

"Introduction to Stochastic Analysis" Problem Sheet 3

Please hand in your solutions before 1 pm on Tuesday, October 30, into the marked pigeonholes opposite to the maths library.

1. (Martingales and stopping times of Brownian motion).

Let $(B_t)_{t\geq 0}$ be a *d*-dimensional Brownian motion. Show that:

- a) The following processes are martingales w.r.t. each of the filtrations $(\mathcal{F}_t^B)_{t\geq 0}$ and $(\mathcal{F}_t)_{t\geq 0}$, where $\mathcal{F}_t = \bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}^B$ denotes the right continuous filtration:
 - i) The coordinate processes $B_t^{(i)}$, $1 \le i \le d$,
 - ii) $B_t^{(i)} B_t^{(j)} t \cdot \delta_{ij}$ for any $1 \le i, j \le d$,
 - iii) $\exp(\alpha \cdot B_t \frac{1}{2}|\alpha|^2 t)$ for any $\alpha \in \mathbb{R}^d$.
- b) If all sample paths $t \mapsto B_t(\omega)$ are continuous, then for every closed set $A \subset \mathbb{R}^d$, the first hitting time $T_A = \inf\{t \ge 0 : B_t \in A\}$ is a stopping time w.r.t. $(\mathcal{F}_t^B)_{t\ge 0}$.
- c) For an open set $U \subset \mathbb{R}^d$, T_U is a stopping time w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ but not necessarily w.r.t. $(\mathcal{F}_t^B)_{t\geq 0}$.

2. (Ruin probabilities and passage times revisited).

Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion starting at 0. For a, b > 0 let

$$T = \inf\{t \ge 0 : B_t \notin (-b, a)\}$$
 and $T_a = \inf\{t \ge 0 : B_t = a\}$

denote the first exit time from the interval (-b, a), and the first hitting time of a, respectively. You may assume without proof that both stopping times are almost surely finite. Show that:

- a) Ruin probabilities: $\mathbb{P}[B_T = a] = b/(a+b), \quad \mathbb{P}[B_T = -b] = a/(a+b);$
- b) Mean exit time: $\mathbb{E}[T] = a \cdot b$, and $\mathbb{E}[T_a] = \infty$;
- c) Laplace transform of passage times: $\mathbb{E}[\exp(-sT_a)] = \exp(-a\sqrt{2s})$ for any s > 0;
- d) The distribution of T_a on $(0, \infty)$ is absolutely continuous with density

$$f_{T_a}(t) = a \cdot (2\pi t^3)^{-1/2} \cdot \exp(-a^2/2t).$$

- **3.** (Stopping times). Let $(\mathcal{F}_t)_{t \in [0,\infty)}$ be a filtration on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.
 - a) Let S and T be (\mathcal{F}_t) stopping times. Show that the following properties hold:
 - (i) $T \wedge S$, $T \vee S$ and T + S are again (\mathcal{F}_t) stopping times.
 - (ii) \mathcal{F}_T is a σ -algebra, and T is \mathcal{F}_T -measurable.
 - (iii) $S \leq T \Rightarrow \mathcal{F}_S \subseteq \mathcal{F}_T;$
 - (iv) $\mathcal{F}_{S\wedge T} = \mathcal{F}_S \cap \mathcal{F}_T;$
 - (v) The events $\{S < T\}$, $\{S \le T\}$ and $\{S = T\}$ are all contained in $\mathcal{F}_S \cap \mathcal{F}_T$.
 - b) Show that an integrable (\mathcal{F}_t) adapted continuous process (M_t) is a martingale if and only if

 $\mathbb{E}[M_T] = \mathbb{E}[M_0]$ for any bounded stopping time T.

4. (Simulation of Ornstein-Uhlenbeck processes II). A two dimensional Ornstein-Uhlenbeck process is a stochastic process $(X_t)_{t\geq 0}$ with values in \mathbb{R}^2 that solves a stochastic differential equation $dX_t = AX_t dt + \sigma dB_t$, $X_0 = x_0$, i.e.,

$$X_t = x_0 + \int_0^t A X_s \, ds + \sigma B_t \quad \text{for all } t \in [0, \infty), \tag{1}$$

where $(B_t)_{t\geq 0}$ is a two dimensional Brownian motion, A is a 2 × 2 matrix, and $\sigma \in (0, \infty)$ and the initial value $x_0 \in \mathbb{R}^2$ are given constants.

- a) Write down a time-discretization of (1), where $t \in h\mathbb{Z}_+$ for a given step size h > 0.
- b) Simulate a sample path of a general two dimensional Ornstein Uhlenbeck process on a time interval $[0, t_{\text{max}}]$, and plot the trajectory.
- c) Run the simulation for the following choices of A and σ , $t_{\text{max}} = 40$ and $x_0 = (1, 0)$.
 - (i) Two dimensional Brownian motion: $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $\sigma = 1$.
 - (ii) Standard two dimensional OU process: $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $\sigma = 1$.
 - (iii) Randomly perturbed rotation: $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\sigma = 0.1$ and $\sigma = 1$.
 - (iv) Randomly perturbed rotation with damping: $A = \begin{pmatrix} -\gamma & 1 \\ -1 & -\gamma \end{pmatrix}$, $\sigma, \gamma \in \{0.1, 1\}$.
 - (v) Damping in one component: $A = \begin{pmatrix} 0 & 1 \\ -1 & -\gamma \end{pmatrix}, \ \sigma, \gamma \in \{0.1, 1\}.$

Hint: It might make sense to choose a higher resolution and thin lines for the plots. For example in Python if the numerical solution is stored in a 2 × steps array sde: plt.figure(figsize=(7,7), dpi=500) plt.plot(sde[0],sde[1],linewidth=.2) plt.show() Matrix multiplication in Python: np.matmul(A,B)