

"Introduction to Stochastic Analysis" Problem Sheet 8

Please hand in your solutions before 12 noon on Tuesday, December 4.

1. (Time-dependent Itô formula). Suppose that $X : [0, \infty) \to \mathbb{R}$ is a continuous function with continuous quadratic variation [X] w.r.t. a sequence $(\pi_n)_{n \in \mathbb{N}}$ of partitions s.t. mesh $(\pi_n) \to 0$. Show that for every function $F \in C^2(\mathbb{R}^2)$ and for every $t \in \mathbb{R}_+$, the Itô integral

$$\int_0^t \frac{\partial F}{\partial x}(s, X_s) \, dX_s = \lim_{n \to \infty} \sum_{s \in \pi_n} \frac{\partial F}{\partial x}(s, X_s) \left(X_{s' \wedge t} - X_{s \wedge t} \right)$$

exists, and the time-dependent Itô formula

$$F(t,X_t) - F(0,X_0) = \int_0^t \frac{\partial F}{\partial s}(s,X_s) \, ds + \int_0^t \frac{\partial F}{\partial x}(s,X_s) \, dX_s + \frac{1}{2} \int_0^t \frac{\partial^2 F}{\partial x^2}(X_s) \, d[X]_s$$
(1)

holds.

Hint: You may assume without proof that by Taylor's formula, there exists a function $o: \mathbb{R}_+ \to \mathbb{R}_+$ satisfying $o(r)/r \to 0$ as $r \to 0$, such that for any $s, s' \in [0, t]$,

$$F(s', X_{s'}) - F(s, X_s) = \frac{\partial F}{\partial s}(s, X_s) \,\delta s + \frac{\partial F}{\partial x}(s, X_s) \,\delta X_s + \frac{1}{2} \frac{\partial^2 F}{\partial s^2}(s, X_s) \,(\delta s)^2 \\ + \frac{\partial^2 F}{\partial s \partial x}(s, X_s) \,\delta s \,\delta X_s + \frac{1}{2} \frac{\partial^2 F}{\partial x^2}(s, X_s) \,(\delta X_s)^2 + o\left((\delta s)^2 + (\delta X_s)^2\right)$$

2. (Geometric Brownian motion). Let $(B_s)_{s\geq 0}$ be an (\mathcal{F}_s) -Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$ s.t. $B_0 = 0$. A geometric Brownian motion $(X_s)_{s\geq 0}$ with parameters $\mu, \alpha \in \mathbb{R}$ is a solution of the stochastic differential equation (SDE)

$$dX_t = \mu X_t dt + \alpha X_t dB_t,$$

i.e., $(X_s)_{s\geq 0}$ is an almost surely continuous and (\mathcal{F}_s) adapted process such that \mathbb{P} -almost surely,

$$X_t - X_0 = \mu \int_0^t X_s \, ds + \alpha \int_0^t X_s \, dB_s \qquad \text{for any } t \ge 0.$$

a) Find a solution of the SDE with initial value $X_0 = x_0$ using the ansatz

$$X_t = x_0 \cdot \exp(aB_t + bt).$$

Here you may assume the time-dependent Itô fomula (1).

- b) What can you say about the asymptotic behavior of the process as $t \to \infty$?
- c) Compute $E[X_t]$ and $Cov[X_s, X_t]$ for $s, t \ge 0$.

3. (Stochastic integrals w.r.t. Itô processes). Let

$$I_s := \int_0^s H_r \, dB_r, \qquad 0 \le s \le t,$$

with an (\mathcal{F}_s) -Brownian motion B on $(\Omega, \mathcal{A}, \mathbb{P})$, and a process $H \in \mathcal{L}^2_a(0, t; B)$. Suppose that $(\pi_n)_{n \in \mathbb{N}}$ is a sequence of partitions of [0, t] such that $\operatorname{mesh}(\pi_n) \to 0$.

Prove that if G is an (\mathcal{F}_s) -adapted bounded continuous process, then the Riemann sums $\sum_{s \in \pi_n} G_s \cdot (I_{s'} - I_s)$ converge in $L^2(\mathbb{P})$, and

$$\int_{0}^{t} G_{s} \, dI_{s} = \lim_{n \to \infty} \sum_{s \in \pi_{n}} G_{s} \cdot (I_{s'} - I_{s}) = \int_{0}^{t} G_{s} \, H_{s} \, dB_{s}$$

Hint: Express the Riemann sums as a stochastic integral $\int_0^t \dots dB_s$ *w.r.t. Brownian motion.*

4. (A local martingale that is not a martingale). Let $(B_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^3 with initial value $B_0 = x, x \neq 0$. Show that:

- a) $X_t = 1/||B_t||$ is a local martingale up to $T = \inf\{t \ge 0 : B_t = 0\}.$
- b) $T = \infty$ almost surely.
- c) $\{X_s: 0 \le s \le t\}$ is uniformly integrable for all $t \ge 0$.
- d) X_t is not a martingale.

Hint: You may assume without proof the multi-dimensional Itô formula for Brownian motion: If U is an open subset of \mathbb{R}^d , then for $F \in C^2(U)$,

$$F(B_t) - F(B_0) = \sum_{i=1}^d \int_0^t \frac{\partial F}{\partial x^i}(B_s) \, dB_s^i + \frac{1}{2} \int_0^t \Delta F(B_s) \, ds \qquad \forall \ t < T_{U^C},$$

where $T_{U^C} = \inf\{t \ge 0 : B_t \notin U\}$ is the first exit time from U.