

"Introduction to Stochastic Analysis" Problem Sheet 5

Please hand in your solutions before 12 noon on Tuesday, November 13.

1. (Paley-Wiener Integral).

Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$ with $B_0 = 0$. For a function $h \in C^1([0, 1], \mathbb{R})$, the stochastic integral of h w.r.t. B can be defined via the integration by parts identity

$$\int_0^1 h(s) dB_s := h(1) B_1 - \int_0^1 h'(s) B_s ds.$$

a) Show that the random variables $\int_0^1 h(s) dB_s$ are normally distributed with mean 0 and variance $\int_0^1 h(s)^2 ds$. In particular,

$$\mathbb{E}\left[\left(\int_0^1 h(s)dB_s\right)^2\right] = \int_0^1 h(s)^2 ds.$$

- b) Use this isometry to define the integral $\int_0^1 h(s) dB_s$ for an arbitrary function $h \in L^2(0, 1)$.
- c) How can you extend the approach in order to define $t \mapsto \int_0^t h(s) dB_s$ as a continuous stochastic process for $t \in [0, 1]$?

2. (Riemann-Itô sums).

a) Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$ w.r.t. a filtration $(\mathcal{F}_t)_{t\geq 0}$, and let $(H_t)_{t\geq 0}$ be an $(\mathcal{F}_t)_{t\geq 0}$ adapted and product measurable process, which is *continuous in mean-square*, i.e., for any $t \geq 0$,

$$H_t \in L^2(\mathbb{P})$$
 and $\lim_{s \to t} \mathbb{E}[(H_s - H_t)^2] = 0.$

Show that for any sequence (π_n) of partitions of [0, t] with $\operatorname{mesh}(\pi_n) \to 0$,

$$\int_0^t H_s dB_s = \lim_{n \to \infty} \sum_{s \in \pi_n} H_s (B_{s'} - B_s) \quad \text{in } L^2(\mathbb{P}).$$

b) Show that if $f : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function, then $H_t := f(B_t)$ is continuous in mean-square.

3. (Martingale proof of Radon-Nikodym Theorem).

Let \mathbb{P} and \mathbb{Q} be probability measures on (Ω, \mathcal{A}) such that \mathbb{Q} is absolutely continuous w.r.t. \mathbb{P} , i.e., every \mathbb{P} -measure zero set is also a \mathbb{Q} -measure zero set. A relative density of \mathbb{Q} w.r.t. \mathbb{P} on a sub- σ -algebra $\mathcal{F} \subseteq \mathcal{A}$ is an \mathcal{F} -measurable random variable $Z : \Omega \to [0, \infty)$ such that

$$\mathbb{Q}[A] = \int_A Z \, d\mathbb{P}$$
 for any $A \in \mathcal{F}$.

The goal of the exercise is to prove that a relative density on the σ -algebra \mathcal{A} exists if it is separable. Hence let $\mathcal{A} = \sigma(\bigcup \mathcal{F}_n)$ where (\mathcal{F}_n) is a filtration consisting of σ -algebras \mathcal{F}_n that are generated by finitely many disjoints sets $B_{n,i}$ $(i = 1, \ldots, k_n)$ such that $\bigcup_i B_{n,i} = \Omega$.

- a) Write down explicitly relative densities Z_n of \mathbb{Q} w.r.t. \mathbb{P} on each \mathcal{F}_n , and show that (Z_n) is a non-negative martingale under \mathbb{P} .
- b) Prove that the limit $Z_{\infty} = \lim Z_n$ exists both \mathbb{P} -almost surely and in $L^1(\Omega, \mathcal{A}, \mathbb{P})$.
- c) Conclude that Z_{∞} is a relative density of \mathbb{Q} w.r.t. \mathbb{P} on \mathcal{A} .

4. (Simulation of stochastic integrals).

Let (B_t) be a standard Brownian motion on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

a) Use Riemann sum approximations to simulate the stochastic processes

$$I_t = \int_0^t B_s dB_s$$
 and $\hat{I}_t = \int_0^t B_s \hat{d}B_s$ for $t \in [0, 1]$.

Here the first integral is an Itô integral, and the second integral is a backward Itô integral.

- b) Plot the graphs of samples from the difference process $\hat{I}_t I_t$. What do you observe ? State a conjecture.
- c) Can you prove your conjecture ? Hint: Compute the expectations and variances of the Riemann sum approximations $\hat{I}_t^{(h)} - I_t^{(h)}$ to $\hat{I}_t - \hat{I}_t$ for an equidistant partition of [0,1] with mesh size h. What happens as $h \downarrow 0$?