental solution of an appropriate boundary value problem. Adequate regularity may
be assumed.

Time-dependent Feynman-Kac formula

In Theorem 7.8 we have applied Itô’s formula to prove a Kolmogorov type forward equation for Brownian
motion with absorption. To obtain a corresponding backward equation, we have to reverse time:

Theorem 7.9 (Feynman-Kac). Fix t > 0, and let f : Rd → R and V,g : [0, t] × Rd → R be continuous
functions. Suppose that f is bounded, g is non-negative, and V satisfies

Ex

exp
tˆ

0

V(t − s,Bs)
− ds

 < ∞ for all x ∈ Rd . (7.19)
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If u ∈ C1,2((0, t] × Rd) ∩ C([0, t] × Rd) is a bounded solution of the heat equation

∂u
∂s
(s, x) =

1
2
∆u(s, x) − V(s, x)u(s, x) + g(s, x) for s ∈ (0, t], x ∈ Rd,

(7.20)
u(0, x) = f (x),

then u has the stochastic representation

u(t, x) = Ex

 f (Bt ) exp ©­«−
tˆ

0

V(t − s,Bs) dsª®¬
 +

Ex


tˆ

0

g(t − r,Br ) exp ©­«−
rˆ

0

V(t − s,Bs) dsª®¬ dr
 .

Remark. The equation (7.20) describes heat flow with sinks and dissipation.

Proof. We first reverse time on the interval [0, t]. The function

û(s, x) = u(t − s, x)

solves the p.d.e.

∂û
∂s
(s, x) = −

∂u
∂t
(t − s, x) = −

(
1
2
∆u − Vu + g

)
(t − s, x)

= −

(
1
2
∆û − V̂ û + ĝ

)
(s, x)

on [0, t] with terminal condition û(t, x) = f (x). Now let Xr = exp(−Ar )û(r,Br ) for r ∈ [0, t], where

Ar :=
rˆ

0

V̂(s,Bs) ds =

rˆ

0

V(t − s,Bs) ds.

By Itô’s formula, we obtain for τ ∈ [0, t],

Xτ − X0 = Mτ −

τˆ

0

e−Ar û(r,Br ) dAr +

τˆ

0

e−Ar

(
∂û
∂s
+

1
2
∆û

)
(r,Br ) dr

= Mτ +

τˆ

0

e−Ar

(
∂û
∂s
+

1
2
∆û − V̂ û

)
(r,Br ) dr

= Mτ −

τˆ

0

e−Ar ĝ(r,Br ) dr

with a local martingale (Mτ)τ∈[0,t] vanishing at 0. Choosing a corresponding localizing sequence of stopping
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times Tn with Tn ↗ t, we obtain by the optional stopping theorem and by dominated convergence,

u(t, x) = û(0, x) = Ex[X0]

= Ex[Xt ] + Ex


tˆ

0

e−Ar ĝ(r,Br ) dr


= Ex[e−At u(0,Bt )] + Ex


tˆ

0

e−Ar g(t − r,Br ) dr
 . �

Remark (Extension to diffusion processes). Again a similar result holds under a appropriate regularity
assumptions for Brownian motion replaced by a solution of a s.d.e. dXt = σ(Xt )dBt + b(Xt )dt and 1

2∆

replaced by the corresponding generator, cf. ??.

Occupation times and arc-sine law

The Feynman-Kac formula can be used to study the distribution of occupation times of Brownian motion.
We consider an example where the distribution can be computed explicitly: The proportion of time during
the interval [0, t] spent by a one-dimensional standard Brownian motion (Bt ) in the interval (0,∞). Let

At = λ({s ∈ [0, t] : Bs > 0}) =
tˆ

0

I(0,∞)(Bs) ds.

Theorem 7.10 (Arc-sine law of P.Lévy). For any t > 0 and θ ∈ [0,1],

P0[At/t ≤ θ] =
2
π

arcsin
√
θ =

1
π

θˆ

0

ds√
s(1 − s)

.

0.5 1.0

2
π

Figure 7.3.: Density of At/t.

Note that the theorem shows in particular that a law of large numbers does not hold! Indeed, for each
ε > 0,

P0


������1t

tˆ

0

I(0,∞)(Bs) ds −
1
2

������ > ε

 6→ 0 as t →∞.
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Even for large times, values of At/t close to 0 or 1 are the most probable. By the functional central limit
theorem, the proportion of time that one player is ahead in a long coin tossing game or a counting of election
results is also close to the arcsine law. In particular, it is more then 20 times more likely that one player is
ahead for more than 98% of the time than it is that each player is ahead between 49% and 51% of the time
[13].

We now give an informal derivation of the arc-sine law that is based on the time-dependent Feynman-Kac
formula. The idea for determining the distribution of At is again to consider the Laplace transforms

u(t, x) = Ex[exp(−βAt )], β > 0.

By the Feynman-Kac formula, we could expect that u solves the equation

∂u
∂t
=

1
2
∂2u
∂x2 − β I(0,∞) u (7.21)

with initial condition u(0, x) = 1. To solve the parabolic p.d.e. (7.21), we consider another Laplace transform:
The Laplace transform

vα(x) =

∞̂

0

e−αtu(t, x) dt = Ex


∞̂

0

e−αt−βAt dt
 , α > 0,

of a solution u(t, x) of (7.21) w.r.t. t. An informal computation shows that vα should satisfy the o.d.e.

1
2
v′′α − βI(0,∞)vα =

∞̂

0

e−αt
(
1
2
∂2u
∂x2 − βI(0,∞)u

)
(t,•) dt =

∞̂

0

e−αt
∂u
∂t
(t,•) dt

= e−αtu(t,•)|∞0 + α

∞̂

0

e−αtu(t,•) dt = −1 + αvα,

i.e., vα should be a bounded solution of

αvα −
1
2
v′′α + βI(0,∞)vα = g (7.22)

where g(x) = 1 for all x. The solution of (7.22) can then be computed explicitly, and one obtains the arc-sine
law by Laplace inversion.

Remark. The method of transforming a parabolic p.d.e. by the Laplace transform into an elliptic equation
is standard and used frequently. In particular, the Laplace transform of a transition semigroup (pt )t≥0 is the
corresponding resolvent (gα)α≥0, gα =

´ ∞
0 e−αtpt dt.

Instead of trying to make the informal argument above rigorous, one can directly prove the arc-sine law
by applying the stationary Feynman-Kac formula:

Exercise. Prove Lévy’s arc-sine law rigorously by proceeding in the following way:

(i) Let g ∈ Cb(R). Show that if vα is a bounded solution of (7.22) on R \ {0} with vα ∈ C1(R) ∩
C2(R \ {0}) then

vα(x) = Ex


∞̂

0

g(Bt )e−αt−βAt dt
 for any x ∈ R.
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(ii) Compute a corresponding solution vα for g ≡ 1, and conclude that

∞̂

0

e−αtE0[e−βAt ] dt =
1√

α(α + β)
.

(iii) Now use the uniqueness of the Laplace inversion to show that the distribution µt of At/t under
P• is absolutely continuous with density

fAt /t (s) =
1

π
√

s · (1 − s)
.
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8. Stochastic Differential Equations: Explicit
Computations

We will now study solutions of stochastic differential equations (SDE) of type

dXt = b(t,Xt ) dt + σ(t,Xt ) dBt (8.1)

where (Bt )t≥0 is a d-dimensional Brownian motion, and b andσ are continuous functions taking values inRn
and Rn×d that are defined on R+ ×Rn or an appropriate subset. Recall that we call a process (t,ω) 7→ Xt (ω)

that is defined up to a stopping time T(ω) adapted w.r.t. a filtration (Ft ), if the trivially extended process
X̃t = Xt · I{t<T } is (Ft )-adapted.

Definition 8.1 (Weak and strong solutions). A (weak) solution of the stochastic differential equation (8.1)
is given by

(i) a “setup” consisting of a probability space (Ω,A,P), a filtration (Ft )t≥0 on (Ω,A) and an Rd-valued
(Ft ) Brownian motion (Bt )t≥0 on (Ω,A,P),

(ii) a continuous (Ft ) adapted stochastic process (Xt )t<T where T is an (Ft ) stopping time, and

Xt = X0 +

ˆ t

0
b(s,Xs) ds +

ˆ t

0
σ(s,Xs) dBs for any t < T, P − a.s.

It is called a strong solution w.r.t. the given setup if and only if (Xt ) is adapted w.r.t. the filtration(
σ

(
F

B,P
t ,X0

) )
t≥0 generated by the Brownian motion and the initial condition.

Note that for a general (weak) solution of an SDE, the Brownian motion is part of the solution. This
will be exploited in Section ?? below where weak solutions are constructed for example by changing the
underlying probability measure. The terminology “strong” solution will also be explained in more detail
later. The point is that a strong solution is essentially (up to modification on measure zero sets) ameasurable
function of the given Brownian motion and the initial condition ! There are stochastic differential equations
that have weak but no strong solutions. An example will be given in Section ??. The concept of strong and
weak solutions of stochastic differential equations is not related to the analytic definition of strong and weak
solutions for partial differential equations.
In this section we study properties of solutions and we compute explicit solutions for mostly one-dimensional
SDE. We start with an example:

Example (Asset price model in continuous time). Anearbymodel for an asset price process (Sn)n=0,1,2,...
in discrete time is to define Sn recursively by

Sn+1 − Sn = αnSn + σnSnηn+1

with i.i.d. random variables ηi, i ∈ N, and stochastic processes αn and σn that are adapted w.r.t. an
underlying filtration. Trying to set up a corresponding model in continuous time, we arrive at the
stochastic differential equation

dSt = αtSt dt + σtSt dBt (8.2)
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with an (Ft )-Brownian motion (Bt ) and (F P
t ) adapted continuous stochastic processes (αt )t≥0 and

(σt )t≥0, where (Ft ) is a given filtration on a probability space (Ω,A,P). The processes αt and σt

describe the instantaneous mean rate of return and the volatility. Both are allowed to be time dependent
and random.

In order to compute a solution of (8.2), we assume St > 0 for all t ≥ 0, and we divide the equation by
St :

1
St

dSt = αt dt + σt dBt . (8.3)

We will prove in Section 8.1 that if an SDE holds then the SDE multiplied by a continuous adapted
process also holds, cf. Theorem 8.6. Hence (8.3) is equivalent to (8.2) if St > 0. If (8.3) would be
a classical ordinary differential equation then we could use the identity d log St = 1

St
dSt to solve the

equation. In Itô calculus, however, the classical chain rule is violated. Nevertheless, it is still useful to
compute d log St by Itô’s formula. The process (St ) has quadratic variation

[S]t =
[ˆ •

0
σrSr dBr

]
t

=

ˆ t

0
σ2
r S2

r dr for any t ≥ 0,

almost surely along an appropriate sequence (πn) of partitions with mesh(πn) → 0. The first equation
holds by (8.2), since t 7→

´ t
0 αrSr dr has finite variation, and the second identity is proved in Theorem

8.6 below. Therefore, Itô’s formula implies

d log St =
1
St

dSt −
1

2S2
t

d[S]t = αt dt + σt dBt −
1
2
σ2
t dt = µt dt + σt dBt,

where µt := αt − σ2
t /2, i.e.,

log St − log S0 =

ˆ t

0
µs ds +

ˆ t

0
σs dBs,

or, equivalently,

St = S0 · exp
(ˆ t

0
µs ds +

ˆ t

0
σs dBs

)
. (8.4)

Conversely, one can verify by Itô’s formula that (St ) defined by (8.4) is indeed a solution of (8.2). Thus
we have proven existence, uniqueness and an explicit representation for a strong solution of (8.2). In the
special case when αt ≡ α and σt ≡ σ are constants in t and ω, the solution process

St = S0 exp
(
σBt + (α − σ

2/2)t
)

is called a geometric Brownian motion with parameters α and σ.
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Figure 1: Three one dimensional geometric Brownian motions with α2 = 1 and
σ = 0.1 (blue), σ = 1.0 (red) and σ = 2.0 (magenta).

Figure 8.1.: Three one dimensional geometric Brownian motions with α2 = 1 and σ = 0.1 (blue), σ = 1.0
(red) and σ = 2.0 (magenta).

8.1. Stochastic calculus for semimartingales

By definition, any solution of an SDE of the form (8.1) is the sum of an absolutely continuous adapted
process and an Itô stochastic integral w.r.t. the underlying Brownian motion, i.e.,

Xt = At + It for t < T, (8.5)

where
At =

ˆ t

0
Ks ds and It =

ˆ t

0
Hs dBs (8.6)

with (Ht )t<T and (Kt )t<T almost surely continuous and (F B,P
t )-adapted. A stochastic process of type (8.5)

is called an Itô process. Clearly, every Itô process is a continuous semimartingale in the following sense:

Definition 8.2 (Continuous semimartingale). A real valued stochastic process (Xt ) defined on a probabil-
ity space (Ω,A,P) is called a continuous semimartingalew.r.t. a filtration (Ft ), iff (Xt ) has a decomposition

Xt = Mt + At (8.7)

into a continuous local (Ft ) martingale (Mt ) and a continuous (Ft ) adapted finite variation process (At ).

By Theorem 6.12, the semimartingale decomposition (8.7) is unique up to equivalence if one assumes
M0 = 0 (or, alternatively, A0 = 0). Indeed, if M + A and M̃ + Ã are two semimartingale decompositions of
the same process X then M − M̃ = A − Ã. Thus M − M̃ is a continuous local martingale with sample paths
of finite variation, and hence it is almost surely constant, i.e., almost surely,

At − Ãt = Mt − M̃t = M0 − M0 = 0 for all t ≥ 0.
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Therefore we can define without ambiguity the Itô integral of a continuous (Ft ) adapted process (Ht ) w.r.t.
(Xt ) by setting ˆ t

0
Hs dXs :=

ˆ t

0
Hs dMs +

ˆ t

0
Hs dAs (8.8)

where Xt = Mt + At is an arbitrary semimartingale decomposition of (Xt ), the integral w.r.t. the continuous
local martingale (Mt ) is defined as an Itô integral, and the integral w.r.t. the finite variation process (At ) is
defined pathwise as a Stieltjes integral. Note that (8.8) provides a semimartingale decomposition for the
stochastic process (

´ t
0 Hs dXs), so stochastic integration preserves semimartingale decompositions !

The definition in (8.8) shows that the class of Itô processes w.r.t. a given Brownian motion is closed under
taking stochastic integrals. In particular, strong solutions of SDE w.r.t. Itô processes are again Itô processes.
In order to compute and analyse solutions of SDE we will apply Itô’s formula to Itô processes, and, more
generally, to processes that are defined as stochastic integrals w.r.t. continuous semimartingales. Since the
rules of classical Stieltjes calculus apply to the finite variation part, it only remains to consider the local
martingale part.

Covariation of stochastic integrals

For the next lemma, we fix a constant u ∈ (0,∞], and a sequence (πn) of partitions of R+ with mesh(πn) → 0.

Lemma 8.3 (Pathwise Kunita-Watanabe inequality). Suppose that X,Y : [0,u) → R are continuous
functions with continuous quadratic variations [X] and [Y ], and continuous covariation [X,Y ], and let
H ∈ L2

loc([0,u), d[X]) and K ∈ L2
loc([0,u), d[Y ]). Then H · K ∈ L1

loc([0,u), |d[X,Y ]|), and����ˆ t

0
HsKs d[X,Y ]s

���� ≤ (ˆ t

0
H2
s d[X]s

)1/2 (ˆ t

0
K2
s d[Y ]s

)1/2

for all t ∈ [0,u). (8.9)

Proof. Let 0 ≤ u ≤ v. Then by continuity of X , Y and [X,Y ],

[X,Y ]v − [X,Y ]u = lim
n→∞

∑
s∈πn∩[u,v)

(Xs′ − Xs)(Ys′ − Ys),

where s′ denotes the next partition point in πn. Applying the Cauchy-Schwarz inequality to the approximating
sums, we obtain

|[X,Y ]v − [X,Y ]u | ≤ ([X]v − [X]u)1/2 ([Y ]v − [Y ]u)1/2 .

Now suppose first that H and K are elementary functions of the form H =
∑

ai I(ui ,vi ], K =
∑

ai I(ui ,vi ] with
disjoint intervals (ui, vi] and ai, bi ∈ R. Then by another application of the Cauchy-Schwarz inequality,����ˆ t

0
HsKs d[X,Y ]s

���� = ���∑ aibi(
(
[X,Y ]vi∧t − [X,Y ]ui∧t

) ���
≤

∑
|ai | |bi |

(
[X]vi∧t − [X]ui∧t

)1/2 (
[Y ]vi∧t − [Y ]ui∧t

)1/2

≤

(∑
a2
i

(
[X]vi∧t − [X]ui∧t

) )1/2 (∑
b2
i

(
[Y ]vi∧t − [Y ]ui∧t

) )1/2

=

(ˆ t

0
H2
s d[X]s

)1/2 (ˆ t

0
K2
s d[Y ]s

)1/2

.

The extension of the inequality from elementary to arbitrary square integrable functions then follows by a
standard approximation argument. �

We now apply the Kunita-Watanabe inequality to prove an extension of Itô’s isometry that will allow us
to identify the covariation of two stochastic integrals.
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Theorem 8.4 (Extended Itô isometry). Suppose that M and N are martingales inM2
c([0,u)) with almost

surely absolutely continuous quadratic variations. Then for arbitrary processes H ∈ L2
a(0,u; M) and

K ∈ L2
a(0,u; N), and for all s, t ∈ [0,u] with s ≤ t,

E
[ˆ t

s

Hr dMr

ˆ t

s

Kr dNr

���� Fs ]
= E

[ˆ t

s

HrKr d[M,N]r

���� Fs ]
. (8.10)

Proof. Let s, t ∈ [0,u] with s ≤ t. Then for predictable step functions H,K ∈ E, the equation in (8.10) can
be shown similarly to the proof of Itô’s isometry in Theorem 5.7. The details are left as an exercise.
Now consider arbitrary processes H ∈ L2

a(0,u; M) and K ∈ L2
a(0,u; N), and let Hn and Kn be sequences

of elementary predictable processes such that Hn → H in L2(Ω × (0,u),P〈M 〉) and Kn → K in L2(Ω ×

(0,u),P〈N 〉). Then as n→∞,
´ t
s Hn dM →

´ t
s H dM and

´ t
s Kn dN →

´ t
s K dN in L2(P) by Itô’s isometry.

Hence by the Cauchy-Schwarz inequality,

E
[ˆ t

s

Hn
r dMr

ˆ t

s

Kn
r dNr

���� Fs ]
−→ E

[ˆ t

s

Hr dMr

ˆ t

s

Kr dNr

���� Fs ]
in L1(P).

Furthermore, the integrals
´ t
s (H

n − H)2 d[M] and
´ t
s (K

n − K)2 d[N] converge to 0 in L1(P). Therefore, by
Lemma 8.3 and another application of Cauchy-Schwarz,

E
[ˆ t

s

Hn
r Kn

r d[M,N]r

���� Fs ]
−→ E

[ˆ t

s

HrKr d[M,N]r

���� Fs ]
in L1(P).

Thus (8.10) holds for H and K as well. �

Corollary 8.5 (Covariation of stochastic integrals). Suppose that T is a predictable stopping time, and
M = (Mt )t<T and N = (Nt )t<T are continuous local martingales with almost surely absolutely continuous
quadratic variations. Then for arbitrary processes H ∈ L2

a,loc(0,T ; M) and K ∈ L2
a,loc(0,T ; N),[ˆ •

0
Hr dMr ,

ˆ •
0

Kr dNr

]
t

=

ˆ t

0
HrKr d[M,N]r for all t ∈ [0,T), P-almost surely. (8.11)

Proof. Suppose first that T ≡ u for a constant u ∈ (0,∞], and assume that H ∈ L2
a(0,u; M) and K ∈

L2
a(0,u; N). Then Theorem 8.4 shows that

´
H dM ·

´
K dN −

´
HK d[M,N] is a martingale. Therefore,

by Corollary 6.22, we can conclude that almost surely,[ˆ •
0

Hr dMr ,

ˆ •
0

Kr dNr

]
t

=

ˆ t

0
HrKr d[M,N]r for all t ∈ [0,u).

The extension to local martingales follows by a localization argument. �

Note that the formula for the covariation of stochastic integrals in (8.11) immediately extends to contin-
uous semimartingales, because Stieltjes integrals w.r.t. continuous finite variation processes have vanishing
quadratic variation.
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Composition of stochastic integrals

Suppose that M = (Mt )t<T is a continuous local (Ft ) martingale with absolutely continuous quadratic
variation [M] that is defined up to a predictable stopping time T . Moreover, let I = (It )t<T denote the local
martingale

It =
ˆ t

0
Hs dMs

where (Ht )t<T is a process in L2
a,loc(0,T ; M). By Corollary 8.11, I is again a continuous local martingale

with absolutely continuous covariation

[I]t =
ˆ t

0
H2
s d[M]s . (8.12)

Theorem 8.6 (Composition rule). Suppose that (Gt )0≤t<T is a progressivelymeasurable process such that
G · H ∈ L2

a,loc(0,T ; M). Then G is in L2
a,loc(0,T ; I), and almost surely,

ˆ t

0
Gs dIs =

ˆ t

0
GsHs dMs for any t ≥ 0. (8.13)

Proof. Wefirst assume thatT ≡ u for a finite constant u ∈ (0,∞], M is a continuousmartingale inM2
c([0,u)),

and H is in L2
a(0,u; M). If G is an elementary predictable processes then G · H is in L2

a(0,u; M) as well,
and (8.13) can be easily verified.
Next suppose that G is a progressively measurable process such that G · H is in L2

a(0,u; M). Then by
(8.12), G is in L2

a(0,u; I). Let (Gn)n∈N be a sequence of elementary predictable processes such that
ˆ u

0
|Gn

s − Gs |
2 d[I] → 0 in L2(P).

Then
´

Gn dI →
´

G dI in L2(P). Moreover, by (8.12),
ˆ u

0
|Gn

s Hs − GsHs |
2 d[M]s → 0 in L2(P),

and thus
´

GnH dM →
´

GH dM in L2(P). Hence (8.13) is again satisfied.
The assertion in the general case now follows by localization: By Lemma 5.17, there exists an increasing

sequence of stopping timesTk ↗ T such that for every k, the stopped process Mt∧Tk is a boundedmartingale in
M2

c([0,∞)), and the trivially extended processes H(k)t := Ht I{t<Tk } and GtHt I{t<Tk } are in L
2
a(0,∞; M•∧Tk ).

LetG(k)t := Gt I{t<Tk } and I(k)t :=
´ t

0 Hs I{s<Tk } dMs∧Tk . Then for every k ∈ N, I(k) is a continuousmartingale
inM2

c([0,∞)), and, as shown above, G(k) is in L2
a(0,∞; I(k)), and almost surely,

ˆ t

0
G(k)r dI(k)r =

ˆ t

0
G(k)r H(k)r dMr∧Tk for any t ≥ 0.

For t < Tk , all processes coincide with their localized versions, and thus
´ t

0 Gr dIr =
´ t

0 GrHr dMr . The
claim follows, since

P

[
{t < T} \

⋃
k

{t ≤ T̃k}

]
= 0.

�
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8.1. Stochastic calculus for semimartingales

Summary of calculus rules

We summarize the main calculus rules for continuous semimartingales that are immediate consequences of
the definition in (8.8) and Theorem 8.6. Suppose that (Yt ), (Zt ), (It ), (Jt ) and (X1

t ), . . . , (X
n
t ) are continuous

(Ft ) semimartingales, and (Gt ), (G̃t ) and (Ht ) are continuous (Ft ) adapted process that are all defined up to
a stopping time T . Then the following rules hold for Itô stochastic differentials:

Linearity. For any c ∈ R,

d(Y + cZ) = dY + c dZ, and
(G + cH) dY = G dY + cH dY .

Composition rule.

dI = G dY ⇒ G̃ dI = G̃G dY,

Covariation.

dI = G dY, dJ = H dZ ⇒ d[I, J] = GH d[Y, Z],

Itô rule. For any function F ∈ C1,2(R+ × R
n),

dF(t,X) =
n∑
i=1

∂F
∂xi
(t,X) dX i +

∂F
∂t
(t,X) dt +

1
2

n∑
i, j=1

∂2F
∂xi ∂x j

(t,X) d[X i,X j]

where X = (X1, . . . ,Xn).

All equations are to be understood in the sense that the corresponding stochastic integrals over an arbitrary
interval [0, t], t < T , coincide almost surely.

Example (Option Pricing in continuous time I). We again consider the continuous time asset price
model introduced in the beginning of Chapter 8. Suppose an agent is holding φt units of a single asset
with price process (St ) at time t, and he invests the remainder Vt − φtSt of his wealth Vt in the money
market with interest rate Rt . We assume that (φt ) and (Rt ) are continuous adapted processes. Then the
change of wealth in a small time unit should be described by the Itô equation

dVt = φt dSt + Rt (Vt − φtSt ) dt .

Similarly to the discrete time case, we consider the discounted wealth process

Ṽt := exp ©­«−
tˆ

0

Rs dsª®¬Vt .

Since t 7→
t́

0
Rs ds has finite variation, the Itô rule and the composition rule for stochastic integrals

imply:

dṼt = exp ©­«−
tˆ

0

Rs dsª®¬ dVt − exp ©­«−
tˆ

0

Rs dsª®¬ RtVt dt

= exp ©­«−
tˆ

0

Rs dsª®¬ φt dSt − exp ©­«−
tˆ

0

Rs dsª®¬ RtφtSt dt

= φt ·
©­«exp ©­«−

tˆ

0

Rs dsª®¬ dSt − exp ©­«−
tˆ

0

Rs dsª®¬ RtSt dtª®¬
= φt dS̃t,
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where S̃t is the discounted asset price process. Therefore,

Ṽt − Ṽ0 =

tˆ

0

φs dS̃s ∀t ≥ 0 P-almost surely.

As a consequence, we observe that if (S̃t ) is a (local) martingale under a probability measure P∗
that is equivalent to P then the discounted wealth process (Ṽt ) is also a local martingale under P∗.
A corresponding probability measure P∗ is called an equivalent martingale measure or risk neutral
measure, and can be identified by Girsanov’s theorem, cf. Section 9.3 below. Once we have found P∗,
option prices can be computed similarly as in discrete time under the additional assumption that the true
measure P for the asset price process is equivalent to P∗, see Section 9.4.

The Itô-Doeblin formula in R1

We will now apply Itô’s formula to solutions of stochastic differential equations. Let b, σ ∈ C(R+ × I) where
I ⊆ R is an open interval. Suppose that (Bt ) is an (Ft )-Brownian motion on (Ω,A,P), and (Xt )0≤t<T is an
(F P

t )-adapted process with values in I and defined up to an (F P
t ) stopping time T such that the SDE

Xt − X0 =

tˆ

0

b(s,Xs) ds +

tˆ

0

σ(s,Xs) dBs for any t < T (8.14)

holds almost surely.

Corollary 8.7 (Doeblin 1941, Itô 1944). Let F ∈ C1,2(R+ × I). Then almost surely,

F(t,Xt ) − F(0,X0) =

tˆ

0

(σF ′)(s,Xs) dBs (8.15)

+

tˆ

0

(
∂F
∂t
+

1
2
σ2F ′′ + bF ′

)
(s,Xs) ds for any t < T,

where F ′ = ∂F/∂x denotes the partial derivative w.r.t. x.

Proof. Let (πn) be a sequence of partitions with mesh(πn) → 0. Since the process t 7→ X0 +
t́

0
b(s,Xs) ds

has sample paths of locally finite variation, the quadratic variation of (Xt ) is given by

[X]t =

•ˆ

0

σ(s,Xs) dBs

 t =
tˆ

0

σ(s,Xs)
2 ds ∀t < T

w.r.t. almost sure convergence along a subsequence of (πn). Hence Itô’s formula can be applied to almost
every sample path of (Xt ), and we obtain

F(t,Xt ) − F(0,X0) =

tˆ

0

F ′(s,Xs) dXs +

tˆ

0

∂F
∂t
(s,Xs) ds +

1
2

tˆ

0

F ′′(s,Xs) d[X]s

=

tˆ

0

(σF ′)(s,Xs) dBs +

tˆ

0

(bF ′)(s,Xs) ds +

tˆ

0

∂F
∂t
(s,Xs) ds +

1
2

tˆ

0

(σ2F ′′)(s,Xs) ds
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for all t < T , P-almost surely. Here we have used (8.14) and the fact that the Itô integral w.r.t. X is an almost
sure limit of Riemann-Itô sums after passing once more to an appropriate subsequence of (πn). �

Exercise (Black Scholes partial differential equation). Astock price ismodeled by a geometric Brow-
nian Motion (St ) with parameters α,σ > 0. We assume that the interest rate is equal to a real constant
r for all times. Let c(t, x) be the value of an option at time t if the stock price at that time is St = x.
Suppose that c(t,St ) is replicated by a hedging portfolio, i.e., there is a trading strategy holding φt shares
of stock at time t and putting the remaining portfolio value Vt − φtSt in the money market account with
fixed interest rate r so that the total portfolio value Vt at each time t agrees with c(t,St ).
“Derive” the Black-Scholes partial differential equation

∂c
∂t
(t, x) + r x

∂c
∂x
(t, x) +

1
2
σ2x2 ∂

2c
∂x2 (t, x) = rc(t, x) (8.16)

and the delta-hedging rule

φt =
∂c
∂x
(t,St ) (=: Delta ). (8.17)

Hint: Consider the discounted portfolio value Ṽt = e−rtVt and, correspondingly, the discounted option
value e−rtc(t,St ). Compute the Ito differentials, and conclude that both processes coincide if c is a
solution to (8.16) and φt is given by (8.17).

Martingale problem for solutions of SDE

The Itô-Doeblin formula shows that if (Xt ) is a solution of (8.14) then

MF
t = F(t,Xt ) − F(0,X0) −

tˆ

0

(LF)(s,Xs) ds

is a local martingale up to T for any F ∈ C1,2(R+ × I) and

(LF)(t, x) =
1
2
σ(t, x)2F ′′(t, x) + b(t, x)F ′(t, x).

In particular, in the time-homogeneous case and for T = ∞, any solution of (8.14) solves the martingale
problem for the operator LF = 1

2σ
2F ′′ + bF ′ with domain C2

0 (I).
Similarly as for Brownian motion, the martingales identified by the Itô-Doeblin formula can be used to
compute various expectation values for the Itô diffusion (Xt ). In the next section we will look at first
examples.

Remark (Uniqueness and Markov property of strong solutions). If the coefficients are, for example, Lip-
schitz continuous, then the strong solution of the SDE (8.14) is unique, and it has the strongMarkov property,
i.e., it is a diffusion process in the classical sense (a strong Markov process with continuous sample paths).
By the Itô-Doeblin formula, the generator of this Markov process is an extension of the operator (L,C2

0 (I)).

Although in general, uniqueness and the Markov property may not hold for solutions of the SDE (8.14), we
call any solution of this equation an Itô diffusion.

8.2. Stochastic growth

In this section we consider time-homogeneous Itô diffusions taking values in the interval I = (0,∞). They
provide natural models for stochastic growth processes, e.g. in mathematical biology, financial mathematics
and many other application fields. Analogue results also hold if I is replaced by an arbitrary non-empty open
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interval.
Suppose that (Xt )0≤t<T is a strong solution of the SDE

dXt = b(Xt ) dt + σ(Xt ) dBt for t ∈ [0,T),
X0 = x0,

with a given Brownian motion (Bt ), x0 ∈ (0,∞), and continuous time-homogeneous coefficients b, σ :
(0,∞) → R. We assume that the solution is defined up to the explosion time

T = sup
ε,r>0

Tε,r, Tε,r = inf{t ≥ 0 | Xt < (ε,r)}.

The corresponding generator is

LF = bF ′ +
1
2
σ2F ′′.

Before studying some concrete models, we show in the general case how harmonic functions can be used to
compute exit distributions (e.g. ruin probabilities) and to analyze the asymptotic behaviour of Xt as t ↗ T .

Scale functions and exit distributions

To determine the exit distribution from a finite subinterval (ε,r) ⊂ (0,∞)we compute the harmonic functions
of L. For h ∈ C2(0,∞) with h′ > 0 we obtain:

Lh = 0 ⇐⇒ h′′ = −
2b
σ2 h′ ⇐⇒ (log h′)′ = −

2b
σ2 .

Therefore, the two-dimensional vector space of harmonic functions is spanned by the constant function 1
and by the function

s(x) =

xˆ

x0

exp
©­­«−

zˆ

x0

2b(y)
σ(y)2

dy
ª®®¬ dz.

s(x) is called a scale function of the process (Xt ). It is strictly increasing and harmonic on (0,∞). Hence we
can think of s : (0,∞) → (s(0), s(∞)) as a coordinate transformation, and the transformed process s(Xt ) is a
local martingale up to the explosion time T . Applying the martingale convergence theorem and the optional
stopping theorem to s(Xt ) one obtains:

Theorem 8.8. For any ε,r ∈ (0,∞) with ε < x0 < r we have:

(i) The exit time Tε,r = inf{t ∈ [0,T) : Xt < (ε,r)} is almost surely less than T .

(ii) P[Tε < Tr ] = P[XTε,r = ε] =
s(r) − s(x)
s(r) − s(ε)

.

The proof of Theorem 8.8 is left as an exercise.

Remark. (i) Note that any affine transformation s̃(x) = cs(x)+ d with constants c > 0 and d ∈ R is also
harmonic and strictly increasing, and hence a scale function. The ratio (s(r) − s(x))/(s(r) − s(ε)) is
invariant under non-degenerate affine transformations of s.

(ii) The scale function and the ruin probabilities depend only on the ratio b(x)/σ(x)2.
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Recurrence and asymptotics

We now apply the formula for the exit distributions in order to study the asymptotics of one-dimensional
non-degenerate Itô diffusions as t ↗ T . For ε ∈ (0, x0) we obtain

P[Tε < T] = P[Tε < Tr for some r ∈ (x0,∞)]

= lim
r→∞

P[Tε < Tr ] = lim
r→∞

s(r) − s(x0)

s(r) − s(ε)
.

In particular, we have
P[Xt = ε for some t ∈ [0,T)] = P[Tε < T] = 1

if and only if s(∞) = lim
r↗∞

s(r) = ∞.

Similarly, one obtains for r ∈ (x0,∞):

P[Xt = r for some t ∈ [0,T)] = P[Tr < T] = 1

if and only if s(0) = lim
ε↘0

s(ε) = −∞.

Moreover,

P[Xt →∞ as t ↗ T] = P

[⋃
ε>0

⋂
r<∞

{Tr < Tε}

]
= lim

ε↘0
lim
r↗∞

s(x0) − s(ε)
s(r) − s(ε)

,

and

P[Xt → 0 as t ↗ T] = P

[⋃
r<∞

⋂
ε>0
{Tε < Tr }

]
= lim

r↗∞
lim
ε↘0

s(x0) − s(ε)
s(r) − s(ε)

.

Summarizing, we have shown:

Corollary 8.9 (Asymptotics of one-dimensional Itô diffusions).

(i) If s(0) = −∞ and s(∞) = ∞, then the process (Xt ) is recurrent, i.e.,

P[Xt = y for some t ∈ [0,T)] = 1 for any x0, y ∈ (0,∞).

(ii) If s(0) > −∞ and s(∞) = ∞ then lim
t↗T

Xt = 0 almost surely.

(iii) If s(0) = −∞ and s(∞) < ∞ then lim
t↗T

Xt = ∞ almost surely.

(iv) If s(0) > −∞ and s(∞) < ∞ then

P
[
lim
t↗T

Xt = 0
]
=

s(∞) − s(x0)

s(∞) − s(0)

and
P

[
lim
t↗T

Xt = ∞

]
=

s(x0) − s(0)
s(∞) − s(0)

Intuitively, if s(0) = −∞, in the natural scale the boundary is transformed to −∞, which is not a possible
limit for the local martingale s(Xt ), whereas otherwise s(0) is finite and approached by s(Xt ) with strictly
positive probability.

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 169



8. SDE: Explicit Computations

Example. Suppose that b(x)/σ(x)2 ≈ γx−1 as x ↗ ∞ and b(x)/σ(x)2 ≈ δx−1 as x ↘ 0 holds for
γ, δ ∈ R in the sense that b(x)/σ(x)2 − γx−1 is integrable at∞ and b(x)/σ(x)2 − δx−1 is integrable at 0.
Then s′(x) is of order x−2γ as x ↗∞ and of order x−2δ as x ↘ 0. Hence

s(∞) = ∞ ⇐⇒ γ ≤
1
2
, s(0) = −∞ ⇐⇒ δ ≥

1
2
.

In particular, recurrence holds if and only if γ ≤ 1
2 and δ ≥ 1

2 .

More concrete examples will be studied below.

Remark (Explosion in finite time, Feller’s test). Corollary 8.9 does not tell us whether the explosion time
T is infinite with probability one. It can be shown that this is always the case if (Xt ) is recurrent. In general,
Feller’s test for explosions provides a necessary and sufficient condition for the absence of explosion in finite
time. The idea is to compute a function g ∈ C(0,∞) such that e−tg(Xt ) is a local martingale and to apply
the optional stopping theorem. The details are more involved than in the proof of corollary above, cf. e.g.
Section 6.2 in [Durrett: Stochastic calculus].

Geometric Brownian motion

A geometric Brownian motion with parameters α ∈ R and σ > 0 is a solution of the s.d.e.

dSt = αSt dt + σSt dBt . (8.18)

We have already shown in the beginning of Section ?? that for B0 = 0, the unique strong solution of (8.18)
with initial condition S0 = x0 is

St = x0 · exp
(
σBt + (α − σ

2/2)t
)
.

The distribution of St at time t is a lognormal distribution, i.e., the distribution of c · eY where c is a constant
andY is normally distributed. Moreover, one easily verifies that (St ) is a time-homogeneous Markov process
with log-normal transition densities

pt (x, y) =
1

√
2πtσ2

exp
(
−
(log(y/x) − µt)2

2tσ2

)
, t, x, y > 0,

where µ = α − σ2/2. By the Law of Large Numbers for Brownian motion,

lim
t→∞

St =

{
+∞ if µ > 0
0 if µ < 0

.

If µ = 0 then (St ) is recurrent since the same holds for (Bt ).
We now convince ourselves that we obtain the same results via the scale function:
The ratio of the drift and diffusion coefficient is

b(x)
σ(x)2

=
αx
(σx)2

=
α

σ2x
,

and hence

s′(x) = const. · exp
©­­«−

xˆ

x0

2α
σ2y

dy
ª®®¬ = const. · x−2α/σ2

.

Therefore,
s(∞) = ∞ ⇐⇒ 2α/σ2 ≤ 1, s(0) = ∞ ⇐⇒ 2α/σ2 ≥ 1,

which again shows that St →∞ for α > σ2/2, St → 0 for α < σ2/2, and St is recurrent for α = σ2/2.
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Feller’s branching diffusion

Our second growth model is described by the stochastic differential equation

dXt = βXt dt + σ
√

Xt dBt, X0 = x0, (8.19)

with given constants β ∈ R, σ > 0, and values in R+. Note that in contrast to the equation of geometric
Brownian motion, the multiplicative factor

√
Xt in the noise term is not a linear function of Xt . As a

consequence, there is no explicit formula for a solution of (8.19). Nevertheless, a general existence result
guarantees the existence of a strong solution defined up to the explosion time

T = sup
ε,r>0

TR\(ε,r),

cf. ??. SDEs similar to (8.19) appear in various applications.

Example (Diffusion limits of branching processes). We consider a Galton-Watson branching process
Zh
t with time steps t = 0, h,2h,3h, . . . of size h > 0, i.e., Zh

0 is a given initial population size, and

Zh
t+h =

Zh
t∑

i=1
Ni, t/h for t = k · h, k = 0,1,2, . . . ,

with independent identically distributed random variables Ni,k, i ≥ 1, k ≥ 0. The random variable Zh
kh

describes the size of a population in the k-th generation when Ni,l is the number of offspring of the i-th
individual in the l-th generation. We assume that the mean and the variance of the offspring distribution
are given by

E[Ni,l] = 1 + βh and Var[Ni,l] = σ2

for finite constants β,σ ∈ R.

We are interested in a scaling limit of the model as the size h of time steps goes to 0. To establish
convergence to a limit process as h↘ 0 we rescale the population size by h, i.e., we consider the process

Xh
t := h · Zh

bt c, t ∈ [0,∞).

The mean growth (“drift”) of this process in one time step is

E[Xh
t+h − Xh

t | F
h
t ] = h · E[Zh

t+h − Zh
t | F

h
t ] = hηhZh

t = hβXh
t ,

and the corresponding condition variance is

Var[Xh
t+h − Xh

t | F
h
t ] = h2 · Var[Zh

t+h − Zh
t | F

h
t ] = h2σ2Zh

t = hσ2Xh
t ,

where F h
t = σ(Ni,l | i ≥ 1,0 ≤ l ≤ k) for t = k · h. Since both quantities are of order O(h), we can

expect a limit process (Xt ) as h ↘ 0 with drift coefficient β · Xt and diffusion coefficient
√
σ2Xt , i.e.,

the scaling limit should be a diffusion process solving a s.d.e. of type (8.19). A rigorous derivation of
this diffusion limit can be found e.g. in Section 8 of [Durrett: Stochastic Calculus].

We now analyze the asymptotics of solutions of (8.19). The ratio of drift and diffusion coefficient is
βx/(σ

√
x)2 = β/σ2, and hence the derivative of a scale function is

s′(x) = const. · exp(−2βx/σ2).

Thus s(0) is always finite, and s(∞) = ∞ if and only if β ≤ 0. Therefore, by Corollary 8.9, in the subcritical
and critical case β ≤ 0, we obtain

lim
t↗T

Xt = 0 almost surely,
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whereas in the supercritical case β > 0,

P
[
lim
t↗T

Xt = 0
]
> 0 and P

[
lim
t↗T

Xt = ∞

]
> 0.

This corresponds to the behaviour of Galton-Watson processes in discrete time. It can be shown by Feller’s
boundary classification for one-dimensional diffusion processes that if Xt → 0 then the process actually dies
out almost surely in finite time, cf. e.g. Section 6.5 in [Durrett: Stochastic Calculus]. On the other hand,
for trajectories with Xt → ∞, the explosion time T is almost surely infinite and Xt grows exponentially as
t →∞.

Cox-Ingersoll-Ross model

The CIR model is a model for the stochastic evolution of interest rates or volatilities. The equation is

dRt = (α − βRt ) dt + σ
√

Rt dBt R0 = x0, (8.20)

with a one-dimensional Brownian motion (Bt ) and positive constants α, β,σ > 0. Although the s.d.e.
looks similar to the equation for Feller’s branching diffusion, the behaviour of the drift coefficient near 0
is completely different. In fact, the idea is that the positive drift α pushes the process away from 0 so that
a recurrent process on (0,∞) is obtained. We will see that this intuition is true for α ≥ σ2/2 but not for
α < σ2/2.
Again, there is no explicit solution for the s.d.e. (8.18), but existence of a strong solution holds. The ratio of
the drift and diffusion coefficient is (α − βx)/σ2x, which yields

s′(x) = const. · x−2α/σ2
e2βx/σ2

.

Hence s(∞) = ∞ for any β > 0, and s(0) = −∞ if and only if 2α ≥ σ2. Therefore, the CIR process is
recurrent if and only if α ≥ σ2/2, whereas Xt → 0 as t ↗ T almost surely otherwise.
By applying Itô’s formula one can now prove that Xt has finite moments, and compute the expectation and

variance explicitly. Indeed, taking expectation values in the s.d.e.

Rt = x0 +

tˆ

0

(α − βRs) ds +

tˆ

0

σ
√

Rs dBs,

we obtain informally
d
dt

E[Rt ] = α − βE[Rt ],

and hence by variation of constants,

E[Rt ] = x0 · e−βt +
α

β
(1 − e−βt ).

To make this argument rigorous requires proving that the local martingale t 7→
t́

0
σ
√

Rs dBs is indeed a

martingale:

Exercise. Consider a strong solution (Rt )t≥0 of (8.18) for α ≥ σ2/2.

(i) Show by applying Itô’s formula to x 7→ |x |p that E[|Rt |
p] < ∞ for any t ≥ 0 and p ≥ 1.

(ii) Compute the expectation of Rt , e.g. by applying Itô’s formula to eβt x.

(iii) Proceed in a similar way to compute the variance of Rt . Find its asymptotic value lim
t→∞

Var[Rt ].
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8.3. Linear SDE with additive noise

We now consider stochastic differential equations of the form

dXt = βt Xt dt + σt dBt, X0 = x, (8.21)

where (Bt ) is a Brownian motion, and the coefficients are deterministic continuous functions β,σ : [0,∞) →
R. Hence the drift term βt Xt is linear in Xt , and the diffusion coefficient does not depend on Xt , i.e., the
noise increment σt dBt is proportional to white noise dBt with a proportionality factor that does not depend
on Xt .

Variation of constants

An explicit strong solution of the SDE (8.21) can be computed by a “variation of constants” Ansatz. We first
note that the general solution in the deterministic case σt ≡ 0 is given by

Xt = const. · exp ©­«
tˆ

0

βs dsª®¬ .
To solve the SDE in general we try the ansatz

Xt = Ct · exp ©­«
tˆ

0

βs dsª®¬
with a continuous Itô process (Ct ) driven by the Brownian motion (Bt ). By the Itô product rule,

dXt = βt Xt dt + exp ©­«
tˆ

0

βs dsª®¬ dCt .

Hence (Xt ) solves (8.21) if and only if

dCt = exp ©­«−
tˆ

0

βs dsª®¬σt dBt,

i.e.,

Ct = C0 +

tˆ

0

exp ©­«−
rˆ

0

βs dsª®¬σr dBr .

We thus obtain:

Theorem 8.10. The almost surely unique strong solution of the SDE (8.21) with initial value x is given by

Xx
t = x · exp ©­«

tˆ

0

βs dsª®¬ +
tˆ

0

exp ©­«
tˆ

r

βs dsª®¬σr dBr .
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Note that the theorem not only yields an explicit solution but it also shows that the solution depends
smoothly on the initial value x. The effect of the noise on the solution is additive and given by a Wiener-Itô
integral, i.e., an Itô integral with deterministic integrand. The average value

E[Xx
t ] = x · exp ©­«

tˆ

0

βs dsª®¬ , (8.22)

coincides with the solution in the absence of noise, and the mean-square deviation from this solution due to
random perturbation of the equation is

Var[Xx
t ] = Var


tˆ

0

exp ©­«
tˆ

r

βs dsª®¬σr dBr

 =
tˆ

0

exp ©­«2
tˆ

r

βs dsª®¬σ2
r dr

by the Itô isometry.

Solutions as Gaussian processes

We now prove that the solution (Xt ) of a linear s.d.e. with additive noise is a Gaussian process. We first
observe that Xt is normally distributed for any t ≥ 0.

Lemma 8.11. For any deterministic function h ∈ L2(0, t), the Wiener-Itô integral It =
t́

0
hs dBs is normally

distributed with mean 0 and variance
t́

0
h2
s ds.

Proof. Suppose first that h =
n−1∑
i=0

ci · I(ti ,ti+1] is a step function with n ∈ N, c1, . . . , cn ∈ R, and 0 ≤ t0 < t1 <

. . . < tn. Then It =
n−1∑
i=0

ci · (Bti+1 − Bti ) is normally distributed with mean zero and variance

Var[It ] =
n−1∑
i=0

c2
i (ti+1 − ti) =

tˆ

0

h2
s ds.

In general, there exists a sequence (h(n))n∈N of step functions such that h(n) → h in L2(0, t), and

It =

tˆ

0

h dB = lim
n→∞

tˆ

0

h(n) dB in L2(Ω,A,P).

Hence It is again normally distributed with mean zero and

Var[It ] = lim
n→∞

Var


tˆ

0

h(n) dB
 =

tˆ

0

h2 ds.
�

Theorem 8.12 (Wiener-Itô integrals are Gaussian processes). Suppose that h ∈ L2
loc([0,∞),R). Then

It =
t́

0
hs dBs is a continuous Gaussian process with

E[It ] = 0 and Cov[It, Is] =
t∧sˆ

0

h2
r ds for any t, s ≥ 0.
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Proof. Let 0 ≤ t1 < . . . < tn. To show that (It1, . . . , Itn ) has a normal distribution it suffices to prove that
any linear combination of the random variables It1, . . . , Itn is normally distributed. This holds true since any
linear combination is again an Itô integral with deterministic integrand:

n∑
i=1

λi Iti =

tnˆ

0

n∑
i=1

λi · I(0,ti )(s)hs dBs

for any n ∈ N and λ1, . . . , λn ∈ R. Hence (It ) is a Gaussian process with E[It ] = 0 and

Cov[It, Is] = E[It Is]

= E

∞̂

0

hr · I(0,t)(r) dBr

∞̂

0

hr · I(0,s)(r) dBr


= (h · I(0,t), h · I(0,s))L2(0,∞)

=

s∧tˆ

0

h2
r dr . �

Example (Brownian motion). If h ≡ 1 then It = Bt . The Brownian motion (Bt ) is a centered Gaussian
process with Cov[Bt,Bs] = t ∧ s.

More generally, by Theorem 8.12 and Theorem 8.10, any solution (Xt ) of a linear SDE with additive
noise and deterministic (or Gaussian) initial value is a continuous Gaussian process. In fact by (8.21), the
marginals of (Xt ) are affine functions of the corresponding marginals of a Wiener-Itô integral:

Xx
t =

1
ht
·
©­«x +

tˆ

0

hrσr dBr
ª®¬ with hr = exp ©­«−

rˆ

0

βu duª®¬ .
Hence all finite dimensional marginals of (Xx

t ) are normally distributed with

E[Xx
t ] = x/ht and Cov[Xx

t ,X
x
s ] =

1
hths

·

t∧sˆ

0

h2
rσ

2
r dr .

The Ornstein-Uhlenbeck process

In 1905, Einstein introduced a model for the movement of a “big” particle in a fluid. Suppose that Vabs
t is

the absolute velocity of the particle, V t is the mean velocity of the fluid molecules and Vt = Vabs
t − V t is the

velocity of the particle relative to the fluid. Then the velocity approximatively can be described as a solution
to an s.d.e.

dVt = −γVt dt + σdBt . (8.23)

Here (Bt ) is a Brownian motion inRd, d = 3, and γ,σ are strictly positive constants that describe the damping
by the viscosity of the fluid and the magnitude of the random collisions. A solution to the s.d.e. (8.23)
is called an Ornstein-Uhlenbeck process. Although it has first been introduced as a model for the velocity
of physical Brownian motion, the Ornstein-Uhlenbeck process is a fundamental stochastic process that is
almost as important as Brownian motion for mathematical theory and stochastic modeling. In particular,
it is a continuous-time analogue of an AR(1) autoregressive process. Note that (8.23) is a system of d
decoupled one-dimensional stochastic differential equations dV (i)t = −γV (i)t dt +σdB(i)t . Therefore, we will
assume w.l.o.g. d = 1. By the considerations above, the one-dimensional Ornstein-Uhlenbeck process is a
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continuous Gaussian process. The unique strong solution of the s.d.e. (8.23) with initial condition x is given
explicitly by

V x
t = e−γt ©­«x + σ

tˆ

0

eγs dBs
ª®¬ . (8.24)

In particular,
E[V x

t ] = e−γt x,

and

Cov[V x
t ,V

x
s ] = e−γ(t+s)σ2

t∧sˆ

0

e2γr dr

=
σ2

2γ
(e−γ |t−s | − e−γ(t+s)) for any t, s ≥ 0.

Note that as t → ∞, the effect of the initial condition decays exponentially fast with rate γ. Similarly, the
correlations between V x

t and V x
s decay exponentially as |t − s | → ∞. The distribution at time t is

V x
t ∼ N

(
e−γt x,

σ2

2γ
(1 − e−2γt )

)
. (8.25)

In particular, as t →∞

V x
t

D
−→ N

(
0,
σ2

2γ

)
.

One easily verifies that N(0, σ2/2γ) is an equilibrium for the process: If V0 ∼ N(0, σ2/2γ) and (Bt ) is
independent of V0 then

Vt = e−γtV0 + σ

tˆ

0

eγ(s−t) dBs

∼ N ©­«0,
σ2

2γ
e−2γt + σ2

tˆ

0

e2γ(s−t) dsª®¬ = N(0, σ2/2γ)

for any t ≥ 0.

Theorem 8.13. The Ornstein-Uhlenbeck process (V x
t ) is a time-homogeneous Markov process w.r.t. the

filtration (F B,P
t ) with stationary distribution N(0, σ2/2γ) and transition probabilities

pt (x, A) = P

[
e−γt x +

σ√
2γ

√
1 − e−2γtZ ∈ A

]
, Z ∼ N(0,1).

Proof. We first note that by (8.25),

V x
t ∼ e−γt x +

σ√
2γ

√
1 − e−2γtZ for any t ≥ 0

with Z ∼ N(0,1). Hence,
E[ f (V x

t )] = (pt f )(x)
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for any non-negative measurable function f : R→ R.We now prove a pathwise counterpart to the Markov
property: For t,r ≥ 0, by (8.24)

V x
t+r = e−γ(t+r) ©­«x + σ

tˆ

0

eγs dBs
ª®¬ + σ

t+rˆ

t

eγ(s−t−r) dBs

= e−γrV x
t + σ

rˆ

0

eγ(u−r) dBu, (8.26)

where Bu := Bt+u − Bt is a Brownian motion that is independent of F B,P
t . Hence, the random variable

σ ·
´ r

0 eγ(u−r) dBu is also independent of F B,P
t and, by (8.24), it has the same distribution as the Ornstein-

Uhlenbeck process with initial condition 0:

σ ·

rˆ

0

eγ(u−r) dBu ∼ V0
r .

Therefore, by (8.26), the conditional distribution of V x
t+r given F B,P

t coincides with the distribution of the
process with initial V x

t at time r:

E[ f (V x
t+r ) | F

B,P
t ] = E[ f (e−γrV x

t (ω) + V0
r )]

= E[ f (VV x
t (ω)

r )] = (pr f )(V x
t (ω)) for P-a.e. ω.

This proves that (V x
t ) is a Markov process with transition kernels pr,r ≥ 0. �

Remark. The pathwise counterpart of theMarkov property used in the proof above is called cocycle property
of the stochastic flow x 7→ V x

t .

The Itô-Doeblin formula can now be used to identify the generator of the Ornstein-Uhlenbeck process:
Taking expectation values, we obtain the forward equation

E[F(V x
t )] = F(x) +

tˆ

0

E[(LF)(V x
s )] ds

for any function F ∈ C2
0 (R) and t ≥ 0, where

(LF)(x) =
1
2
σ2 f ′′(x) − γx f ′(x).

For the transition function this yields

(ptF)(x) = F(x) +

tˆ

0

(psLF)(x) for any x ∈ R,

whence

lim
t↘0

(pt f )(x) − f (x)
t

= lim
t↘0

1
t

tˆ

0

E[(L f )(V x
s )] ds = (L f )(x)

by continuity and dominated convergence. This shows that the infinitesimal generator of the Ornstein-
Uhlenbeck process is an extension of the operator (L,C2

0 (R)).
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Change of time-scale

We will now prove that Wiener-Itô integrals can also be represented as Brownian motion with a coordinate
transformation on the time axis. Hence solutions of one-dimensional linear SDE with additive noise are
affine functions of time changed Brownian motions.
We first note that a Wiener-Itô integral It =

´ t
0 hr dBr with h ∈ L2

loc(0,∞) is a continuous centered Gaussian
process with covariance

Cov[It, Is] =
t∧sˆ

0

h2
r dr = τ(t) ∧ τ(s)

where

τ(t) :=
tˆ

0

h2
r dr = Var[It ]

is the corresponding variance process. The variance process should be thought of as an “internal clock” for
the process (It ). Indeed, suppose h > 0 almost everywhere. Then τ is strictly increasing and continuous,
and

τ : [0,∞) → [0, τ(∞)) is a homeomorphism.

Transforming the time-coordinate by τ, we have

Cov[Iτ−1(t), Iτ−1(s)] = t ∧ s for any t, s ∈ [0, τ(∞)].

These are exactly the covariance of a Brownian motion. Since a continuous Gaussian process is uniquely
determined by its expectations and covariances, we can conclude:

Theorem 8.14 (Wiener-Itô integrals as time changed Brownian motions). The process B̃s :=
Iτ−1(s), 0 ≤ s < τ(∞), is a Brownian motion, and

It = B̃τ(t) for any t ≥ 0, P-almost surely.

Proof. Since (B̃s)0≤s<τ(∞) has the same marginal distributions as the Wiener-Itô integral (It )t≥0 (but at
different times), (B̃s) is again a continuous centered Gaussian process. Moreover, Cov[B̃t, B̃s] = t ∧ s, so
that (B̃s) is indeed a Brownian motion. �

Note that the argument above is different from previous considerations in the sense that the Brownian
motion (B̃s) is constructed from the process (It ) and not vice versa.
This means that we can not represent (It ) as a time-change of a given Brownian motion (e.g. (Bt )) but

we can only show that there exists a Brownian motion (B̃s) such that I is a time-change of B̃. This way of
representing stochastic processes w.r.t. Brownian motions that are constructed from the process corresponds
to the concept of weak solutions of stochastic differential equations, where driving Brownian motion is
not given a priori. We return to these ideas in Section 9, where we will also prove that continuous local
martingales can be represented as time-changed Brownian motions.

Theorem 8.14 enables us to represent solution of linear SDE with additive noise by time-changed Brownian
motions. We demonstrate this with an example: By the explicit formula (8.24) for the solution of the
Ornstein-Uhlenbeck SDE, we obtain:
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Corollary 8.15 (Mehler formula). A one-dimensional Ornstein-Uhlenbeck process V x
t with initial con-

dition x can be represented as
V x
t = e−γt (x + σB̃ 1

2γ (e
2γt−1))

with a Brownian motion (B̃t )t≥0 such that B̃0 = 0.

Proof. The corresponding time change for the Wiener-Itô integral is given by

τ(t) =

tˆ

0

exp(2γs) ds = (exp(2γt) − 1)/2γ.
�

8.4. Brownian bridge

In many circumstances one is interested in conditioning diffusion process on taking a given value at specified
times. A basic example is the Brownian bridge which is Brownian motion conditioned to end at a given
point x after time t0. We now present several ways to describe and characterize Brownian bridges. The first
is based on the Wiener-Lévy construction and specific to Brownian motion, the second extends to Gaussian
processes, whereas the final characterization of the bridge process as the solution of a time-homogeneous
SDE can be generalized to other diffusion processes. From now on, we consider a one-dimensional Brownian
motion (Bt )0≤t≤1 with B0 = 0 that we would like to condition on taking a given value y at time 1

Wiener-Lévy construction

Recall that the Brownian motion (Bt ) has the Wiener-Lévy representation

Bt (ω) = Y (ω)t +
∞∑
n=0

2n−1∑
k=0

Yn,k(ω)en,k(t) for t ∈ [0,1] (8.27)

where en,k are the Schauder functions, and Y and Yn,k (n ≥ 0, k = 0,1,2, . . . ,2n − 1) are independent and
standard normally distributed. The series in (8.27) converges almost surely uniformly on [0,1], and the
approximating partial sums are piecewise linear approximations of Bt . The random variables Y = B1 and

Xt :=
∞∑
n=0

2n−1∑
k=0

Yn,ken,k(t) = Bt − tB1

are independent. This suggests that we can construct the bridge by replacing Y (ω) by the constant value y.
Let

Xy
t := yt + Xt = Bt + (y − B1) · t,

and let µy denote the distribution of the process (Xy
t )0≤t≤1 on C([0,1]). The next theorem shows that Xy

t is
indeed a Brownian motion conditioned to end at y at time 1:

Theorem 8.16. The map y 7→ µy is a regular version of the conditional distribution of (Bt )0≤t≤1 given B1,
i.e.,

(i) µy is a probability measure on C([0,1]) for any y ∈ R,
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(ii) P[(Bt )0≤t≤1 ∈ A | B1] = µB1[A] holds P-almost surely for any given Borel subset A ⊆ C([0,1]).

(iii) If F : C([0,1]) → R is a bounded and continuous function (w.r.t. the supremum norm on C([0,1]))
then the map y 7→

´
F dµy is continuous.

The last statement says that < 7→ µy is a continuous function w.r.t. the topology of weak convergence.

Proof. By definition, µy is a probability measure for any y ∈ R. Moreover, for any Borel set A ⊆ C([0,1]),

P[(Bt )0≤t≤1 ∈ A | B1](ω) = P[(Xt + tB1) ∈ A | B1](ω)

= P[(Xt + tB1(ω)) ∈ A] = P[(XB1(ω)
t ) ∈ A] = µB1(ω)[A]

for P-almost every ω by independence of (Xt ) and B1. Finally, if F : C([0,1]) → R is continuous and
bounded then ˆ

F dµy = E[F((yt + Xt )0≤t≤1)]

is continuous in y by dominated convergence. �

Finite-dimensional distributions

We now compute the marginals of the Brownian bridge Xy
t :

Corollary 8.17. For any n ∈ N and 0 < t1 < . . . < tn < 1, the distribution of (Xy
t1
, . . . ,Xy

tn
) on Rn is

absolutely continuous with density

fy(x1, . . . , xn) =
pt1(0, x1)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn)p1−tn (xn, y)

p1(0, y)
. (8.28)

Proof. The distribution of (Bt1, . . . ,Btn,B1) is absolutely continuous with density

fBt1 ,...,Btn ,B1(x1, . . . , xn, y) = pt1(0, x0)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn)p1−tn (xn, y).

Since the distribution of (Xy
t1
, . . . ,Xy

tn
) is a regular version of the conditional distribution of (Bt1, . . . ,Btn )

given B1, it is absolutely continuous with the conditional density

fBt1 ,...,Btn |B1(x1, . . . , xn |y) =
fBt1 ,...,Btn ,B1(x1, . . . , xn, y)´

· · ·
´

fBt1 ,...,Btn ,B1(x1, . . . , xn, y) dx1 · · · dxn
= fy(x1, . . . , xn). �

In general, any almost surely continuous process on [0,1] with marginals given by (8.28) is called a
Brownian bridge from 0 to y in time 1. A Brownian bridge from x to y in time t is defined correspondingly for
any x, y ∈ R and any t > 0. In fact, this definition of the bridge process in terms of the marginal distributions
carries over from Brownian motion to arbitrary Markov processes with strictly positive transition densities.
In the case of the Brownian bridge, the marginals are again normally distributed:

Theorem 8.18 (Brownian bridge as a Gaussian process). The Brownian bridge from 0 to y in time 1 is
the (in distribution unique) continuous Gaussian process (Xy

t )t∈[0,1] with

E[Xy
t ] = ty and Cov[Xy

t ,X
y
s ] = t ∧ s − ts for any s, t ∈ [0,1]. (8.29)
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Proof. A continuous Gaussian process is determined uniquely in distribution by its means and covariances.
Therefore, it suffices to show that the bridge Xy

t = Bt + (y − B1)t defined above is a continuous Gaussian
process such that (8.29) holds. This holds true: By (8.28), the marginals are normally distributed, and by
definition, t 7→ Xy

t is almost surely continuous. Moreover,

E[Xy
t ] = E[Bt ] + E[y − B1] · t = yt, and

Cov[Xy
t ,X

y
s ] = Cov[Bt,Bs] − t · Cov[B1,Bs] − s · Cov[Bt,B1] + ts Var[B1]

= t ∧ s − ts − st + ts = t ∧ s − ts. �

Remark (Covariance as Green function, Cameron-Martin space). The covariances of theBrownian bridge
are given by

c(t, s) = Cov[Xy
t ,X

y
s ] =

{
t · (1 − s) for t ≤ s,
(1 − t) · s for t ≥ s.

The function c(t, s) is the Green function of the operator d2/dt2 with Dirichlet boundary conditions on the
interval [0,1]. This is related to the fact that the distribution of the Brownian bridge from 0 to 0 can be viewed
as a standard normal distribution on the space of continuous paths ω : [0,1] → R with ω(0) = ω(1) = 0
w.r.t. the Cameron-Martin inner product

(g, h)H =

1ˆ

0

g′(s)h′(s) ds.

The second derivative d2/dt2 is the linear operator associated with this quadratic from.

SDE for the Brownian bridge

Our construction of the Brownian bridge by an affine transformation of Brownian motion has two disadvan-
tages:

• It can not be carried over to more general diffusion processes with possibly nonlinear drift and diffusion
coefficients.

• The bridge Xy
t = Bt + t(y − B1) does not depend on (Bt ) in an adapted way, because the terminal value

B1 is required to define Xy
t for any t > 0.

We will now show how to construct a Brownian bridge from a Brownian motion in an adapted way. The idea
is to consider an SDE w.r.t. the given Brownian motion with a drift term that forces the solution to end at a
given point at time 1. The size of the drift term will be large if the process is still far away from the given
terminal point at a time close to 1. For simplicity we consider a bridge (Xt ) from 0 to 0 in time 1. Brownian
bridges with other end points can be constructed similarly. Since the Brownian bridge is a Gaussian process,
we may hope that there is a linear stochastic differential equation with additive noise that has a Brownian
bridge as a solution. We therefore try the Ansatz

dXt = −βt Xt dt + dBt, X0 = 0 (8.30)

with a given continuous deterministic function βt,0 ≤ t < 1. By variation of constants, the solution of (8.30)
is the Gaussian process Xt,0 ≤ t < 1, given by

Xt =
1
ht

tˆ

0

hr dBr where ht = exp ©­«
tˆ

0

βs dsª®¬ .
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The process (Xt ) is centered and has covariances

Cov[Xt,Xs] =
1

hths

t∧sˆ

0

h2
r dr .

Therefore, (Xt ) is a Brownian bridge if and only if

Cov[Xt,Xs] = t · (1 − s) for any t ≤ s,

i.e., if and only if

1
tht

tˆ

0

h2
r dr = hs · (1 − s) for any 0 < t ≤ s. (8.31)

The equation (8.31) holds if and only if ht is a constant multiple of 1/1 − t, and in this case

βt =
d
dt

log ht =
h′t
ht
=

1
1 − t

for t ∈ [0,1].

Summarizing, we have shown:

Theorem 8.19. If (Bt ) is a Brownian motion then the process (Xt ) defined by

Xt =

tˆ

0

1 − t
1 − r

dBr for t ∈ [0,1], X1 = 0,

is a Brownian bridge from 0 to 0 in time 1. It is the unique continuous process solving the SDE

dXt = −
Xt

1 − t
dt + dBt for t ∈ [0,1). (8.32)

Proof. As shown above, (Xt )t∈[0,1) is a continuous centered Gaussian process with the covariances of the
Brownian bridge. Hence its distribution on C([0,1)) coincides with that of the Brownian bridge from 0 to
0. In particular, this implies lim

t↗1
Xt = 0 almost surely, so the trivial extension from [0,1) to [0,1] defined by

X1 = 0 is a Brownian bridge. �

If the Brownian bridge is replaced by a more general conditioned diffusion process, the Gaussian characteri-
zation does not apply. Nevertheless, it can still be shown by different means (the keyword is “h-transform”)
that the bridge process solves an SDE generalizing (8.32), cf. ?? below.

8.5. Stochastic differential equations in Rn

We now explain how to generalize our considerations to systems of stochastic differential equations, or,
equivalently, SDE in several dimensions. For the moment, we will not initiate a systematic study but rather
consider some examples. The setup is the following: We are given a d-dimensional Brownian motion
Bt = (B1

t , . . . ,B
d
t ). The component processes Bk

t ,1 ≤ k ≤ d, are independent one-dimensional Brownian
motions that drive the stochastic dynamics. We are looking for a stochastic process Xt : Ω→ Rn solving an
SDE of the form

dXt = b(t,Xt ) dt +
d∑

k=1
σk(t,Xt ) dBk

t . (8.33)
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Here n and d may be different, and b, σ1, . . . ,σd : R+ × Rn → Rn are time-dependent continuous vector
fields on Rn. In matrix notation,

dXt = b(t,Xt ) dt + σ(t,Xt ) dBt (8.34)

where σ(t, x) = (σ1(t, x)σ2(t, x) · · ·σd(t, x)) is an n × d-matrix.

Existence, uniqueness and stability

Assuming Lipschitz continuity of the coefficients, existence, uniqueness and stability of strong solutions of
the SDE (8.34) can be shown by similar arguments as for ordinary differential equations.

Theorem 8.20 (Existence, uniqueness and stability under global Lipschitz conditions). Suppose that
b and σ satisfy a global Lipschitz condition of the following form: For any t0 ∈ R, there exists a
constant L ∈ R+ such that

|b(t, x) − b(t, x̃)| + | |σ(t, x) − σ(t, x̃)| | ≤ L · |x − x̃ | ∀ t ∈ [0, t0], x, x̃ ∈ Rn. (8.35)

Then for any initial value x ∈ Rn, the SDE (8.34) has a unique (up to equivalence) strong solution (Xt )t∈[0,∞)
such that X0 = x P-almost surely.
Furthermore, if (Xt ) and (X̃t ) are two strong solutions with arbitrary initial conditions, then for any

t ∈ R+, there exists a finite constant C(t) such that

E

[
sup

s∈[0,t]
|Xs − X̃s |

2

]
≤ C(t) · E

[
|X0 − X̃0 |

2
]
.

The proof of Theorem 8.20 is outlined in the exercises below. In Section ??, we will prove more general
results that contain the assertion of the theorem as a special case. In particular, we will see that existence up
to an explosion time and uniqueness of strong solutions still hold true if one assumes only a local Lipschitz
condition.

The key step for proving stability and uniqueness is to control the deviation

εt := E
[
sup
s≤t
|Xs − X̃s |

2
]

between two solutions up to time t. Existence of strong solutions can then be shown by a Picard-Lindelöf
approximation based on a corresponding norm:

Exercise (Proof of stability and uniqueness). Suppose that (Xt ) and (X̃t ) are strong solutions of (8.34),
and let t0 ∈ R+. Apply Itô’s isometry and Gronwall’s inequality to show that if (8.35) holds, then there
exists a finite constant C ∈ R+ such that for any t ≤ t0,

εt ≤ C ·
(
ε0 +

ˆ t

0
εs ds

)
, and (8.36)

εt ≤ C · eCt ε0. (8.37)

Hence conclude that two strong solutions with the same initial value coincide almost surely.

Exercise (Existence of strong solutions). Define approximate solutions of (8.34) with initial value
x ∈ Rn inductively by setting X0

t := x for all t, and

Xn+1
t := x +

ˆ t

0
b(s,Xn

s ) ds +
ˆ t

0
σ(s,Xn

s ) dBs .
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Let ∆n
t := E[sups≤t |Xn+1

s − Xn
s |

2]. Show that if (8.35) holds, then for any t0 ∈ R+, there exists a finite
constant C(t0) such that

∆
n+1
t ≤ C(t0)

ˆ t

0
∆
n
s ds for any n ≥ 0 and t ≤ t0, and

∆
n
t ≤ C(t0)n

tn

n!
∆

0
t for any n ∈ N and t ≤ t0.

Hence conclude that the limit Xs = limn→∞ Xn
s exists uniformly for s ∈ [0, t0] with probability one, and

X is a strong solution of (8.34) with X0 = x.

Itô processes driven by several Brownian motions

Any solution to the SDE (8.33) is an Itô process pf type

Xt =

tˆ

0

Gs ds +
d∑

k=1

tˆ

0

Hk
s dBk

s (8.38)

with continuous (F B,P
t ) adapted stochastic processes Gs,H1

s ,H
2
s , . . . ,H

d
s . We now extend the stochastic

calculus rules to such Itô processes that are driven by several independent Brownian motions. Let Hs and
H̃s be continuous (F B,P

t ) adapted processes.

Lemma 8.21. If (πn) is a sequence of partitions of R+ with mesh(πn) → 0 then for any 1 ≤ k, l ≤ d and

a ∈ R+, the covariation of the Itô integrals t 7→
t́

0
Hs dBk

s and t 7→
t́

0
H̃s dBl

s exists almost surely uniformly

for t ∈ [0,a] along a subsequence of (πn), and
•ˆ

0

H dBk,

•ˆ

0

H̃ dBl

 t =
tˆ

0

HH̃ d[Bk,Bl] = δkl

tˆ

0

HsH̃s ds.

The proof is an extension of the proof of Theorem 8.6(ii), where the assertion has been derived for k = l
and H = H̃. The details are left as an exercise.

Similarly to the one-dimensional case, the lemma can be used to compute the covariation of Itô integrals
w.r.t. arbitrary Itô processes. If Xs and Ys are Itô processes as in (8.33), and Ks and Ls are adapted and
continuous then we obtain [ˆ •

0
K dX,

ˆ •
0

L dY
]
t

=

ˆ t

0
KsLs d[X,Y ]s

almost surely uniformly for t ∈ [0,u], along an appropriate subsequence of (πn).

Multivariate Itô-Doeblin formula

We now assume again that (Xt )t≥0 is a solution of a stochastic differential equation of the form (8.33). By
Lemma 8.21, we can apply Itô’s formula to almost every sample path t 7→ Xt (ω):

Theorem 8.22 (Itô-Doeblin). Let F ∈ C1,2(R+ × R
n). Then almost surely,

F(t,Xt ) = F(0,X0) +

tˆ

0

(σ>∇xF)(s,Xs) · dBs

+

tˆ

0

(
∂F
∂t
+ LF

)
(s,Xs) ds for all t ≥ 0,

184 University of Bonn



8.5. Stochastic differential equations in Rn

where ∇x denotes the gradient in the space variable, and

(LF)(t, x) :=
1
2

n∑
i, j=1

ai, j(t, x)
∂2F
∂xi∂xj

(t, x) +
n∑
i=1

bi(t, x)
∂F
∂xi
(t, x)

with a(t, x) := σ(t, x)σ(t, x)> ∈ Rn×n.

Proof. If X is a solution to the SDE then

[X i,X j]t =
∑
k ,l

[ ˆ
σi
k(s,X) dBk,

ˆ
σ

j
l
(s,X) dBl

]
t

=
∑
k ,l

ˆ t

0
(σi

k σ
j
l
)(s,X) d[Bk,Bl] =

ˆ t

0
ai j(s,Xs) ds

where ai j =
∑

k σ
i
k
σ

j
k
, i.e.,

a(s, x) = σ(s, x)σ(s, x)T ∈ Rn×n.

Therefore, Itô’s formula applied to the process (t,Xt ) yields

dF(t,X) =
∂F
∂t
(t,X) dt + ∇xF(t,X) · dX +

1
2

d∑
i, j=1

∂2F
∂xi∂x j

(t,X) d[X i,X j]

= (σT∇xF)(t,X) · dB +
(∂F
∂t
+ LF

)
(t,X) dt,

for any F ∈ C1,2(R+ × R
n). �

The Itô-Doeblin formula shows that for any F ∈ C2(R+ × R
n), the process

MF
s = F(s,Xs) − F(0,X0) −

sˆ

0

(
∂F
∂t
+ LF

)
(t,Xt ) dt

is a local martingale. If σ>∇xF is bounded then MF is a global martingale.

Exercise (Drift and diffusion coefficients). Show that the processes

M i
s = X i

s − X i
0 −

sˆ

0

bi(s,Xs) ds, 1 ≤ i ≤ n,

are local martingales with covariations

[M i,M j]s = ai, j(s,Xs) for any s ≥ 0, P-almost surely.

The vector field b(s, x) is called the drift vector field of the SDE, and the coefficients ai, j(s, x) are called
diffusion coefficients.

General Ornstein-Uhlenbeck processes

XXX to be included

Example (Stochastic oscillator).
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Examples

Example (Physical Brownian motion with external force).

Example (Kalman-Bucy filter).

Example (Heston model for stochastic volatility).
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9. Change of measure

9.1. Local and global densities of probability measures

A thorough understanding of absolute continuity and relative densities of probability measures is crucial
at many places in stochastic analysis. Martingale convergence yields an elegant approach to these issues
including a proof of the Radon-Nikodym and the Lebesgue Decomposition Theorem. We first recall the
definition of absolute continuity.

Absolute Continuity

Suppose that P and Q are probability measures on a measurable space (Ω,A), and F is a sub-σ-algebra of
A.

Definition 9.1. (i) The measure P is called absolutely continuous w.r.t. Q on the σ-algebra F if and
only if P[A] = 0 for any A ∈ F with Q[A] = 0.

(ii) The measures P and Q are called singular on F if and only if there exists A ∈ F such that Q[A] = 0
and P[AC] = 0.

We use the notations P � Q for absolute continuity of P w.r.t. Q, P ≈ Q for mutual absolute continuity,
and P ⊥ Q for singularity of P and Q. The definitions above extend to signed measures.

Example. The Dirac measure δ1/2 is obviously singular w.r.t. Lebesgue measure λ(0,1] on the Borel
σ-algebra B((0,1]). However, δ1/2 is absolutely continuous w.r.t. λ(0,1] on each of the σ-algebras
Fn = σ(Dn) generated by the dyadic partitions Dn = {(k · 2−n, (k + 1)2−n] : 0 ≤ k < 2n}, and
B([0,1)) = σ(

⋃
Dn).

The next lemma clarifies the term “absolute continuity.”

Lemma 9.2. The probability measure P is absolutely continuous w.r.t. Q on the σ-algebra F if and only if
for any ε > 0 there exists δ > 0 such that for A ∈ F ,

Q[A] < δ ⇒ P[A] < ε. (9.1)

Proof. The “if” part is obvious. If Q[A] = 0 and (9.1) holds for each ε > 0 with δ depending on ε then
P[A] < ε for any ε > 0, and hence P[A] = 0.
To prove the “only if” part, we suppose that there exists ε > 0 such that (9.1) does not hold for any δ > 0.
Then there exists a sequence (An) of events in F such that

P[An] ≥ ε and Q[An] ≤ 2−n.

Hence, by the Borel-Cantelli-Lemma,

Q[An infinitely often] = 0,
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whereas

P[An infinitely often] = P

[⋂
n

⋃
m≥n

Am

]
= lim

n→∞
P

[ ⋃
m≥n

Am

]
≥ ε.

Therefore P is not absolutely continuous w.r.t. Q. �

Example (Absolute continuity on R). A probability measure µ on a real interval is absolutely contin-
uous w.r.t. Lebesgue measure if and only if the distribution function F(t) = µ[(−∞, t]] satisfies:

For any ε > 0 there exists δ > 0 such that for any n ∈ N and a1, . . . ,an, b1, . . . , bn ∈ R,
n∑
i=1
|bi − ai | < δ ⇒

n∑
i=1
|F(bi) − F(ai)| < ε, (9.2)

cf. e.g. [2].

Definition 9.3 (Absolutely continuous functions). A function F : (a, b) ⊂ R → R is called absolutely
continuous iff (9.2) holds.

The Radon-Nikodym Theorem states that absolute continuity is equivalent to the existence of a relative
density.

Theorem 9.4 (Radon-Nikodym). The probability measure P is absolutely continuous w.r.t. Q on the
σ-algebra F if and only if there exists a non-negative random variable Z ∈ L1(Ω,F ,Q) such that

P[A] =
ˆ

A

Z dQ for any A ∈ F . (9.3)

The relative density Z of P w.r.t. Q on F is determined by (9.3) uniquely up to modification on Q-measure
zero sets. It is also called the Radon-Nikodym derivative or the likelihood ratio of P w.r.t. Q on F . We use
the notation

Z =
dP
dQ

����
F

,

and omit the F when the choice of the σ-algebra is clear. Below, we will give a self-contained proof of the
Radon-Nikodym theorem under the additional assumption that the σ-algebra F is separable.

Example (Finitely generated σ-algebra). Suppose that the σ-algebra F is generated by finitely many
disjoint atoms B1, . . . ,Bk withΩ =

⋃
Bi . Then P is absolutely continuous w.r.t. Q if and only if for all i,

Q[Bi] = 0 =⇒ P[Bi] = 0.

In this case, a relative density is given by

dP
dQ

����
F

=
∑

i : Q[Bi ]>0

P[Bi]

Q[Bi]
· IBi .

From local to global densities

Let (Fn) be a given filtration on (Ω,A).
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9.1. Local and global densities of probability measures

Definition 9.5 (Local absolutely continuity). The measure P is called locally absolutely continuousw.r.t.
Q and the filtration (Fn) if and only if P is absolutely continuous w.r.t. Q on the σ-algebra Fn for each n.

Example (Dyadic partitions). Any probability measure on the unit interval [0,1] is locally absolutely
continuous w.r.t. Lebesgue measure on the filtration Fn = σ(Dn) generated by the dyadic partitions of
the unit interval. The Radon-Nikodym derivative on Fn is the dyadic difference quotient defined by

dµ
dλ

����
Fn

(x) =
µ[((k − 1) · 2−n, k · 2−n)]
λ[((k − 1) · 2−n, k · 2−n)]

=
F(k · 2−n) − F((k − 1) · 2−n)

2−n
(9.4)

for x ∈ ((k − 1)2−n, k2−n].

Example (Product measures). If P =
∞⊗
i=1

µ and Q =
∞⊗
i=1

ν are infinite products of probability measures

µ and ν, and µ is absolutely continuous w.r.t. ν with density %, then P is locally absolutely continuous
w.r.t. Q on the filtration

Fn = σ(X1, . . . ,Xn)

generated by the coordinate maps Xi(ω) = ωi . The local relative density is

dP
dQ

����
Fn

=

n∏
i=1

%(Xi)

However, if µ , ν, then P is not absolutely continuous w.r.t. Q on F∞ = σ(X1,X2, . . .), since by the
LLN, n−1 ∑n

i=1 IA(Xi) converges P almost surely to µ[A] and Q-almost surely to ν[A].

Now suppose that P is locally absolutely continuous w.r.t. Q on a filtration (Fn) with relative densities

Zn =
dP
dQ

����
Fn

.

The L1 martingale convergence theorem can be applied to study the existence of a global density on the
σ-algebra

F∞ = σ(
⋃
Fn).

Let Z∞ := lim sup Zn.

Theorem 9.6 (Convergence of local densities, Lebesgue decomposition).

(i) The sequence (Zn) of successive relative densities is an (Fn)-martingale w.r.t. Q. In particular, (Zn)

converges Q-almost surely to Z∞, and Z∞ is integrable w.r.t. Q.

(ii) The following statements are equivalent:

a) (Zn) is uniformly integrable w.r.t. Q.

b) P is absolutely continuous w.r.t. Q on F∞.

c) P[A] =
´
A Z∞ dQ for any A ∈ F∞.

(iii) In general, the decomposition P = Pa + Ps holds with

Pa[A] =
ˆ
A

Z∞ dQ, Ps[A] = P[A ∩ {Z∞ = ∞}]. (9.5)

Pa and Ps are positive measures with Pa � Q and Ps ⊥ Q.
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The decomposition P = Pa + Ps into an absolutely continuous and a singular part is called the Lebesgue
decomposition of the measure P w.r.t. Q on the σ-algebra F∞.

Proof. (i) For n ≥ 0, the density Zn is in L1(Ω,Fn,Q), and

EQ[Zn ; A] = P[A] = EQ[Zn+1 ; A] for any A ∈ Fn.

Hence Zn = EQ[Zn+1 | Fn], i.e., (Zn) is a martingale w.r.t. Q. Since Zn ≥ 0, the martingale converges
Q-almost surely, and the limit is integrable.

(ii) (a)⇒ (c): If (Zn) is uniformly integrable w.r.t. Q, then

Zn = EQ[Z∞ | Fn] Q-almost surely for any n,

by the L1 convergence theorem. Hence for A ∈ Fn,

P[A] = EQ[Zn ; A] = EQ[Z∞ ; A].

This shows that P[A] = EQ[Z∞ ; A] holds for any A ∈
⋃
Fn, and thus for any A ∈ F∞ = σ(

⋃
Fn).

(c)⇒ (b) is evident.

(b)⇒ (a): If P � Q on F∞ then Zn converges also P-almost surely to a finite limit Z∞. Hence for
n0 ∈ N and c > 1,

sup
n

EQ[ |Zn | ; |Zn | ≥ c] = sup
n

EQ[Zn ; Zn ≥ c] = sup
n

P[Zn ≥ c]

≤ max
n<n0

P[Zn ≥ c] + sup
n≥n0

P[Zn ≥ c]

≤ max
n<n0

P[Zn ≥ c] + P[Z∞ ≥ c − 1] + sup
n≥n0

P[|Zn − Z∞ | ≥ 1].

Given ε > 0, the last summand is smaller than ε/3 for n0 sufficiently large, and the other two
summands on the right hand side are smaller than ε/3 if c is chosen sufficiently large depending on
n0. Hence (Zn) is uniformly integrable w.r.t. Q.

(iii) In general, Pa[A] = EQ[Z∞ ; A] is a positive measure on F∞ with Pa ≤ P, since for n ≥ 0 and
A ∈ Fn,

Pa[A] = EQ[lim inf
k→∞

Zk ; A] ≤ lim inf
k→∞

EQ[Zk ; A] = EQ[Zn ; A] = P[A]

by Fatou’s Lemma and the martingale property. It remains to show that

Pa[A] = P[A ∩ {Z∞ < ∞}] for any A ∈ F∞. (9.6)

If (9.6) holds, then P = Pa + Ps with Ps defined by (9.5). In particular, Ps is then singular w.r.t.
Q, since Q[Z∞ = ∞] = 0 and Ps[Z∞ = ∞] = 0, whereas Pa is absolutely continuous w.r.t. Q by
definition.
Since Pa ≤ P, it suffices to verify (9.6) for A = Ω. Then

(P − Pa)[A ∩ {Z∞ < ∞}] = (P − Pa)[Z∞ < ∞] = 0,

and therefore, for any A ∈ F∞,

P[A ∩ {Z∞ < ∞}] = Pa[A ∩ {Z∞ < ∞}] = Pa[A].
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To prove (9.6) for A = Ω we observe that for c ∈ (0,∞),

P
[
lim sup
n→∞

Zn < c
]
≤ lim sup

n→∞
P[Zn < c] = lim sup

n→∞
EQ[Zn ; Zn < c]

≤ EQ

[
lim sup
n→∞

Zn · I{Zn<c }

]
≤ EQ[Z∞] = Pa[Ω]

by Fatou’s Lemma. As c→∞, we obtain

P[Z∞ < ∞] ≤ Pa[Ω] = Pa[Z∞ < ∞] ≤ P[Z∞ < ∞]

and hence (9.6) with A = Ω. This completes the proof �

As a first consequence of Theorem 9.6, we prove the Radon-Nikodym Theorem on a separable σ-algebra
A. Let Q and P be probability measures on (Ω,A) with P � Q.

Proof (of the Radon-Nikodym Theorem for separable σ-algebras). We fix a filtration (Fn) consisting of
finitely generated σ-algebras Fn ⊆ A with A = σ(

⋃
Fn). Since P is absolutely continuous w.r.t. Q, the

local densities Zn = dP/dQ |Fn on the finitely generated σ-algebras Fn exist, cf. the example above. Hence
by Theorem 9.6,

P[A] =
ˆ

A

Z∞ dQ for any A ∈ A.
�

The approach above can be generalized to probability measures that are not absolutely continuous:

Exercise (Lebesgue decomposition, Lebesgue densities). Let Q and P be arbitrary (not necessarily
absolutely continuous) probability measures on (Ω,A). A Lebesgue density of P w.r.t. Q is a random
variable Z : Ω→ [0,∞] such that P = Pa + Ps with

Pa[A] =
ˆ

A

Z dQ, Ps[A] = P[A ∩ {Z = ∞}] for any A ∈ A.

The goal of the exercise is to prove that a Lebesgue density exists if the σ-algebra A is separable.

(i) Show that if Z is a Lebesgue density of P w.r.t. Q then 1/Z is a Lebesgue density of Q w.r.t. P.
Here 1/∞ := 0 and 1/0 := ∞.

From now on suppose that the σ-algebra is separable with A = σ(
⋃
Fn) where (Fn) is a filtration

consisting of σ-algebras generated by finitely many atoms.

(i) Write down Lebesgue densities Zn of P w.r.t. Q on each Fn. Show that

P[Zn = ∞ and Zn+1 < ∞] = 0 for any n,

and conclude that (Zn) is a non-negative supermartingale under Q, and (1/Zn) is a non-negative
supermartingale under P.

(ii) Prove that the limit Z∞ = lim Zn exists both Q-almost surely and P-almost surely, and Q[Z∞ <
∞] = 1 and P[Z∞ > 0] = 1.

(iii) Conclude that Z∞ is a Lebesgue density of Q w.r.t. P on A, and 1/Z∞ is a Lebesgue density of
P w.r.t. Q on A.
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Derivatives of monotone functions

Suppose that F : [0,1] → R is a monotone and right-continuous function. After an appropriate linear
transformation we may assume that F is non decreasing with F(0) = 0 and F(1) = 1. Let µ denote the
probability measure with distribution function F. By the example above, the Radon-Nikodym derivative
of µ w.r.t. Lebesgue measure on the σ-algebra Fn = σ(Dn) generated by the n-th dyadic partition of the
unit interval is given by the dyadic difference quotients (9.4) of F. By Theorem 9.6, we obtain a version of
Lebesgue’s Theorem on derivatives of monotone functions:

Corollary 9.7 (Lebesgue’s Theorem). Suppose that F : [0,1] → R is monotone and right continuous.
Then the dyadic derivative

F ′(t) = lim
n→∞

dµ
dν

����
Fn

(t)

exists for almost every t and F ′ is an integrable function on (0,1). Furthermore, if F is absolutely continuous
then

F(s) − F(0) =
sˆ

0

F ′(t) dt for all s ∈ [0,1]. (9.7)

Remark. The assertion extends to function of finite variation since these can be represented as the difference
of two monotone functions. Similarly, (9.7) also holds for absolutely continuous functions that are not
monotone.

Absolute continuity of infinite product measures

Suppose that Ω =
∞>
i=1

Si, and

P =
∞⊗
i=1

µi and Q =
∞⊗
i=1

νi

are products of probability measures µi and νi defined on measurable spaces (Si,Bi). We assume that µi and
νi are mutually absolutely continuous for every i ∈ N. Denoting by Xk : Ω→ Sk the evaluation of the k-th
coordinate, the product measures are mutually absolutely continuous on each of the σ-algebras

Fn = σ(X1, . . . ,Xn), n ∈ N,

with relative densities
dP
dQ

����
Fn

= Zn and
dQ
dP

����
Fn

= 1/Zn,

where

Zn =

n∏
i=1

dµi
dνi
(Xi) ∈ (0,∞) Q-almost surely.

In particular, (Zn) is a martingale under Q, and (1/Zn) is a martingale under P. Let F∞ = σ(X1,X2, . . .)

denote the product σ-algebra.

Theorem 9.8 (Kakutani’s dichotomy). The infinite product measures P and Q are either singular or
mutually absolutely continuous with relative density Z∞. More precisely, the following statements are
equivalent:
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(i) P � Q on F∞.

(ii) P ≈ Q on F∞.

(iii)
∞∏
i=1

´ √
dµi
dνi

dνi > 0.

(iv)
∞∑
i=1

d2
H (µi, νi) < ∞.

Here the squared Hellinger distance d2
H (µi, νi) of mutually absolutely continuous probability measures µ

and ν is defined by

d2
H (µ, ν) =

1
2

ˆ (√
dµ
dν
− 1

)2

dν =
1
2

ˆ (√
dν
dµ
− 1

)2

dµ

= 1 −
ˆ √

dµ
dν

dν = 1 −
ˆ √

dν
dµ

dµ.

Remark. (i) If mutual absolutely continuity holds then the relative densities on F∞ are

dP
dQ
= lim

n→∞
Zn Q-almost surely, and

dQ
dP
= lim

n→∞

1
Zn

P-almost surely.

(ii) If µ and ν are absolutely continuous w.r.t. a measure dx with densities f and g then

d2
H (µ, ν) =

1
2

ˆ (√
f (x) −

√
g(x)

)2
dx = 1 −

ˆ √
f (x)g(x) dx.

Proof. (i) ⇐⇒ (iii): For i ∈ N let Yi := dµi
dνi
(Xi). Then the random variables Yi are independent under both

Q and P with EQ[Yi] = 1, and
Zn = Y1 · Y2 · · ·Yn.

By Theorem 9.6, the measure P is absolutely continuous w.r.t. Q if and only if the martingale (Zn) is
uniformly integrable w.r.t. Q. To obtain a sharp criterion for uniform integrability we switch from L1 to L2,
and consider the non-negative martingale

Mn =

√
Y1

β1
·

√
Y2

β2
· · ·

√
Yn
βn

under the probability measure Q, where

βi = EQ

[√
Yi

]
=

ˆ √
dµi
dνi

dνi ≤ 1.

Note that for n ∈ N, Zn = M2
n

∏n
i=1 β

2
i ≤ M2

n . Moreover,

EQ[M2
n] =

n∏
i=1

EQ[Yi]/β2
i = 1

/ (
n∏
i=1

βi

)2

.

If (iii) holds then (Mn) is bounded in L2(Ω,A,Q). Therefore, by Doob’s L2 inequality, the supremum of Mn

is in L2(Ω,A,Q), i.e.,
EQ[sup |Zn | ] ≤ EQ[sup M2

n] < ∞.
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Thus (Zn) is uniformly integrable w.r.t. Q, and hence P � Q on F∞.

Conversely, if (iii) does not hold then

Zn = M2
n ·

n∏
i=1

β2
i −→ 0 Q-almost surely,

since by the martingale convergence theorem, Mn converges Q-almost surely to a finite limit. Therefore, the
absolutely continuous part Pa vanishes by Theorem 9.6 (iii), i.e., P is singular w.r.t. Q.

(iii) ⇐⇒ (iv): For reals βi ∈ (0,1), the condition
∞∏
i=1

βi > 0 is equivalent to
∞∑
i=1
(1 − βi) < ∞. For βi as

above, we have

1 − βi = 1 −
ˆ √

dµi
dνi

dνi = d2
H (µi, νi).

(ii)⇒ (i) is obvious.

(iv)⇒ (ii): Condition (iv) is symmetric in µi and νi. Hence, if (iv) holds then both P � Q and Q � P. �

Example (Gaussian products). Let Q =
∞⊗
i=1

N(0,1) and P =
∞⊗
i=1

N(ai,1) where (ai)i∈N is a sequence

of reals. The relative density of the normal distributions µi := N(ai,1) and ν := N(0,1) is

dµi
dν
(x) =

exp(−(x − ai)2)/2
exp(−x2/2)

= exp(ai x − a2
i /2),

and ˆ √
dµi
dν

dν =
1
√

2π

∞̂

−∞

exp
(
−

1
2
(x2 − ai x + a2

i /2)
)

dx = exp(−a2
i /8).

Therefore, by condition (iii) in Theorem 9.8,

P � Q ⇐⇒ P ≈ Q ⇐⇒
∞∑
i=1

a2
i < ∞.

Hence mutual absolute continuity holds for the infinite products if and only if the sequence (ai) is
contained in `2, and otherwise P and Q are singular.

Remark (Relative entropy). (i) In the singular case, the exponential rate of degeneration of the relative
densities on the σ-algebras Fn is related to the relative entropies

H(µi | νi) =
ˆ

dµi
dνi

log
dµi
dνi

dνi =
ˆ

log
dµi
dνi

dµi .

For example in the i.i.d. case νi ≡ ν and µi ≡ µ, we have

1
n

log Zn =
1
n

n∑
i=1

log
dµ
dν
(Xi) −→ H(µ | ν) P-a.s., and

−
1
n

log Zn =
1
n

log Z−1 −→ H(ν | µ) Q-a.s.

as n→∞ by the Law of Large Numbers.
In general, log Zn −

n∑
i=1

H(µi | νi) is a martingale w.r.t. P, and log Zn +
n∑
i=1

H(µi | νi) is a martingale

w.r.t. Q.
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(ii) The relative entropy is related to the squared Hellinger distance by the inequality

1
2

H(µ | ν) ≥ d2
H (µ | ν),

which follows from the elementary inequality

1
2

log x−1 = − log
√

x ≥ 1 −
√

x for x > 0.

9.2. Translations of Wiener measure

We now return to stochastic processes in continuous time. We endow the continuous path spaceC([0,∞),Rd)
with the σ-algebra generated by the evaluation maps Xt (ω) = ωt , and with the filtration

F X
t = σ(Xs : s ∈ [0, t]), t ≥ 0.

Note that F X
t consists of all sets of type{

ω ∈ C([0,∞),Rd) : ω |[0,t] ∈ Γ
}

with Γ ∈ B(C([0, t],Rd)).

In many situations one is interested in the distribution on path space of a process

Bh
t = Bt + ht

t

h(t)

Bt

Bt + h(t)

obtained by translating a Brownian motion (Bt ) by a deterministic function h : [0,∞) → Rd . In particular,
it is important to know if the distribution of (Bh

t ) has a density w.r.t. the Wiener measure on the σ-algebras
F X
t , and how to compute the densities if they exist.

Example. (i) Suppose we would like to evaluate the probability that sups∈[0,t] |Bs − gs | < ε for a
given t > 0 and a given function g ∈ C([0,∞),Rd) asymptotically as ε ↘ 0. One approach is to
study the distribution of the translated process Bt − gt near 0.

(ii) Similarly, computing the passage probability P[Bs ≥ a+bs for some s ∈ [0, t]] to a line s 7→ a+bs
for a one-dimensional Brownian motion is equivalent to computing the passage probability to the
point a for the translated process Bt − bt.

(iii) A solution to a stochastic differential equation

dYt = dBt + b(t,Yt )dt

is a translation of the Brownian motion Bt − B0 by the stochastic process Ht = Y0 +
´ t

0 b(s,Ys) ds.
Again, in the simplest case (when b(t, y) only depends on t), Ht is a deterministic function.

A. Eberle Introduction to Stochastic Analysis (v. April 15, 2019) 195



9. Change of measure

The Cameron-Martin Theorem

Let (Bt ) be a Brownian motion with B0 = 0, and let h ∈ C([0,∞),Rd). The distribution

µh := P ◦ (B + h)−1

of the translated process Bh
t = Bt + ht is the image of Wiener measure µ0 under the translation map

τh : C([0,∞),Rd) −→ C([0,∞),Rd), τh(x) = x + h.

Recall that Wiener measure is a Gaussian measure on the infinite dimensional space C([0,∞),Rd). The next
exercise discusses translations of Gaussian measures in Rn:

Exercise (Translations of normal distributions). Let C ∈ Rn×n be a symmetric non-negative definite
matrix, and let h ∈ Rn. the image of the normal distribution N(0,C) under the translation map x 7→ x+h
on Rn is the normal distribution N(h,C).

(i) Show that if C is non-degenerate then N(h,C) ≈ N(0,C) with relative density

dN(h,C)
dN(0,C)

(x) = e(h,x)−
1
2 (h,h) for x ∈ Rn, (9.8)

where (g, h) = (g,C−1, h) for g, h ∈ Rn.

(ii) Prove that in general, N(h,C) is absolutely continuous w.r.t. N(0,C) if and only if h is orthogonal
to the kernel of C w.r.t. the Euclidean inner product.

On C([0,∞),Rd), we can usually not expect the existence of a global density of the translated measures
µh w.r.t. µ0. The Cameron-Martin Theorem states that for t ≥ 0, a relative density on F X

t exists if and only
if h is contained in the corresponding Cameron-Martin space:

Theorem 9.9 (Cameron, Martin). For h ∈ C([0,∞),Rd) and t ∈ R+ the translated measure µh = µ ◦ τ−1
h

is absolutely continuous w.r.t. Wiener measure µ0 on F X
t if and only if h is an absolutely continuous

function on [0, t] with h0 = 0 and
´ t

0 |h
′
s |

2 ds < ∞. In this case, the relative density is given by

dµh
dµ0

����
FX
t

= exp
(ˆ t

0
h′s · dXs −

1
2

ˆ t

0
|h′s |

2 ds
)
. (9.9)

where
´ t

0 h′s · dXs is the Itô integral w.r.t. the canonical Brownian motion (X, µ0).

Before giving a rigorous proof let us explain heuristically why the result should be true. Clearly, absolute
continuity does not hold if h0 , 0, since then the translated paths do not start at 0. Now suppose h0 = 0,
and fix t ∈ (0,∞). Absolute continuity on F X

t means that the distribution µt
h
of (Bh

s )0≤s≤t on C([0, t],Rd) is
absolutely continuous w.r.t. Wiener measure µt0 on this space. The measure µt0, however, is a kind of infinite
dimensional standard normal distribution w.r.t. the inner product

(x, y)H =
ˆ t

0
x ′s · y

′
s ds

on functions x, y : [0, t] → Rd vanishing at 0, and the translated measure µt
h
is a Gaussian measure with

mean h and the same covariances. Choosing an orthonormal basis (ei)i∈N w.r.t. the H-inner product (e.g.
Schauder functions), we can identify µt0 and µ

t
h
with the product measures

⊗∞

i=1 N(0,1) and
⊗∞

i=1 N(ai,1)
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respectively, where ai = (h, ei)H is the i-th coefficient of h in the basis expansion. Therefore, µt
h
should be

absolutely continuous w.r.t. µt0 if and only if

(h, h)H =
∞∑
i=1

a2
i < ∞,

i.e., if and only if h is absolutely continuouswith h′ ∈ L2(0, t). Moreover, in analogy to the finite-dimensional
case (9.8), we would expect informally a relative density of the form

“
dµt

h

dµt0
(x) = e(h,x)H−

1
2 (h,h)H = exp

(ˆ t

0
h′s · x

′
s ds −

1
2

ˆ t

0
|h′s |

2 ds
)
”

Since µt0-almost every path x ∈ C([0,∞),Rd) is not absolutely continuous, this expression does not make
sense. Nevertheless, using finite dimensional approximations, we can derive a rigorous expression (9.9) for
the relative density where the integral

´ t
0 h′s · x

′
s ds is replaced by the almost surely well-defined stochastic

integral
´ t

0 h′s · dxs :

Proof (of Theorem 9.9). We assume t = 1. The proof for other values of t is similar. Moreover, as explained
above, it is enough to consider the case h(0) = 0.

(i) Local densities: We first compute the relative densities when the paths are only evaluated at dyadic
time points. Fix n ∈ N, let ti = i · 2−n, and let

δix = xti+1 − xti

denote the i-th dyadic increment. Then the increments δiBh (i = 0,1, . . . ,2n − 1) of the translated
Brownian motion are independent random variables with distributions

δiBh = δiB + δih ∼ N(δih, (δt) · Id), δt = 2−n.

Consequently, the marginal distribution of (Bh
t1
,Bh

t2
, . . . ,Bh

t2n
) is a normal distribution with density

w.r.t. Lebesgue measure proportional to

exp

(
−

2n−1∑
i=0

|δix − δih|2

2δt

)
, x = (xt1, xt2, . . . , xt2n ) ∈ R

2nd .

Since the normalization constant does not depend on h, the joint distribution of (Bh
t1
,Bh

t2
, . . . ,Bh

t2n
) is

absolutely continuous w.r.t. that of (Bt1,Bt2, . . . ,Bt2n ) with relative density

exp

(∑ δih
δt
· δix −

1
2

∑����δihδt

����2 δt

)
. (9.10)

Consequently, µh is always absolutely continuous w.r.t. µ0 on each of the σ-algebras

Fn = σ(Xi ·2−n : i = 0,1, . . . ,2n − 1), n ∈ N,

with relative densities

Zn = exp

(
2n−1∑
i=0

δih
δt
· δiX −

1
2

2n−1∑
i=0

����δihδt

����2 δt

)
. (9.11)
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(ii) Limit of local densities: Suppose that h is absolutely continuous with
ˆ 1

0
|h′t |

2 dt < ∞.

We now identify the limit of the relative densities Zn as n→∞. First, we note that

2n−1∑
i=0

����δihδt

����2 δt −→

ˆ 1

0
|h′t |

2 dt as n→∞.

In fact, the sum on the right hand side coincides with the squared L2 norm
ˆ 1

0

��dh/dt |σ(Dn)

��2 dt

of the dyadic derivative
dh
dt

����
σ(Dn)

=

2n−1∑
i=0

δih
δt
· I((i−1)·2−n ,i ·2−n]

on the σ-algebra generated by the intervals ((i − 1) · 2−n, i · 2−n]. If h is absolutely continuous with

h′ ∈ L2(0,1) then
dh
dt

����
σ(Dn)

→ h′(t) in L2(0,1) by the L2 martingale convergence theorem.

Furthermore, by Itô’s isometry,

2n−1∑
i=0

δih
δt
· δiX →

ˆ 1

0
h′s · dXs in L2(µ0) as n→∞. (9.12)

Indeed, the sum on the right-hand side is the Itô integral of the step function
dh
dt

����
σ(Dn)

w.r.t. X ,

and as remarked above, these step functions converge to h′ in L2(0,1). Along a subsequence, the
convergence in (9.12) holds µ0-almost surely, and hence by (9.11),

lim
n→∞

Zn = exp
(ˆ 1

0
h′s · dXs −

1
2

ˆ 1

0
|h′s |

2 ds
)

µ0-a.s. (9.13)

(iii) Absolute continuity on F X
1 : We still assume h′ ∈ L2(0,1). Note that F X

1 = σ(
⋃
Fn). Hence for

proving that µh is absolutely continuous w.r.t. µ0 on F X
1 with density given by (9.13), it suffices to

show that lim sup Zn < ∞ µh-almost surely (i.e., the singular part in the Lebesgue decomposition of
µh w.r.t. µ0 vanishes). Since µh = µ0 ◦ τ

−1
h
, the process

Wt = Xt − ht is a Brownian motion w.r.t. µh,

and by (9.10) and (9.11),

Zn = exp

(
2n−1∑
i=0

δih
δt
· δiW +

1
2

2n−1∑
i=0

����δihδt

����2 δt

)
.

Note that the minus sign in front of the second sum has turned into a plus by the translation! Arguing
similarly as above, we see that along a subsequence, (Zn) converges µh-almost surely to a finite limit:

lim Zn = exp ©­«
1ˆ

0

h′s · dWs +
1
2

1ˆ

0

|h′s |
2 dsª®¬ µh-a.s.

Hence µh � µ0 with density lim Zn.
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(iv) Singularity on F X
1 : Conversely, let us suppose now that h is not absolutely continuous or h′ is not in

L2(0,1). Then

2n−1∑
i=0

����δihδit
����2 δt =

1ˆ

0

����dh
dt

����2
σ(Dn)

dt −→ ∞ as n→∞.

Since 




2n−1∑
i=0

δih
δt
· δiX







L2(µ0)

=

(
2n−1∑
i=0

(
δih
δt

)2
δt

)1/2

,

we can conclude by (9.11) that

lim Zn = 0 µ0-almost surely,

i.e., µh is singular w.r.t. µ0. �

The proof above explains how the specific form of the density in the Cameron-Martin Theorem arises.
In the following section 9.3, we will take a different approach based on stochastic calculus that enables us
to study changes of measure corresponding to more general translations of a Brownian motion. Later, in
Section ??, we will give an alternative proof of the Cameron-Martin Theorem based on this approach.

Passage times for Brownian motion with constant drift

We now consider a one-dimensional Brownian motion with constant drift β, i.e., a process

Yt = Bt + βt, t ≥ 0,

where Bt is a Brownian motion starting at 0 and β ∈ R. We will apply the Cameron-Martin Theorem to
compute the distributions of the first passage times

TY
a = min{t ≥ 0 : Yt = a}, a > 0.

Note that TY
a is also the first passage time to the line t 7→ a − βt for the Brownian motion (Bt ).

Theorem 9.10. For a > 0 and β ∈ R, the restriction of the distribution of TY
a to (0,∞) is absolutely

continuous with density

fa,β(t) =
a
√

2πt3
exp

(
−
(a − βt)2

2t

)
.

In particular,

P[TY
a < ∞] =

∞̂

0

fa,β(s) ds.

Proof. Let h(t) = βt. By the Cameron-Martin Theorem, the distribution µh of (Yt ) is absolutely continuous
w.r.t. Wiener measure on F X

t with density

Zt = exp(β · Xt − β
2t/2).
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Therefore, denoting by Ta = inf{t ≥ 0 : Xt = a} the passage time of the canonical process, we obtain

P[TY
a ≤ t] = µh[Ta ≤ t] = Eµ0[Zt ; Ta ≤ t]

= Eµ0[ZTa ; Ta ≤ t] = Eµ0[exp(βa −
1
2
β2Ta) ; Ta ≤ t]

=

ˆ t

0
exp(βa − β2s/2) fTa (s) ds

by the optional sampling theorem. The claim follows by inserting the explicit expression for fTa derived in
Corollary 1.30. �

9.3. Girsanov transform

We will now extend the results in the previous section 9.2 considerably. To this end, we will consider locally
absolutely continuous changes of measure with local densities of type

Zt = exp
(ˆ t

0
Gs · dXs −

1
2

ˆ t

0
|Gs |

2 ds
)
,

where (Xs) is a Brownian motion and (Gs) is an adapted process. Recall that the densities in the Cameron-
Martin-Theorem took this form with the deterministic function Gs = h′s. We start with a general discussion
about changing measure on filtered probability spaces that will be useful in other contexts as well.

Change of measure on filtered probability spaces

Let (Ft ) be a filtration on a measurable space (Ω,A), and fix t0 ∈ (0,∞). We consider two probability
measures P and Q on (Ω,A) that are mutually absolutely continuous on the σ-algebra Ft0 with relative
density

Zt0 =
dP
dQ

���
Ft0

> 0 Q-almost surely.

Then P and Q are also mutually absolutely continuous on each of the σ-algebras Ft , t ≤ t0, with Q- and
P-almost surely strictly positive relative densities

Zt =
dP
dQ

���
Ft

= EQ

[
Zt0

��Ft ] and
dQ
dP

���
Ft

=
1
Zt
.

The process (Zt )t≤t0 is a martingale w.r.t. Q, and, correspondingly, (1/Zt )t≤t0 is a martingale w.r.t. P. From
now on, we always choose a right continuous version of these martingales.

Lemma 9.11. 1) For any 0 ≤ s ≤ t ≤ t0, and for any Ft -measurable random variable X : Ω→ [0,∞],

EP[X |Fs] =
EQ[X Zt |Fs]

EQ[Zt |Fs]
=

EQ[X Zt |Fs]

Zs
P-a.s. and Q-a.s. (9.14)

2) Suppose that (Mt )t≤t0 is an (Ft ) adapted right continuous stochastic process. Then
(i) M is a martingale w.r.t. P ⇔ M · Z is a martingale w.r.t. Q,
(ii) M is a local martingale w.r.t. P ⇔ M · Z is a local martingale w.r.t. Q.

Proof. 1) The right hand side of (9.14) is Fs-measurable. Moreover, for any A ∈ Fs,

EP[EQ[X Zt |Fs]/Zs ; A] = EQ[EQ[X Zt |Fs] ; A]

= EQ[X Zt ; A] = EQ[X ; A].
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2) (i) is a direct consequence of 1). Moreover, by symmetry, it is enough to prove the implication "⇐" in
(ii). Hence suppose that M · Z is a local Q-martingale with localizing sequence (Tn). We show that MTn is
a P-martingale, i.e.,

EP[Mt∧Tn ; A] = EP[Ms∧Tn ; A] for any A ∈ Fs, 0 ≤ s ≤ t ≤ t0. (9.15)

To verify (9.15), we first note that

EP[Mt∧Tn ; A ∩ {Tn ≤ s}] = EP[Ms∧Tn ; A ∩ {Tn ≤ s}] (9.16)

since t ∧ Tn = Tn = s ∧ Tn on {Tn ≤ s}. Moreover, one verifies from the definition of the σ-algebra Fs∧Tn
that for any A ∈ Fs, the event A ∩ {Tn > s} is contained in Fs∧Tn , and hence in Ft∧Tn . Therefore,

EP[Mt∧Tn ; A ∩ {Tn > s}] = EQ[Mt∧Tn Zt∧Tn ; A ∩ {Tn > s}] (9.17)
= EQ[Ms∧Tn Zs∧Tn ; A ∩ {Tn > s}]] = EP[Ms∧Tn ; A ∩ {Tn > s}]

by the martingale property for (M Z)Tn , the optional sampling theorem, and the fact that P � Q on Ft∧Tn
with relative density Zt∧Tn . (9.15) follows from (9.16) and (9.17). �

Since the probability measures P andQ are mutually absolutely continuous on theσ-algebras Ft for t ≤ t0,
the Q-martingale Zt =

dP
dQ

���
Ft

of relative densities is actually an exponential martingale. Indeed, to obtain a
corresponding representation let us assume for simplicity that (Zt )t∈[0,t0] is Q-almost surely continuous, and
let

Lt :=
ˆ t

0

1
Zs

dZs

denote the stochastic "logarithm" of Z . Since Q-almost surely, (Zt ) is strictly positive, the process (Lt )t∈[0,t0]
is a well-defined local martingale w.r.t. Q. Moreover, by the associative law,

dZt = Zt dLt, Z0 = 1,

so Zt is the stochastic exponential of the local Q-martingale (Lt ):

Zt = exp (Lt − [L]t/2) .

If (Zt ) is not continuous, a similar argument can still be carried out by using stochastic calculus for càdlàg
semimartingales. In this case, the stochastic logarithm of Zt is defined as Lt =

´ t
0 (1/Zs−) dZs, see Chapter

?? below.

Girsanov’s Theorem

We now return to our original problem of identifying the change of measure induced by a random translation
of the paths of a Brownian motion. Suppose that (Xt ) is a Brownian motion in Rd with X0 = 0 w.r.t. the
probability measure Q and the filtration (Ft ), and fix t0 ∈ [0,∞). Let

Lt =

ˆ t

0
Gs · dXs, t ≥ 0,

with G ∈ L2
a,loc

(
R+,R

d
)
. Then [L]t =

´ t
0 |Gs |

2 ds, and hence

Zt = exp
( ˆ t

0
Gs · dXs −

1
2

ˆ t

0
|Gs |

2 ds
)

(9.18)

is the exponential of L. In particular, since L is a local martingale w.r.t. Q, Z is a non-negative local
martingale, and hence a supermartingale w.r.t. Q. It is a Q-martingale for t ≤ t0 if and only if EQ[Zt0] = 1:
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Exercise (Martingale property for exponentials). Let (Zt )t∈[0,t0] on (Ω,A,Q) be a non-negative local
martingale satisfying Z0 = 1.

a) Show that Z is a supermartingale.

b) Prove that Z is a martingale if and only if EQ[Zt0 ] = 1.

In order to use Zt0 for changing the underlying probability measure on Ft0 we have to assume themartingale
property:

Assumption. (Zt )t≤t0 is a martingale w.r.t. Q.

Theorem 9.13 below implies that the assumption is satisfied if

E
[
exp

(
1
2

ˆ t

0
|Gs |

2 ds
)]

< ∞.

If the assumption holds then we can consider a probability measure P on A with

dP
dQ

���
Ft0

= Zt0 Q-a.s. (9.19)

Note that P and Q are mutually absolutely continuous on Ft for any t ≤ t0 with

dP
dQ

���
Ft

= Zt and
dQ
dP

���
Ft

=
1
Zt

both P- and Q-almost surely. We are now ready to prove one of the most important results of stochastic
analysis:

Theorem 9.12 (Maruyama 1954, Girsanov 1960). Suppose that X is a d-dimensional Brownian motion
w.r.t. Q and (Zt )t≤t0 is defined by (9.18) with G ∈ L2

a,loc(R+,R
d). If EQ[Zt0] = 1 then the process

Bt := Xt −

ˆ t

0
Gs ds, t ≤ t0,

is a Brownian motion w.r.t. any probability measure P on A satisfying (9.19).

Proof. By the extension of Lévy’s characterization of Brownian motion to the multidimensional case, it
suffices to show that (Bt )t≤t0 is an Rd-valued P-martingale with [Bi,B j]t = δi j t P-almost surely for any
i, j ∈ {1, . . . , d}, cf. Theorem ?? below. Furthermore, by Lemma 9.11, and since P and Q are mutually
absolutely continuous on Ft0 , this holds true provided (BtZt )t≤t0 is an Rd valued local martingale under
Q, and [Bi,B j] = δi j t Q-almost surely. The identity for the covariations holds since (Bt ) differs from
the Q-Brownian motion (Xt ) only by a continuous finite variation process. To show that B · Z is a local
Q-martingale, we apply Itô’s formula: For 1 ≤ i ≤ d,

d(Bi Z) = Bi dZ + Z dBi + d[Bi, Z] (9.20)
= BiZG · dX + Z dX i − Z Gidt + ZGi dt,

where we have used that

d[Bi, Z] = ZG · d[Bi,X] = ZGi dt Q-almost surely.

The right-hand side of (9.20) is a stochastic integral w.r.t. the Q-Brownian motion X , and hence a local
Q-martingale. �
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The theorem shows that if X is a Brownian motion w.r.t. Q, and Z defined by (9.18) is a Q-martingale, then
X satisfies

dXt = Gt dt + dBt .

with a P-Brownianmotion B. This can be used to construct weak solutions of stochastic differential equations
by changing the underlying probability measure, see Section ?? below. For instance, if we choose Gt = b(Xt )

then the Q-Brownian motion (Xt ) is a solution to the SDE

dXt = b(Xt ) dt + dBt,

where B is a Brownian motion under the modified probability measure P.

Furthermore, Girsanov’s Theorem generalizes the Cameron-Martin Theorem to non-deterministic adapted
translations

Xt (ω) −→ Xt (ω) − Ht (ω), Ht =

ˆ t

0
Gs ds,

of a Brownian motion X .

Remark (Assumptions in Girsanov’s Theorem). (i) Absolute continuity and adaptedness of the “trans-
lation process” Ht =

´ t
0 Gs ds are essential for the assertion of Theorem 9.12.

(ii) The assumption EQ[Zt0] = 1 ensuring that (Zt )t≤t0 is a Q-martingale is not always satisfied − a
sufficient condition is given in Theorem 9.13 below. If (Zt ) is not a martingale w.r.t. Q it can still be
used to define a positive measure Pt with density Zt w.r.t. Q on each σ-algebra Ft . However, in this
case, Pt [Ω] < 1. The sub-probability measures Pt correspond to a transformed process with finite
life-time.

Novikov’s condition

To verify the assumption in Girsanov’s theorem, we now derive a sufficient condition for ensuring that the
exponential

Zt = exp
(
Lt − 1/2 [L]t

)
of a continuous local (Ft ) martingale (Lt ) is a martingale. Recall that Z is always a non-negative local
martingale, and hence a supermartingale w.r.t. (Ft ).

Theorem 9.13 (Novikov 1971). Let t0 ∈ R+. If E[exp
(
[L]t0/2

)
] < ∞ then (Zt )t≤t0 is an (Ft ) martingale.

We only prove the theorem under the slightly more restrictive condition

E [exp(p[L]t/2)] < ∞ for some p > 1. (9.21)

This simplifies the proof considerably, and the condition is sufficient for many applications. For a proof in
the general case and under even weaker assumptions see e.g. [12].

Proof. Let (Tn)n∈N be a localizing sequence for the martingale Z . Then (Zt∧Tn )t≥0 is a martingale for any
n. To carry over the martingale property to the process (Zt )t∈[0,t0], it is enough to show that the random
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variables Zt∧Tn , n ∈ N, are uniformly integrable for each fixed t ≤ t0. However, for c > 0 and p,q ∈ (1,∞)
with p−1 + q−1 = 1, we have

E[Zt∧Tn ; Zt∧Tn ≥ c]

= E
[
exp

(
Lt∧Tn −

p
2
[L]t∧Tn

)
exp

( p − 1
2
[L]t∧Tn

)
; Zt∧Tn ≥ c

]
(9.22)

≤ E
[
exp

(
pLt∧Tn −

p2

2
[L]t∧Tn

) ]1/p
· E

[
exp

(
q ·

p − 1
2
[L]t∧Tn

)
; Zt∧Tn ≥ c

]1/q

≤ E
[
exp

( p
2
[L]t

)
; Zt∧Tn ≥ c

]1/q

for any n ∈ N. Here we have used Hölder’s inequality and the fact that exp
(
pLt∧Tn −

p2

2 [L]t∧Tn
)
is an

exponential supermartingale. If exp
( p

2 [L]t
)
is integrable then the right hand side of (9.22) converges to 0

uniformly in n as c→∞, because

P[Zt∧Tn ≥ 0] ≤ c−1 E[Zt∧Tn ] ≤ c−1 −→ 0

uniformly in n as c → ∞. Hence {Zt∧Tn : n ∈ N} is indeed uniformly integrable, and thus (Zt )t∈[0,t0] is a
martingale. �

Example (Bounded drifts). If Lt =
´ t

0 Gs · dXs with a Brownian motion (Xt ) and an adapted process
(Gt ) that is uniformly bounded on [0, t] for any finite t then the quadratic variation [L]t =

´ t
0 |Gs |

2 ds is
also bounded for finite t. Hence exp(L − 1

2 [L]) is an (Ft ) martingale for t ∈ [0,∞).

Example (Option pricing in continuous time II: Risk-neutral measure). Weconsider the asset price
model in continuous time introduced in the beginning of Chapter 8. The stock price is modelled by an
SDE

dSt = αtSt dt + σtSt dXt, (9.23)

and the interest rate is given by (Rt ). We assume that (Xt ) is a Brownian motion and (αt ), (Rt ), (σt )

and (1/σt ) are adapted bounded continuous processes, all defined on a filtered probability space
(Ω,A,Q, (Ft )). Then the discounted asset price

S̃t := exp
(
−

ˆ t

0
Rs ds

)
St

satisfies
dS̃t = (αt − Rt )S̃t dt + σt S̃t dXt = σt S̃t dBt, (9.24)

where

Bt := Xt +

ˆ t

0

αs − Rs

σs
ds.

We can apply Girsanov’s Theorem and the Novikov condition to conclude that the process (Bt ) is a
Brownian motion under a probability measure P on (Ω,A) with local densities w.r.t. Q on Ft given by

Zt = exp
( ˆ t

0
Gs · dXs −

1
2

ˆ t

0
|Gs |

2 ds
)

where Gt = (Rt − αt )/σt .

Therefore, by (9.24) and by the assumptions on the coefficients, the process (S̃t ) is a martingale under
Q. The measure Q can now be used to compute option prices under a no-arbitrage assumption similarly
to the discrete time case considered in Section 2.3 above, see Section 9.4.
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9.4. Itô’s Representation Theorem and Option Pricing

We now prove two basic representation theorems for functionals and martingales that are adapted w.r.t. the
filtration generated by a Brownian motion. Besides their intrinsic interest, such representation theorems are
relevant e.g. for the theory of financial markets, and for stochastic filtering. Throughout this section, (Bt )

denotes a Brownian motion starting at 0 on a probability space (Ω,A,P), and

Ft = σ(Bs : s ∈ [0, t])P, t ≥ 0,

is the completed filtration generated by (Bt ). It is crucial that the filtration does not contain additional
information. By the factorization lemma, this implies that Ft measurable random variables F : Ω → R
are almost surely functions of the Brownian path (Bs)s≤t . Indeed, we will show that such functions can be
represented as stochastic integrals.

Representation theorems for functions and martingales

The first version of Itô’s Representation Theorem states that random variables that are measurable w.r.t. the
σ-algebra F1 = F

B,P
1 can be represented as stochastic integrals:

Theorem 9.14 (Itô). For any function F ∈ L2(Ω,F1,P) there exists a unique process G ∈ L2
a(0,1) such

that

F = E[F] +
ˆ 1

0
Gs · dBs P-almost surely. (9.25)

An immediate consequence of Theorem 9.14 is a corresponding representation for martingales w.r.t. the
Brownian filtration Ft = F B,P

t :

Corollary 9.15 (Itô representation for martingales). For any right-continuous L2-bounded (Ft ) martin-
gale (Mt )t∈[0,1] there exists a unique process G ∈ L2

a(0,1) such that

Mt = M0 +

ˆ t

0
Gs · dBs for any t ∈ [0,1], P-a.s.

The corollary is of fundamental importance in financial mathematics where it is related to completeness
of financial markets. It also proves the remarkable fact that every martingale w.r.t. the Brownian filtration
has a continuous modification! Of course, this result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorem 9.14, and then we prove the theorem:

Proof (Proof of Corollary 9.15.). If (Mt )t∈[0,1] is an L2 bounded (Ft ) martingale then M1 ∈ L
2(Ω,F1,P),

and
Mt = E[M1 |Ft ] a.s. for any t ∈ [0,1].

Hence, by Theorem 9.14, there exists a unique process G ∈ L2
a(0,1) such that

M1 = E[M1] +

ˆ 1

0
G · dB = M0 +

ˆ 1

0
G · dB a.s.,
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and thus
Mt = E[M1 |Ft ] = M0 +

ˆ t

0
G · dB a.s. for any t ∈ [0,1].

Since both sides in the last equation are almost surely right continuous, the identity actually holds simulta-
neously for all t ∈ [0,1] with probability 1. �

Proof (Proof of Theorem 9.14.). Uniqueness. Suppose that (9.25) holds for two processes G, G̃ ∈ L2
a(0,1).

Then ˆ 1

0
G · dB =

ˆ 1

0
G̃ · dB,

and hence, by Itô’s isometry,

| |G − G̃ | |L2(P⊗ν) =

������ˆ (G − G̃) · dB
������
L2(P)

= 0.

Hence Gt (ω) = G̃t (ω) for almost every (t,ω).

Existence. We prove the existence of a representation as in (9.25) in several steps − starting with “simple”
functions F.
1. Suppose that F = exp(ip · (Bt − Bs)) for some p ∈ Rd and 0 ≤ s ≤ t ≤ 1. By Itô’s formula,

exp(ip · Bt +
1
2
|p|2t) = exp(ip · Bs +

1
2
|p|2s) +

ˆ t

s

exp
(
ip · Br +

1
2
|p|2r

)
ip · dBr .

Rearranging terms, we obtain an Itô representation for F with a bounded adapted integrand G.

2. Now suppose that F =
n∏

k=1
Fk where Fk = exp

(
ipk · (Btk − Btk−1)

)
for some n ∈ N, p1, . . . , pn ∈ Rd, and

0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Denoting by Gk the bounded adapted process in the Itô representation for Fk ,
we have

F =

n∏
k=1

(
E[Fk] +

ˆ tk+1

tk

Gk · dB
)
.

We show that the right hand side can be written as the sum of
∏n

k=1 E[Fk] and a stochastic integral w.r.t.
B. For this purpose, it suffices to verify that the product of two stochastic integrals Xt =

´ t
0 G · dB and

Yt =
´ t

0 H · dB with bounded adapted processes G and H is the stochastic integral of a process in L2
a(0,1)

provided
´ 1

0 Gt · Ht dt = 0. This holds true, since by the product rule,

X1Y1 =

ˆ 1

0
XtHt · dBt +

ˆ 1

0
YtGt · dBt +

ˆ 1

0
Gt · Ht dt,

and XH + YG is square-integrable by Itô’s isometry.

3. Clearly, an Itô representation also holds for any linear combination of functions as in Step 2.

4. To prove an Itô representation for arbitrary functions in L2(Ω,F1,P), we first note that the linear
combinations of the functions in Step 2 form a dense subspace of the Hilbert space L2(Ω,F1,P). Indeed, if
φ is an element in L2(Ω,F1,P) that is orthogonal to this subspace then

E
[
φ

n∏
k=1

exp(ipk · (Btk − Btk−1))

]
= 0

for any n ∈ N, p1, . . . , pn ∈ Rd and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. By Fourier inversion, this implies

E[φ | σ(Btk − Btk−1 : 1 ≤ k ≤ n)] = 0 a.s.
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for any n ∈ N and 0 ≤ t0 ≤ · · · ≤ tn ≤ 1, and hence φ = 0 a.s. by the Martingale Convergence Theorem.
Now fix an arbitrary function F ∈ L2(Ω,F1,P). Then by Step 3, there exists a sequence (Fn) of functions in
L2(Ω,F1,P) converging to F in L2 that have a representation of the form

Fn − E[Fn] =

ˆ 1

0
G(n) · dB (9.26)

with processes G(n) ∈ L2
a(0,1). As n→∞,

Fn − E[Fn] −→ F − E[F] in L2(P).

Hence, by (9.26) and Itô’s isometry, (G(n)) is a Cauchy sequence in L2(P⊗(0,1)). Denoting by G the limit
process, we obtain the representation

F − E[F] =

ˆ 1

0
G · dB

by taking the L2 limit on both sides of (9.26). �

Application to option pricing

We return to the asset price model considered at the end of Section 9.3. For simplicity, we now assume that
the coefficients in (9.23) and (9.24) are constant:

αt ≡ α ∈ R, σt ≡ σ ∈ (0,∞), Rt ≡ r ∈ R.

Then the change of measure is given by the local densities

Zt = exp
(
r − α
σ

Xt −
1
2

(r − α
σ

)2
t
)
, (9.27)

and by (9.24), the discounted stock price is proportional to the Itô exponential of σB where Bt = Xt +
α−r
σ t

is a Brownian motion under the risk-neutral measure Q:

S̃t = S0 · exp(σBt − σ
2t/2) (9.28)

Now suppose that we want to compute the no-arbitrage price of an option. For example, let us consider a
European call option where the payoff at the final time t0 is given by

Vt0 =
(
St0 − K

)+
for a positive constant K . By (9.28), the discounted payoff

Ṽt0 =
(
S̃t0 − e−rt0 K

)+
(9.29)

is an F B,P
t0

measurable random variable. Therefore, by Itô’s Representation Theorem and (9.28), there exists
a process G ∈ L2

a(0, t0) such that

Ṽt0 = EP

[
Ṽt0

]
+

ˆ t0

0
Gr dBr = EP

[
Ṽt0

]
+

ˆ t0

0
Φr dS̃r,

where Φr := Gr/(σS̃r ). Hence (Φr ) is a replicating strategy for the option, i.e., investing Φr units in the
stock and putting the remaining money on the bank account yields exactly the payoff for the option at time
t0 provided our initial capital is given by EP

[
Ṽt0

]
. Since otherwise there would be an arbitrage opportunity
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by selling the option and investing the gain by the strategy Φ, or conversely, we can conclude that under a
no-arbitrage assumption, the only possible option price at time 0 is given by

EP

[
Ṽt0

]
= EP

[(
S0eσBt0−σ

2t0/2 − e−rt0 K
)+]

Noting that Bt0 ∼ N(0, t0) under P, we obtain the Black-Scholes formula for the no-arbitrage price of a
European call option. Notice in particular that the price does not depend on the usually unknown model
parameter α (the mean rate of return).

Application to stochastic filtering

XXX to be included
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A. Conditional expectations

A.1. Conditioning on discrete random variables

We first consider conditioning on the value of a random variable Y : Ω → S where S is countable. In this
case, we can define the conditional probability measure

P[A | Y = z] =
P[A ∩ {Y = z}]

P[Y = z]
, A ∈ A,

and the conditional expectations

E[X | Y = z] =
E[X;Y = z]

P[Y = z]
, X ∈ L1(Ω,A,P),

for any z ∈ S with P[Y = z] > 0 in an elementary way. Note that for z ∈ S with P[Y = z] = 0, the conditional
probabilities are not defined.

Conditional expectations as random variables

It will turn out to be convenient to consider the conditional probabilities and expectations not as functions of
the outcome z, but as functions of the random variable Y . In this way, the conditional expectations become
random variables:

Definition A.1 (Conditional expectation given a discrete random variable). Let X : Ω → R be a ran-
dom variable such that E[X−] < ∞, and letY : Ω→ S be a discrete random variable. The random variable
E[X | Y ] that is P-almost surely uniquely defined by

E[X | Y ] := g(Y ) =
∑
z∈S

g(z) · I{Y=z }

with

g(z) :=

{
E[X | Y = z] if P[Y = z] > 0
arbitrary if P[Y = z] = 0

is called (a version of the) conditional expectation of X givenY . For an event A ∈ A, the random variable

P[A | Y ] := E[IA | Y ]

is called (a version of the) conditional probability of A given Y .

The conditional expectation E[X | Y ] and the conditional probability P[A | Y ] are again random vari-
ables.They take the values E[X | Y = z] and P[A | Y = z], respectively, on the sets {Y = z}, z ∈ S with
P[Y = z] > 0. On each of the null sets {Y = z}, z ∈ S with P[Y = z] = 0, an arbitrary constant value is
assigned to the conditional expectation. Hence the definition is only almost surely unique.
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Characteristic properties of conditional expectations

Let X : Ω → R be a non-negative or integrable random variable on a probability space (Ω,A,P). The
following alternative characterisation of the conditional expectation of X given Y can be verified in an
elementary way:

Theorem A.2. A real random variable X ≥ 0 (or X ∈ L1) on (Ω,A,P) is a version of the conditional
expectation E[X | Y ] if and only if

(I) X = g(Y ) for a function g : S → R, and

(II) E
[
X · f (Y )

]
= E[X · f (Y )] for all non-negative or bounded functions f : S → R, respectively.

A.2. General conditional expectations

If Y is a real-valued random variable on a probability space (Ω,A,P) with continuous distribution function,
then P[Y = z] = 0 for any z ∈ R. Therefore, conditional probabilities given Y = z can not be defined in the
same way as above. Alternatively, one could try to define conditional probabilities given Y as limits:

P[A | Y = z] = lim
h↘0

P[A | z − h ≤ Y ≤ z + h]. (A.1)

In certain cases this is possible but in general, the existence of the limit is not guaranteed.

Instead, the characterization in Theorem A.2 is used to provide a definition of conditional expectations given
general random variables Y . The conditional probability of a fixed event A given Y can then be defined
almost surely as a special case of a conditional expectation:

P[A | Y ] := E[IA | Y ]. (A.2)

Note, however, that in general, the exceptional set will depend on the event A !

The factorization lemma

We first prove an important measure theoretic statement.

Theorem A.3 (Factorization lemma). Suppose that (S,S) is a measurable space andY : Ω→ S is a map.
Then a map X : Ω→ R is measurable w.r.t. σ(Y ) if and only if

X = f (Y ) = f ◦ Y

for a S-measurable function f : S → R.

(Ω, σ(Y )) (S,S) (R,B(R))
Y

X
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Proof. (i) If X = f ◦ Y for a measurable function f , then

X−1(B) = Y−1( f −1(B)) ∈ σ(Y ) holds for all B ∈ B(R),

as f −1(B) ∈ S. Therefore, X is σ(Y )-measurable.

(ii) Coversely, we have to show that σ(Y )-measurability of X implies that X is a measurable function of
Y . This is done in several steps:
a) If X = IA is an indicator function of an set A ∈ σ(Y ), then A = Y−1(B) with B ∈ S, and thus

X(ω) = IY−1(B)(ω) = IB(Y (ω)) for all ω ∈ Ω.

b) For X =
∑n

i=1 ci IAi with Ai ∈ σ(Y ) and ci ∈ R we have correspondingly

X =
n∑
i=1

ci IBi (Y ),

where wobei Bi are sets in S such that Ai = Y−1(Bi).
c) For an arbitrary non-negative, σ(Y )-measurable map X : Ω→ R, there exists a sequence ofσ(Y )-

measurable elementary functions such that Xn ↗ X . By (b), Xn = fn(Y ) with S-measurable
functions fn. Hence

X = sup Xn = sup fn(Y ) = f (Y ),

where f = sup fn is again S-measurable.
d) For a general σ(Y )-measurable map X : Ω→ R, both X+ and X− are measurable functions of Y ,

hence X is a measurable function of Y as well. �

The factorization lemma can be used to rephrase the characterizing properties (I) und (II) of conditional
expectations in Theorem A.2 in the following way:

X is a version of E[X | Y ] if and only if

(i) X ist σ(Y )-messbar,

(ii) E[X ; A] = E[X ; A] fuer alle A ∈ σ(Y ).

The equivalence of (I) und (i) is a consequence of the factorization lemma, and the equivalence of (II) and
(ii) follows by monotone classes, since (ii) states that

E[X · IB(Y )] = E[X · IB(Y )] holds for all B ∈ S.

Conditional expecations given σ-algebras

A remarkable consequence of the characterization of conditional expectations by Conditions (i) and (ii) is
that the conditional expectation E[X | Y ] depends on the random variable Y only via the σ-algebra σ(Y )
generated by Y ! If two random variables Y and Z are functions of each other then σ(Y ) = σ(Z), and hence
the conditional expectations E[X | Y ] and E[X | Z] coincide (with probability 1). Therefore it is plausible to
define directly the conditional expectation given a σ-Algebra. The σ-algebra (e.g. σ(Y ), or σ(Y1, . . . ,Yn))
then describes the available “information” on which we are conditioning.

The characterization of conditional expectations by (i) and (ii) can be extended immediately to the case
of general conditional expectations given a σ-algebra or given arbitrary random variables. To this end let
X : Ω→ R be a non-negative (or integrable) random variable on a probability space (Ω,A,P).
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Definition A.4 (Conditional expectation, general). (i) Let F ⊆ A be a σ-algebra. A non-negative
(or integrable) random variable X : Ω → R is called a version of the conditional expectation
E[X | F ] iff:

a) X is F -measurable, and

b) E[X ; A] = E[X ; A] for any A ∈ F .

(ii) For arbitrary random variables Y,Y1,Y2, . . . ,Yn on (Ω,A,P) we define

E[X | Y ] := E[X | σ(Y )],

E[X | Y1, . . .Yn] := E[X | (Y1, . . . ,Yn)] = E[X | σ(Y1, . . . ,Yn)].

(iii) For an event A ∈ A we define

P[A | F ] := E[IA | F ], and correspondingly P[A | Y ] = E[IA | Y ].

Remark. By monotone classes it can be shown that Condition (b) is equivalent to:

(b’) E[X · Z] = E[X · Z] for any non-negative (resp. bounded) F -measurable Z : Ω→ R.

Theorem A.5 (Existence and uniqueness of conditional expectations). Let X ≥ 0 or X ∈ L1, and let
F ⊆ A be a σ-algebra. Then:

(i) There exists a version of the conditional expectation E[X | F ].

(ii) Any two versions coincide P-almost surely.

Proof. Existence can be shown as a consequence of the Radon-Nikodym theorem. In Theorem A.10 below,
we give a different proof of existence that only uses elementary methods.
For proving uniqueness let X and X̃ be two versions of E[X | F ]. Then both X and X̃ are F -measurable, and

E[X ; A] = E[X̃ ; A] for any A ∈ F .

Therefore, X = X̃ P-almost surely. �

Properties of conditional expectations

Starting form the definition, we now derive several basic properties of conditional expectations that are used
frequently:

Theorem A.6. Let X,Y and Xn (n ∈ N) be non-negative or integrable random variables on (Ω,A,P), and
let F ,G ⊆ A be σ-algebras.
The following assertions hold:

(i) Linearity: E[λX + µY | F ] = λ E[X | F ] + µ E[Y | F ] P-almost surely for any λ, µ ∈ R.

(ii) Monotonicity: If X ≥ 0 P-almost surely, then E[X | F ] ≥ 0 P-almost surely.
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(iii) If X = Y P-almost surely then E[X | F ] = E[Y | F ] P-almost surely.

(iv) Monotone Convergence: If (Xn) is increasing with X1 ≥ 0, then

E[sup Xn | F ] = sup E[Xn | F ] P-almost surely.

(v) Tower Property: If G ⊆ F then

E[E[X | F ] | G] = E[X | G] P-almost surely.

In particular,
E[E[X | Y, Z] | Y ] = E[X |Y ] P-almost surely.

(vi) Taking out what is known: Let Y be F -measurable such that Y · X ∈ L1 or ≥ 0. Then

E[Y · X | F ] = Y · E[X | F ] P-almost surely.

(vii) Independence: If X is independent of F then E[X | F ] = E[X] P-almost surely.

(viii) Let (S,S) and (T,T) be measurable spaces. If Y : Ω → S is F -measurable and X : Ω → T is
independent of F , then for any product-measurable function f : S × T → [0,∞) we have

E[ f (X,Y ) | F ](ω) = E[ f (X,Y (ω))] fuer P-fast alle ω.

Proof. (i) Aus der Linearitaet des Erwartungswertes folgt, dass λE[X | F ]+ µE[Y | F ] eine Version der
bedingten Erwartung E[λX + µY | F ] ist.

(ii) Sei X eine Version von E[X | F ]. Aus X ≥ 0 P-fast sicher folgt wegen {X < 0} ∈ F :

E[X ; X < 0] = E[X ; X < 0] ≥ 0,

und damit X ≥ 0 P-fast sicher.

(iii) Dies folgt unmittelbar aus (1) und (2).

(iv) Ist Xn ≥ 0 und monoton wachsend, dann ist sup E[Xn | F ] eine nichtnegative F -messbare Zufallsvari-
able (mit Werten in [0,∞]), und nach dem "‘klassischen "’ Satz von der monotonen Konvergenz gilt:

E[sup E[Xn | F ] · Z] = sup E[E[Xn | F ] · Z] = sup E[Xn · Z] = E[sup Xn · Z]

fuer jede nichtnegative F -messbare Zufallsvariable Z . Also ist sup E[Xn | F ] eine Version der
bedingten Erwartung von sup Xn gegeben F .

(v) Wir zeigen, dass jede Version von E[X | G] auch eine Version von E[E[X | F ] | G] ist, also die
Eigenschaften (i) und (ii) aus der Definition der bedingten Erwartung erfuellt:

(i) E[X | G] ist nach Definition G-messbar.

(ii) Fuer A ∈ G gilt auch A ∈ F , und somit E[E[X | G] ; A] = E[X ; A] = E[E[X | F ] ; A].

(6) und (7). Auf aehnlicheWeise verifiziert man, dass die Zufallsvariablen, die auf der rechten Seite der Gleichun-
gen in (6) und (7) stehen, die definierenden Eigenschaften der bedingten Erwartungen auf der linken
Seite erfuellen (Uebung).
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(viii) Dies folgt aus (6) und (7) in drei Schritten:
a) Gilt f (x, y) = g(x) · h(y) mit messbaren Funktionen g, h ≥ 0, dann folgt nach (6) und (7) P-fast

sicher:

E[ f (X,Y ) | F ] = E[g(X) · h(Y ) | F ] = h(Y ) · E[g(X)|F ]

= h(Y ) · E[g(X)],

und somit

E[ f (X,Y ) | F ](ω) = E[g(X) · h(Y (ω))] = E[ f (X,Y (ω))] fuer P-fast alle ω.

b) Um die Behauptung fuer Indikatorfunktionen f (x, y) = IB(x, y) von produktmessbaren Mengen
B zu zeigen, betrachten wir das Mengensystem

D = {B ∈ S ⊗ T | Behauptung gilt fuer f = IB}.

D ist ein Dynkinsystem, das nach (a) alle Produkte B = B1×B2 mit B1 ∈ S und B2 ∈ T enthaelt.
Also gilt auch

D ⊇ σ({B1 × B2 | B1 ∈ S,B2 ∈ T }) = S ⊗ T .

c) Fuer beliebige produktmessbare Funktionen f : S × T → R+ folgt die Behauptung nun durch
masstheoretische Induktion. �

Remark (Convergence theorems for conditional expectations). TheMonotoneConvergenceTheorem (Prop-
erty (4)) implies versions of Fatou’s Lemma and of the Dominated Convergence Theorem for conditional
expectations. The proofs are similar to the unconditioned case.

The last property in Theorem A.6 is often very useful. For independent random variables X and Y it
implies

E[ f (X,Y ) | Y ](ω) = E[ f (X,Y (ω))] fuer P-fast alle ω, (A.3)

We stress that independence of X and Y ist essential for (A.3) to hold true. The application of (A.3) without
independence is a common mistake in computations with conditional expectations.

A.3. Conditional expectation as best L2-approximation

In this section we show that the conditional expectation of a square integrable random variable X given
a σ-algebra F can be characterized alternatively as the best approximation of X in the subspace of F -
measurable, square integrable random variables, or, equivalently, as the orthogonal projection of X onto this
subspace. Besides obvious applications to non-linear predictions, this point of view is also the basis for a
simple existence proof of conditional expectations

Jensen’s inequality

Jensen’s inequality is valid for conditional expectations as well. Let (Ω,A,P) be a probability space,
X ∈ L1(Ω,A,P) an integrable random variable, and F ⊆ A a σ-algebra.

Theorem A.7 (Jensen). If u : R→ R is a convex function with u(X) ∈ L1 or u ≥ 0, then

E[u(X) | F ] ≥ u(E[X | F ]) P-almost surely.
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Proof. Jede konvexe Funktion u laesst sich als Supremum von abzaehlbar vielen affinen Funktionen
darstellen, d.h. es gibt an, bn ∈ R mit

u(x) = sup
n∈N
(anx + bn) fuer alle x ∈ R.

Zum Beweis betrachtet man die Stuetzgeraden an allen Stellen einer abzaehlbaren dichten Teilmenge von
R, siehe z.B. [Williams: Probability with martingales, 6.6]. Wegen der Monotonie und Linearitaet der
bedingten Erwartung folgt

E[u(X) | F ] ≥ E[anX + bn | F ] = an · E[X | F ] + bn

P-fast sicher fuer alle n ∈ N, also auch

E[u(X) | F ] ≥ sup
n∈N
(an · E[X | F ] + bn) P-fast sicher.

Corollary A.8 (Lp-contractivity). The map X 7→ E[X | F ] is a contraction on Lp(Ω,A,P) for every
p ≥ 1, i.e.,

E [|E[X | F ]|p] ≤ E[|X |p] for any X ∈ L1(Ω,A,P).

Proof. Nach der Jensenschen Ungleichung gilt:

|E[X | F ]|p ≤ E[|X |p | F ] P-fast sicher.

Die Behauptung folgt durch Bilden des Erwartungswertes. �

The proof of the corollary shows in particular that for a random variable X ∈ Lp, the conditional expectation
E[X | F ] is contained in Lp as well. We now restrict ourselves to the case p = 2.

Conditional expectation as best L2-prediction value

The space L2(Ω,A,P) = L2(Ω,A,P)/∼ of equivalence classes of square integrable random variables is
a Hilbert space with inner product (X,Y )L2 = E[XY ]. If F ⊆ A is a sub-σ-algebra then L2(Ω,F ,P) is
a closed subspace of L2(Ω,A,P), because limits of F -measurable random variables are F -measurable as
well. For X ∈ L2(Ω,A,P), each version of the conditional expectation E[X | F ] is contained in the subspace
L2(Ω,F ,P) by Jensen’s inequality. Furthermore, the conditional expectation respects equivalence classes,
see Theorem A.5. Therefore, X 7→ E[X | F ] induces a linear map from the Hilbert space L2(Ω,A,P) of
equivalence classes onto the subspace L2(Ω,F ,P).

Theorem A.9 (Characterization of the conditional expectation as best L2 approximation and as orthogonal projection).
For Y ∈ L2(Ω,F ,P) the following statements are all equivalent:

(i) Y is a version of the conditional expectation E[X | F ].

(ii) Y is a “best approximation” of X in the subspace L2(Ω,F ,P), i.e.,

E[(X − Y )2] ≤ E[(X − Z)2] for any Z ∈ L2(Ω,F ,P).

(iii) Y is a version of the orthogonal projection of X onto the subspace L2(Ω,F ,P) ⊆ L2(Ω,A,P), i.e.,

E[(X − Y ) · Z] = 0 for any Z ∈ L2(Ω,F ,P).
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L2(Ω,F ,

L2(Ω,A, P )

X

0

E[X | F ]

Figure A.1.: X 7→ E[X | F ] as orthogonal projection onto the subspace L2(Ω,F ,P).

Proof. (1) ⇐⇒ (3):. Fuer Y ∈ L2(Ω,F ,P) gilt:

Y ist eine Version von E[X | F ]

⇐⇒ E[Y · IA] = E[X · IA] fuer alle A ∈ F

⇐⇒ E[Y · Z] = E[X · Z] fuer alle Z ∈ L2(Ω,F ,P)

⇐⇒ E[(X − Y ) · Z] = 0 fuer alle Z ∈ L2(Ω,F ,P)

Hierbei zeigt man die zweite Aequivalenz mit den ueblichen Fortsetzungsverfahren (masstheoretische
Induktion).

(3)⇒ (2):. Sei Y eine Version der orthogonalen Projektion von X auf L2(Ω,F ,P). Dann gilt fuer alle
Z ∈ L2(Ω,F ,P):

E[(X − Z)2] = E[((X − Y ) + (Y − Z))2]

= E[(X − Y )2] + E[(Y − Z)2] + 2E[(X − Y ) (Y − Z)︸  ︷︷  ︸
∈L2(Ω,F,P)

]

≥ E[(X − Y )2]

Hierbei haben wir im letzten Schritt verwendet, dass Y − Z im Unterraum L2(Ω,F ,P) enthalten, also
orthogonal zu X − Y ist.

(2)⇒ (3):. Ist umgekehrtY eine beste Approximation von X in L2(Ω,F ,P) und Z ∈ L2(Ω,F ,P), dann gilt

E[(X − Y )2] ≤ E[(X − Y + tZ)2]

= E[(X − Y )2] + 2tE[(X − Y )Z] + t2E[Z2]

fuer alle t ∈ R, also E[(X − Y ) · Z] = 0. �

The equivalence of (2) and (3) is a well-known functional analytic statement: the best approximation of a
vector in a closed subspace of a Hilbert space is the orthogonal projection of the vector onto this subspace.
The geometric intuition behind this fact is indicated in Figure A.1.

Theorem A.9 is a justification for the interpretation of the conditional expectation as a predicion value. For
example, by the factorization lemma, E[X | Y ] is the best L2-prediction for X among all functions of type
g(Y ),g : R→ R measurable.
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Existence of conditional expectations

By the characterization of the conditional expectation as the best L2-approximation, the existence of condi-
tional expectations of square integrable random variables is an immediate consequence of the existence of
the best approximation of a vector in a closed subspace of a Hilbert space. By monotone approximation, the
existence of conditional expectations of general non-negative random variables then follows easily.

Theorem A.10 (Existence of conditional expectations). For every random variable X ≥ 0 or X ∈

L1(Ω,A,P), and every σ-algebra F ⊆ A, there exists a version of the conditional expectation E[X | F ].

Proof. (i) Wir betrachten zunaechst den Fall X ∈ L2(Ω,A,P). Wie eben bemerkt, ist der Raum
L2(Ω,F ,P) ein abgeschlossenerUnterraumdesHilbertraums L2(Ω,A,P). Sei d = inf{‖Z−X ‖L2 |Z ∈
L2(Ω,F ,P)} der Abstand von X zu diesem Unterraum. Um zu zeigen, dass eine beste Approximation
von X in L2(Ω,F ,P) existiert, waehlen wir eine Folge (Xn) aus diesem Unterraum mit ‖Xn− X ‖L2 →

d. Mithilfe der Parallelogramm-Identitaet folgt fuer n,m ∈ N:

‖Xn − Xm‖
2
L2 = ‖(Xn − X) − (Xm − X)‖2

L2

= 2 · ‖Xn − X ‖2
L2 + 2 · ‖Xm − X ‖2

L2 − ‖(Xn − X) + (Xm − X)‖2
L2

= 2 · ‖Xn − X ‖2
L2︸        ︷︷        ︸

→d2

+2 · ‖Xm − X ‖2
L2︸         ︷︷         ︸

→d2

−4




 Xn + Xm

2
− X





2

L2︸                 ︷︷                 ︸
≤d2

,

und damit
lim sup
n,m→∞

‖Xn − Xm‖
2
L2 ≤ 0.

Also ist die Minimalfolge (Xn) eine CauchyLfolge in dem vollstaendigen Raum L2(Ω,F ,P), d.h. es
existiert ein Y ∈ L2(Ω,F ,P) mit

‖Xn − Y ‖L2 → 0.

Fuer Y gilt

‖Y − X ‖L2 = ‖ lim
n→∞

Xn − X ‖L2 ≤ lim inf
n→∞

‖Xn − X ‖L2 ≤ d,

d.h. Y ist die gesuchte Bestapproximation, und damit eine Version der bedingten Erwartung E[X | F ].

(ii) Fuer eine beliebige nichtnegative Zufallsvariable X auf (Ω,A,P) existiert eine monoton wachsende
Folge (Xn) nichtnegativer quadratintegrierbarer Zufallsvariablen mit X = sup Xn. Man verifiziert
leicht, dass sup

n
E[Xn | F ] eine Version von E[X | F ] ist.

(iii) Entsprechend verifiziert man, dass fuer allgemeine X ∈ L1(Ω,A,P) durch E[X | F ] = E[X+ | F ] −
E[X− | F ] eine Version der bedingten Erwartung gegeben ist. �
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