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1. (Feynman and Kac at the stock exchange). The price of a security is modeled
by geometric Brownian motion (Xt) with parameters α, σ > 0. At a price x we have a cost
V (x) per unit of time. The total cost up to time t is then given by

At =

t∫
0

V (Xs)ds .

Suppose that u is a bounded solution to the PDE

∂u

∂t
= Lu − βV u , where L =

σ2

2
x2

d2

dx2
+ αx

d

dx
.

Show that the Laplace transform of At is given by Ex
[
e−βAt

]
= u(t, x) .

2. (Variation of constants II).
We consider nonlinear stochastic differential equations

dXt = f(t,Xt) dt+ c(t)Xt dBt, X0 = x,

where f : R+ × R→ R and c : R+ → R are continuous (deterministic) functions.

a) Find an explicit solution Zt of the equation with f ≡ 0.

b) To solve the equation in the general case, use the Ansatz Xt = Ct · Zt. Show that
the SDE gets the form

dCt(ω)

dt
= f(t, Zt(ω) · Ct(ω))/Zt(ω) , C0 = x. (1)

Note that for each ω ∈ Ω, this is a deterministic differential equation for the function
t 7→ Ct(ω). We can therefore solve (1) with ω as a parameter to find Ct(ω).

c) Apply this method to solve the stochastic differential equation

dXt =
1

Xt

dt+ αXt dBt , X0 = x > 0 , α ∈ R.
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d) Apply the method to study the solution of the stochastic differential equation

dXt = Xγ
t dt+ αXt dBt , X0 = x > 0 ,

where α and γ are constants. For which values of γ do we get explosion?

3. (Lévy Area).
If c(t) = (x(t), y(t)) is a smooth curve in R2 with c(0) = 0, then

A(t) =

∫ t

0

(x(s)y′(s)− y(s)x′(s)) ds =

∫ t

0

x dy −
∫ t

0

y dx

describes the area that is covered by the secant from the origin to c(s) in the interval
[0, t]. Analogously, for a two-dimensional Brownian motion Bt = (Xt, Yt) with B0 = 0, one
defines the Lévy Area

At :=

∫ t

0

Xs dYs −
∫ t

0

Ys dXs .

a) Let α(t), β(t) be C1-functions, p ∈ R, and

Vt = ipAt −
α(t)

2

(
X2
t + Y 2

t

)
+ β(t) .

Show that eVt is a local martingale provided α′(t) = α(t)2 − p2 and β′(t) = α(t).

b) Let t0 ∈ [0,∞). Show that the solutions of the ordinary differential equations for α
and β with α(t0) = β(t0) = 0 are

α(t) =p · tanh(p · (t0 − t)) ,
β(t) =− log cosh(p · (t0 − t)) .

Hence conclude that

E
[
eipAt0

]
=

1

cosh(pt0)
∀ p ∈ R .

c) Show that the distribution of At is absolutely continuous with density

fAt(x) =
1

2t cosh(πx
2t

)
.
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