

"Introduction to Stochastic Analysis" Problem Sheet 2

Please hand in your solutions before 12 noon on Tuesday, October 23, into the marked pigeonholes opposite to the maths library.

1. (Bounds for random walks and bin packing).

a) Let $(S_n)_{n\geq 0}$ be a simple random walk on \mathbb{Z} , i.e., $S_n = U_1 + \cdots + U_n$, where the r.v.'s U_i are i.i.d. with $\mathbb{P}[U_i = 1] = p$ and $\mathbb{P}[U_i = -1] = 1 - p = q$, $p \in (0, 1/2)$. Show that the process $Z_n = (q/p)^{S_n}$ is a positive martingale, and conclude that

$$\mathbb{P}\left[\sup_{n\geq 0} S_n \geq k\right] \leq \left(\frac{p}{q}\right)^k \quad \text{and} \quad \mathbb{E}\left[\sup_{n\geq 0} S_n\right] \leq \frac{p}{q-p}$$

b) Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of i.i.d. random variables taking values in [0, 1]. How many bins of size 1 are needed to pack *n* objects of sizes X_1, X_2, \ldots, X_n ? Let B_n be the minimal number of bins and set

$$M_k := \mathbb{E}[B_n | \sigma(X_1, \dots, X_k)], \qquad 0 \le k \le n .$$

Show that $|M_k - M_{k-1}| \leq 1$ and conclude that

$$\mathbb{P}[|B_n - \mathbb{E}[B_n]| \ge \varepsilon] \le 2 \cdot e^{-\frac{\varepsilon^2}{2n}}$$

Remark: One can show that asymptotically, $\mathbb{E}[B_n]$ is growing linearly in n.

2. (Doob decomposition and local time). Let $(Y_n)_{n\geq 0}$ be a sequence of i.i.d. r.v.'s such that $\mathbb{P}[Y_k = 1] = \mathbb{P}[Y_k = -1] = 1/2$. For $n \geq 0$ we set $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$.

- a) Let $S_n = Y_1 + \cdots + Y_n$. Compute the conditional variance process $\langle S \rangle_n$.
- b) Now consider the process defined by

$$M_n = \sum_{k=1}^n \operatorname{sign}(S_{k-1})Y_k, \quad \text{where} \quad \operatorname{sign}(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0. \end{cases}$$

Show that $(M_n)_{n\geq 0}$ is a square integrable martingale and compute $\langle M \rangle_n$.

c) Compute the Doob decomposition of $(|S_n|)_{n\geq 0}$. Show that M_n is measurable with respect to the σ -algebra $\sigma(|S_1|, \ldots, |S_n|)$.

3. (CRR model of stock market). In the Cox-Ross-Rubinstein binomial model of mathematical finance, the price of an asset is changing during each period either by a factor 1 + a or by a factor 1 + b with $a, b \in (-1, \infty)$ such that a < b. We can model the price evolution in a fixed number N of periods by a stochastic process

$$S_n = S_0 \cdot \prod_{i=1}^n X_i, \qquad n = 0, 1, 2, \dots, N,$$

defined on $\Omega = \{1+a, 1+b\}^N$, where the initial price S_0 is a given constant, and $X_i(\omega) = \omega_i$. Taking into account a constant interest rate r > 0, the discounted stock price after n periods is

$$\tilde{S}_n = S_n / (1+r)^n = S_0 \cdot \prod_{i=1}^n \frac{X_i}{1+r}.$$

A probability measure \mathbb{P} on Ω is called a *martingale measure* if the discounted stock price is a martingale w.r.t. \mathbb{P} and the filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Suppose that a < r < b.

a) Prove that \mathbb{P} is a martingale measure if and only if X_1, \ldots, X_N are independent under \mathbb{P} with

$$\mathbb{P}[X_n = 1 + b] = \frac{r - a}{b - a} \quad \text{and} \quad \mathbb{P}[X_n = 1 + a] = \frac{b - r}{b - a}.$$

b) Completeness: Prove that for any function $F: \Omega \to \mathbb{R}$ there exists a constant V_0 and a predictable sequence $(\Phi_n)_{1 \le n \le N}$ such that $F = V_N := V_0 + (\Phi_{\bullet}S)_N$, or, equivalently,

$$(1+r)^{-N}F = \widetilde{V}_N = V_0 + (\Phi_{\bullet}\widetilde{S})_N.$$

Hence in the CRR model, any \mathcal{F}_N -measurable function F can be replicated by a predictable trading strategy. Market models with this property are called *complete*.

Hint: Prove inductively that for n = N, N - 1, ..., 0, $\tilde{F} = F/(1+r)^N$ can be represented as

$$\tilde{F} = \tilde{V}_n + \sum_{i=n+1}^{N} \Phi_i \cdot (\tilde{S}_i - \tilde{S}_{i-1})$$

with an \mathcal{F}_n -measurable function V_n and a predictable sequence $(\Phi_i)_{n+1 \leq i \leq N}$.

c) Option pricing: Derive a general formula for the no-arbitrage price of an option with payoff function $F: \Omega \to \mathbb{R}$ in the CRR model. Compute the no-arbitrage price for a European call option with maturity N and strike K explicitly.

4. (Simulation of Ornstein-Uhlenbeck processes I). An Ornstein-Uhlenbeck process is a solution of a stochastic differential equation $dX_t = -\gamma X_t dt + \sigma dB_t$, $X_0 = x_0$, i.e.,

$$X_t = x_0 - \int_0^t \gamma X_s \, ds + \sigma B_t \quad \text{for all } t \in [0, \infty), \tag{1}$$

where $x_0 \in \mathbb{R}$ and $\gamma, \sigma \in (0, \infty)$ are given constants, and $(B_t)_{t \geq 0}$ is a Brownian motion.

- a) Write down a time-discretization of (1), where $t \in h\mathbb{Z}_+$ for a given step size h > 0.
- b) Simulate a given number k of sample paths of an OU process on a time interval $[0, t_{\text{max}}]$, and plot the result. Run the simulation for different values of h, x_0, γ and σ .

Remark on programming exercises: You can use a language of your choice. Model solutions will be provided in Python with Jupyter notebooks. Links to a brief introduction to Python and Jupyter notebooks and some examples can be found on the course homepage.