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1. (Uniform integrability).

a) For which sequences (an) of real numbers are the random variables

Xn = an · I(0,1/n) , n ∈ N,

uniformly integrable w.r.t the uniform distribution on the interval (0, 1) ?

b) Show that the exponential martingale Mt = exp(Bt − t/2) of a 1-dimensional Brow-
nian motion is not uniformly integrable.

c) Let (Mn)n∈Z+ be an (Fn) martingale with sup E[ |Mn|p ] <∞ for some p > 1. Prove
that (Mn) converges almost surely and in L1, and Mn = E[M∞ | Fn] for all n ≥ 0.
Hence, conclude that |Mn −M∞|p is uniformly integrable, and Mn →M∞ in Lp.

2. (Angle bracket process and martingale convergence). Suppose that (Mn)n∈Z+

is a square integrable (Fn) martingale on a probability space (Ω,A,P) with conditional
variance process 〈M〉n. We set 〈M〉∞ := limn→∞〈M〉n.

a) Let T be an (Fn) stopping time, and let MT
n := Mn∧T denote the stopped martingale.

Show that almost surely,

〈MT 〉n = 〈M〉n∧T for all n ≥ 0.

b) Let a > 0. Show that Ta := inf{n ≥ 0 : 〈M〉n+1 > a} is an (Fn) stopping time.

c) Prove that the stopped martingale (MTa
n ) converges almost surely and in L2.

d) Hence conclude that (Mn) converges almost surely on the set {〈M〉∞ <∞}.

3. (Backward martingale convergence and law of large numbers). Let (Fn)n∈N
be a decreasing sequence of sub-σ-algebras on a probability space (Ω,A,P).

a) Prove that for every random variable X ∈ L1(Ω,A, P ), the limit M−∞ of the sequence
M−n := E[X | Fn] as n→∞ exists almost surely and in L1, and

M−∞ = E[X |
⋂
Fn] almost surely.

Hint: Apply Doob’s upcrossing inequality to the martingales (Mk−n)k=0,1,...n.
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b) Now let (Xn) be a sequence of i.i.d. random variables in L1(Ω,A,P), and let
Fn = σ(Sn, Sn+1, . . .), where Sn = X1 + . . .+Xn. Prove that almost surely,

E[X1 | Fn] =
Sn
n
,

and conclude that the strong Law of Large Numbers holds:

Sn
n
−→ E[X1] almost surely.

4. (Law of the iterated logarithm). Let (Bt)t≥0 be a one dimensional Brownian
motion with B0 = 0. Recall from the lectures that almost surely,

lim sup
t↓0

Bt

h(t)
≤ +1, where h(t) =

√
2t log log t−1.

Complete the proof of the Law of Iterated Logarithm, i.e., show that almost surely,

lim sup
t↓0

Bt

h(t)
= +1

To this end, you may proceed in the following way:

a) Show that almost surely,

lim inf
t↓0

Bt

h(t)
≥ −1.

b) Let θ ∈ (0, 1) and consider the increments Zn = Bθn − Bθn+1 , n ∈ N. Show that if
ε > 0, then

P [Zn > (1− ε)h(θn) infinitely often] = 1.

(Hint:
∫∞
x

exp(−z2/2)dz ≥ (x−1 − x−3) exp(−x2/2).)

c) Using the statements in a) and b), conclude that

lim sup
t↘0

Bt

h(t)
≥ 1− ε P -almost surely for every ε > 0.

Hence complete the proof of the LIL.
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