

## "Introduction to Stochastic Analysis" Problem Sheet 13

Please hand in your solutions before 12 noon on Tuesday, January 22nd.

## 1. (Stochastic oscillator).

- a) Let A and  $\sigma$  be  $d \times d$ -matrices, let  $a \in \mathbb{R}^d$ , and suppose that  $(B_t)_{t \ge 0}$  is a Brownian motion in  $\mathbb{R}^d$ .
  - (i) Solve the SDE

$$dZ_t = (AZ_t + a) dt + \sigma dB_t, \qquad Z_0 = z_0.$$

(ii) Show that  $Z_t$  is a normally distributed random vector with mean vector m(t) and covariance matrix C(t) where m and C are solutions of the ordinary differential equations

$$\dot{m} = Am + a, \qquad \dot{C} = AC + CA^T + \sigma\sigma^T.$$

b) Small displacements from equilibrium (e.g. of a pendulum) with stochastic reset force are described by an SDE of type

$$dX_t = V_t dt$$
  
$$dV_t = -X_t dt + dB_t$$

with a one-dimensional Brownian motion  $(B_t)_{t\geq 0}$ . In complex notation:

$$dZ_t = -iZ_t dt + i dB_t$$
, where  $Z_t = X_t + iV_t$ .

- (i) Solve the SDE with initial conditions  $X_0 = x_0, V_0 = v_0$ .
- (ii) Show that  $X_t$  is a normally distributed random variable with mean given by the solution of the corresponding deterministic equation.

**2. (Random rotations).** Let  $(B_t)_{t\geq 0}$  be a *d*-dimensional Brownian motion, and suppose that  $(O_t)_{t\geq 0}$  is a continuous adapted process taking values in the orthogonal  $d \times d$  matrices. Prove that the process

$$X_t = \int_0^t O_s \, dB_s$$

is again a d-dimensional Brownian motion.

## 3. (Cox-Ingersoll-Ross model).

Let  $(B_t)_{t\geq 0}$  be a Brownian motion. The Cox-Ingersoll-Ross model aims to describe, for example, an interest rate process  $(R_t)_{t\geq 0}$  or a stochastic volatility process and is given by

$$dR_t = (\alpha - \beta R_t)dt + \sigma \sqrt{R_t}dB_t, \qquad R_0 = x_0 > 0,$$

where  $\alpha, \beta, \sigma > 0$ . It can be shown that the SDE admits a strong solution.

- a) Compute the corresponding scale function and study the asymptotic behaviour of  $R_t$  depending on the parameters  $\alpha$ ,  $\beta$  and  $\sigma$ .
- b) Suppose that  $2\alpha \geq \sigma^2$ . We study further properties of  $R_t$ :
  - (i) By applying Itô's formula, show that  $E[|R_t|^p] < \infty$  for any t > 0 and  $p \ge 1$ .
  - (ii) Compute the expectation of  $R_t$ . (Hint: Apply Itô's formula to  $f(t, x) = e^{\beta t} x$ .)
  - (iii) Proceed in a similar way to compute  $\operatorname{Var}[R_t]$ , and determine  $\lim_{t \to \infty} \operatorname{Var}[R_t]$ .

## 4. (Black-Scholes model).

A stock price is modeled by a geometric Brownian Motion  $(S_t)_{t\geq 0}$  with parameters  $\alpha, \sigma > 0$ . We assume that the interest rate is equal to a real constant r for all times. Let c(t, x) be the value of an option at time t if the stock price at that time is  $S_t = x$ . Suppose that  $c(t, S_t)$  is replicated by a hedging portfolio, i.e., there is a trading strategy holding  $\phi_t$  shares of stock at time t and putting the remaining portfolio value  $V_t - \phi_t S_t$  in the money market account with fixed interest rate r so that the total portfolio value  $V_t$  at each time t agrees with  $c(t, S_t)$ .

"Derive" the Black-Scholes partial differential equation

$$\frac{\partial c}{\partial t}(t,x) + rx\frac{\partial c}{\partial x}(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 c}{\partial x^2}(t,x) = rc(t,x)$$
(1)

and the *delta-hedging rule* 

$$\phi_t = \frac{\partial c}{\partial x}(t, S_t)$$
 (=: Delta). (2)

(Hint: Consider the discounted portfolio value  $\tilde{V}_t = e^{-rt}V_t$  and, correspondingly,  $e^{-rt}c(t, S_t)$ . Compute the Ito differentials, and conclude that both processes coincide if c is a solution to (1) and  $\phi_t$  is given by (2).)